Monodromy data of Frobenius manifolds and twisted Yangians arising in Teichmüller theory of orbifold Riemann surfaces — Leonid Chekhov, February 6, 2010

We give a fat-graph description of Teichmüller spaces of Riemann surfaces with holes and with \mathbb{Z}_2 - and \mathbb{Z}_3 -orbifold points (conical singularities) in the Poincaré uniformization. We present the corresponding mapping-class group transformations, construct geodesic functions, and introduce the Poisson structure. We then quantize the resulting Poisson algebras. In the particular cases of surfaces with $n \mathbb{Z}_2$ -orbifold points and with one or two holes, we obtain the respective A_n - and D_n -algebras of geodesic functions (classical and quantum). We associate the infinite-dimensional Poisson algebra \mathfrak{D}_n , which is the semiclassical limit of the twisted q-Yangian algebra $Y'_q(\mathfrak{o}_n)$ for the orthogonal Lie algebra \mathfrak{o}_n , to the algebra of geodesic functions on an annulus with $n \mathbb{Z}_2$ -orbifold points. We find the braid-group action on this algebra. Using this result, we construct the braid-group actions on the finite-dimensional reductions of this algebra: the p-level reduction and the D_n -algebra. We find the central elements for these reductions. We also interpret the \mathfrak{D}_n -algebra as the Poisson algebra of monodromy data of a Frobenius manifold in the vicinity of a non-semisimple point.