Here modern viewpoint: \(F(T^2) \) is split-generated by
2 objects \(\alpha \) and \(\beta \).

Forally, every object \(C \) direct summand in iterated
mapping cone of \(\alpha, \beta \).

Yoneda embedding (contravariant):
\[C \rightarrow \text{mod-} \mathcal{C} \]
\[L \rightarrow \{ \text{hom}(T, L) \} \quad \text{for } T \in \mathcal{C} \text{ chain cxs} \]
\[\text{and str. maps } (A_\alpha) \]

In category of modules, have mapping cones:
given \(f: A \rightarrow B \) closed \((\mu(f) = 0) \), \(f \in \text{hom}(A, B) \text{ chain } \alpha \)
\[\text{Cone } (A \rightarrow B) = A^{i+1} \oplus B^i = A[T] \oplus B \]
\[\overset{\partial_A}{\searrow} \overset{f}{\rightarrow} \overset{\partial_B}{\nearrow} \]

(in Alg. Top., this is what chains on mapping cone look like)

Given \(A, B \in \mathcal{C} \), \(f: A \rightarrow B \) closed, say \(C \in \mathcal{C} \) is
a cone of \(f \) if the module cones to \(C \) is qiso to Cone \((f) \).

Given a mapping cone, have an exact triangle
\[A \rightarrow B, \text{ hence an encoupled } L \in \mathcal{C} \text{ AT: } \]
\[\ldots \rightarrow \text{hom}(T, A) \rightarrow \text{hom}(T, B) \rightarrow \text{hom}(T, C) \rightarrow \ldots \]
\(T^2: \quad \text{cone}(\omega \rightarrow p, p) \rightarrow Y \)
"Mapping cones are related to surgery."

10/13

\[\text{Triangulated categories} \]
An exact triangle is
\[A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{e} \]

It induces LES for every \(T \)
\[\ldots \rightarrow H^i \text{hom}(T, A) \xrightarrow{f^*} H^i \text{hom}(T, B) \xrightarrow{g^*} H^i \text{hom}(T, C) \xrightarrow{e^*} \ldots \]
These are natural w.r.t. \(T \).

Can always enlarge Fukaya catecogy so it has mapping cones.
One way is to have twisted complexes (see Seidel’s book)

\[\text{Tw}(F): \quad \text{Obj.}: \quad \text{finite collection } E = \bigoplus_{i=1}^k E_i \{ \delta_i \} , E_i \in \text{Obj}(F) \]
\[\text{differential } \delta \in \text{End}^1(E), \text{ i.e } \delta_{ij} \in \text{hom}^{i-j+1} (E_i, E_j) \]

1. \(\mu^i(\delta) + \mu^{i+1}(\delta, \delta) + \ldots = 0 \)
\[E_1 \rightarrow E_2 \rightarrow E_3 \]

2. \(\delta \) strictly triangular : \(\delta_{ij} = 0 \) unless \(i \leq j \).
\[(\Rightarrow \text{finiteness in 1}) \]

\[\text{Ex.}: \quad E_1 \xrightarrow{f} E_2 \xrightarrow{g} E_3 \quad \text{twisted if if}\]
\[\mu^i(f) = 0, \mu^1(g) = 0, \mu^2(g, f) + \mu^1(f) = 0 \quad \text{for some } E_1 \rightarrow E_3. \]
Hoytis: hom of twisted complexes \cong homs between summands

$$E_1 \xrightarrow{\delta_E} E_2 \xrightarrow{\delta_E} \cdots \xrightarrow{\mu^1_{Tw}(f)} \sum_{k>0} \mu^{k+1} (\delta_{E_f}, \delta_{E_f}, f, \delta_{E_f}, \delta_{E_f})$$

Similarly, given f_1, \ldots, f_k maps between $k+1$ twisted csks,

$$\mu^k_{Tw}(f_1, \ldots, f_k) = \sum \mu (\delta \cdot \delta \cdot f_k \cdot \delta \cdot \delta \cdot f_1 \cdot \delta \cdot \delta)$$

These operations satisfy $A\infty$ relations.

Prop: $Tw(F)$ has mapping cones:

given $(E, \delta_E) \xrightarrow{f} (F, \delta_F)$ s.t. $\mu^1_{Tw}(f) = 0$, then

core $(f) := (E[U] \oplus F, (\delta_E \cdot f, \delta_F))$.

