$GL(n, \mathbb{Z})$:= group of $n \times n$ invertible matrices

$n=2$

$a := \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \ b := \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$

Claim: $a \& b$ generate a free subgroup of $GL(2, \mathbb{Z})$!

Idea: Let's study the action of $a \& b$ on \mathbb{Z}^2.

$GL(2, \mathbb{Z}) \ast \mathbb{Z}^2$ by matrix-vector multiplication.

eg. $a \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad \text{(for all } k \in \mathbb{Z})$

#1. $a^2 = (\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix})^2 = \begin{pmatrix} 4 & 4 \\ 0 & 1 \end{pmatrix} \ldots, \ a^k = \begin{pmatrix} 1 & 2k \\ 0 & 1 \end{pmatrix}.$

#2. when $|x| < |y|$, $a^k \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2ky \\ y \end{pmatrix}$

and $|x + 2ky| \geq \frac{2ky}{|x|} \Rightarrow |x| > |y|$.
※ Things in the red zone get sent into things in the black zone, and they stay there too!

#3. b does the opposite, sending things in the black zone to things in the red zone.

#4. How does this help us? PING-PONG!

Recall the definition of a group action

※ \(I_2 \cdot v = v \) for all \(v \in \mathbb{Z}^2 \).

Hence, if some word \(w \) in \(a \) & \(b \) is equal to \(I_2 \), then that word fixes everything!
Choose any v in the black zone and see that $(a^3 b^2 a) \cdot v \notin v$ in the red zone.

That is, $(a^3 b^2 a) \cdot v \neq v$.

So $a^3 b^2 a \neq 1_2$, i.e., $a^3 b^2 a$ is not a relation.

In fact, $\langle a, b \rangle$ has no relations.

Lemma ("Ping-Pong for two players")

- G generated by a and b.
- $G \cap X$ nonempty.
- Have $X_a, X_b \subseteq X$: $a^k(X_b) \subseteq X_a$ & $b^k(X_a) \subseteq X_b$.

$\Rightarrow G_1 \cong F_2$ free group of rank 2.
$\mathbb{C}P := $ space of 1-dimensional subspaces of \mathbb{C}^2 with antipodal points identified.

$\mathbb{C}P := $ space of 1-dimensional subspaces of \mathbb{C}^2.

$\cong \text{ "Riemann sphere" }$

$\uparrow \text{ This is a complex manifold!}$

Möbius Transformations

$Z \mapsto \frac{aZ+b}{cZ+d}$ where $ad-bc \neq 0$.

$\left(-\frac{d}{c} \mapsto \infty, \infty \mapsto \frac{a}{c} \right)$

$\ast \left(Z \mapsto \frac{a'Z+b'}{c'Z+d'} \right) \circ \left(Z \mapsto \frac{aZ+b}{cZ+d} \right) = \left(Z \mapsto \frac{(aa'+bc)b+(a'b+c'd)(c'a+d'c)a+bc'a'}{(c'a+d'c)a+(bc')d} \right)$
Have a natural identification of Möbius transformations with 2x2 matrices over \(\mathbb{C} \):

\[
(z \mapsto \frac{az + b}{cz + d}) \leftrightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

\(ad - bc \neq 0 \iff \leftrightarrow \in \text{GL}(2, \mathbb{C})\).

Almost...

Not well-defined because

\[
\frac{az + b}{cz + d} = \frac{(2a)z + (2b)}{(2c)z + (2d)}
\]

Solution:

\[
\frac{\text{GL}(2, \mathbb{C})}{\langle \text{I}_2 \rangle} \cong \frac{\text{PGL}(2, \mathbb{C})}{\text{PSL}(2, \mathbb{C})}
\]

Tchotthy groups over disks

\(2g \) disjoint circles (with disjoint interiors) \(A_1, B_1, \ldots, A_g, B_g \).
Möbius transformation so that \(T_i(A \cdot c) \subseteq B \).

Since the set of all Möbius transformations is a group, the \(T_i \) generate a subgroup of this group, and under the identification with \(\text{PSL}(2, \mathbb{C}) \), a subgroup of \(\text{PSL}(2, \mathbb{C}) \).

Such a subgroup is called a "classical Schottky group."

Theorem (Maskit 1967)

Theorem [1], and the planarity theorem [3]. A finitely generated Kleinian group \(G \) is a Schottky group if and only if \(G \) is free, and every element of \(G \) other than the identity is loxodromic (hyperbolic transformations are included among the loxodromic).
Baby version: (classical) Schottky groups are free!

Proof. Apply the Ping-Pong Lemma. □