Mapping cones have at least 2 geometric origins in F:
1) Dehn twists about Lagr. spheres [Seidel].
2) Lagr. surgery (connected sum):

- $(A \#_p B)$ is a cone of $A \xrightarrow{f} B$
- (FOOO, Dehn twist case in dim 1)
- $(B \#_p A) \neq (A \#_p B)$ (for $f \neq f'$)

- $CF(T, C) = CF(T, A) \oplus CF(T, B)$ in dim > 1
- $m^1 \circ (m^2 (\text{coeff} p, \cdot)) \circ U \circ m^1$

For $T^m IR^n$

T coeff accounts for T^{-E} (area difference $\text{ann} \cdot \text{ann}$)
& for difference in local systems

In $Tw(F)$, $C = \{ A \xrightarrow{f} B \}$.
Ex: T^2: $A, B \in \mathcal{F}(T^2)$

In smallest full subal of $T \mathcal{F}(T^2)$ containing A & B & mapping cone, can build curves representing any slope but only balanced w.r.t. 180° rotation about curve C.

Cone $\left(C \xrightarrow{T^2} B \right) \cong A_1 \oplus A_2$ both isotopic (non- Ham) to A.

Every obj of $\mathcal{F}(T^2)$ is \cong to a direct summand in a twisted complex built from A, B:

"A, B split-generate $\mathcal{F}(T^2)$".

Note: Coh is split-closed, but \mathcal{F} is not in general.

E.g: $\text{Coh} \cong \mathbb{P}^2$ splits as two summands that are not geometric (at least in char 0).

So, need to take split-closure of \mathcal{F}.

"To compute $\mathcal{F}(T^2)$, enough to compute for A, B, w/ all A_{∞}-structure".

Have functor

$$\mathcal{F}(T^2) \rightarrow \text{mod-}A \ A_{\infty} \text{-modules}$$

$$T \mapsto \text{CF} (T^2, A) \otimes \text{CF}(T^2, B)$$

$A = \text{End}(A \otimes B)$.
\[m^3(p, q, r) = 0 \]

\[\mu^1 = 0 \]
\[\mu^2(p, q) = f_B \]
\[\mu^2(q, p) = f_A \]

Levili-Penrose: non-trivial \(\mu^6, \mu^8 \).

Goal: find small collection of generating objects, for which one doesn't have to compute high \(\mu^k \).

Levili-Penrose: A\(_\infty\)-stair on \(A \) are classified by two scalars \((\mu^6, \mu^8) \).

Mirror elliptic curve: \(y^2 = x^3 + \theta x + \eta \)

Widthens form up to rescaling action

Area \((T^2) \) \(\rightarrow \) modular parameter of mirror

\(f_T \), \(\omega = \kappa \), B-field...

When puncture \(T^2 \), might expect to not see holomorphic, but still have \(\mu^6, \mu^8 \neq 0 \)!

When place \(\mu \) form periods, there are hexagons & octagons

The calculation is done via \(H^1 \).
Ex: IR x S^1:

\[
\begin{align*}
\Theta & \mapsto \text{Coh}(\mathbb{K}^*) = f.g \text{ mod } \mathbb{K}[X^{\pm 1}] \\
\text{not explicitly shown, if allow non-closed isotopies on left, } x = IR x S^1: (Abouzaid-Seidel)
\end{align*}
\]

Wrapped Fukaya category

Flow thru with hamiltonian perturbation growing quadratically at \(\infty: H = \frac{1}{2}r^2\)

\[\omega = dr \wedge d\Theta, \quad X_h = r d\Theta\]

\[\psi^0(\omega)\]

\[r=0 \quad r=1 \quad r=2\]

\[\text{Coh}(L_0, L_0) = \bigoplus_{h \in \mathbb{Z}} K [x_h] \text{, all in deg } 0\]

\[\Rightarrow \text{ diff } = 0\]

Product:

\[\text{Coh}(L_0, L_0; H) \otimes \text{Coh}(L_0, L_0; H) \to \text{Coh}(L_0, L_0; 2H)\]

For well-definedness, need \(H\) to grow from input to output.

\[\tilde{\nu}(s,t) = \psi^{2-t}_H(\nu(s,t))\]

Time -1 chords \(L_0 \to L_0\) intertwined time -2 chords

\[\cong \psi^1(L_0) \cap L_0 \quad \text{by } r \to 2r\]

Legendre flow
Unwinding: \(q'(x_1) \)

\[CW^*(L_0, L_0) \cong K[x^{\pm 1}] \]

\[x_i \leftrightarrow x^i \]

\[\mu^2(x_i, x_0) = T^{-i} x_i \]

- can absorb \(T^{-i} \) by suitably rescaling generators (by its action)
- \(\mu^2(x_i, x_j) = x_{i+j} \)