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1 Day 4: Limits and Sequences

Today, we are in a wonderland. This wonderland is R.

Definition 1 (Sequence). A sequence in R is a function a : N → R.

More often than not, we will notate a sequence a : N → R not as a function, but as
a family of real numbers indexed by N. In particular, we denote a by {an}∞n=1, where
an = a(n) for each n ∈ N. When the entire sequence can be inferred from the first few
terms, sometimes we will even write only the first few terms. For example, we might
write 1, 1, . . . for the constant sequence an = 1.

Example 2. Here are some examples of sequences in R.

(1) an = n, which yields 1, 2, 3, 4, . . .

(2) an =
1

n
, which yields 1,

1

2
,
1

3
,
1

4
, . . .

(3) an =
2n − 1

2n
, which yields

1

2
,
3

4
,
7

8
,
15

16
, . . .

(4) a1 = a2 = 1, an = an−1 + an−2, which yields 1, 2, 3, 5, 8, 13, . . .

(5) Let

an =

{
2n if n odd
n if n even.

Then an yields the sequence 2, 2, 8, 4, 32, 6, . . ..
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Note. A sequence of real numbers and a set of real numbers are not the same
thing. For instance, the sequence 1, 1/2, 1/4, 1/8, . . . is different from the sequence
1/8, 1, 1/2, 4, . . ., even though the sets {1, 1/2, 1/4, 1/8, . . .}, and {1/8, 1, 1/2, 4, . . .}
are identical.
For a sequence {an}, the set containing the sequence is written as {an : n ∈ N}.

Something we might be curious about is how a sequence behaves in the long run,
i.e., as n tends to ∞. After all, a sequence can do any number of things. It might
converge to a finite value, it might tend to one extreme or another, or it might oscillate
indefinitely.

Definition 3 (Limit of a Sequence). We say that L is the limit of the sequence
{an}∞n=1 as n tends to ∞, or equivalently,

lim
n→∞

an = L,

if for any ϵ > 0, there exists an N ∈ N such that |an − L| < ϵ whenever n ≥ N . In
somewhat contrived mathematical notation, L is the limit of an if

∀ ϵ > 0,∃N ∈ N such that ∀n ≥ N , |an − L| < ϵ.

The Limit Cookbook, for Sequences. Suppose you have a solid guess L ∈ R for
what the limit of the function representing a sequence is. Proving that your guess is
correct isn’t difficult! Just follow the recipe below:

• Let ϵ > 0 be given.

• Conjure up a suitable N . This N should probably depend on ϵ in some way.

• Verify that |an − L| < ϵ for all n ≥ N .

Along the way, you might find the following theorem useful.

Theorem 4 (Archimedean properties)
The following statements are equivalent and true.

(i) If a and b are real numbers and a > 0, then there exists an n > 0 such that
na > b.

(ii) For every x ∈ R, there exists an n such that n ≤ x < n+ 1.

(iii) For every x > 0, there exists n > 0 such that 1/n ≤ x.

Example 1.1. Show that limn→∞
1
n = 0.

Let ϵ > 0. Let N = ⌊1ϵ ⌋+ 1. Then for all n > N ,

|an − L| = | 1
n
− 0| = 1

n
<

1

N
< ϵ.

Why did we choose this δ? The equality 1
N = ϵ has solution N = 1

ϵ . But we need
this to be an integer, so we take the floor of this number. Now ⌊x⌋ ≤ x for all x, and
so with N = ⌊1ϵ ⌋ we have 1

N ≥ ϵ! To turn this into a strict inequality, we add a 1.

2
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Example 1.2. Show limn→∞
4n+1
n+3 = 4.

Work backwards: |xn − 4| = |4n+1
n+3 − 4| = |−11

n+3 |. Therefore, as with last time we set
N = ⌊11ϵ − 3⌋+ 1.

Now let ϵ > 0 and let N = ⌊11ϵ − 3⌋+ 1. Then

|xn − 4| = |4n+ 1

n+ 3
− 4| = | −11

n+ 3
| = 11

n+ 3
<

11

N + 3
< ϵ.

1.1 Characterizing nearness

Definition 5 (Open interval). An open interval is a set of the form

(a, b) = {x ∈ R | a < x < b}

for some pair of real numbers a < b.

Open intervals—and more generally, open neighbourhoods—help us characterize
precisely what it means for two points in a space to be “as close as possible” to one
another.

Definition 6 (Open ball). The open ball centered at a point x of radius r us the set

Br(x) = {y ∈ R : |x− y| < r}

Notice that open balls are open intervals.

1.1.1 Exercises

1. Prove that lim
n→∞

1 = 1.

2. ⋆ Prove that lim
n→∞

n− 1

n+ 1
= 1.

3. For each function f and each pair of real numbers c, r listed below, draw the
graph of f(x) and highlight the set f−1(Br(c)) on the x-axis. Next, write each
set f−1(Br(c)) as the union of open intervals.

(a) f(x) = x, c = 4, r = 1

(b) f(x) = x2, c = 1, r = 1/2

(c) f(x) = 1/x, c = 0, r = 1.

1.2 Limits of Functions

Definition 7 (Limit of a Function). We say that L is the limit of f(x) as x tends to
a, or equivalently,

lim
x→a

f(x) = L,

if for any ϵ > 0, there exists a δ > 0 such that 0 < |x− a| < δ implies |f(x)− L| < ϵ.

The Limit Cookbook, for Functions. It is likewise easy to describe a recipe for
preparing the limit L for f(x):

• Let ϵ > 0 be given.

3
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• Conjure up a suitable δ. This δ should probably depend on ϵ in some way.

• Verify that |f(x)− L| < ϵ for any x such that 0 < |x− a| < δ.

When constructing the epsilon-delta proof, we need to determine the value for delta.
To determine delta, it is helpful to begin with the final statement and work backwards.

Of course the limit of an arbitrary function f at a point a need not exist (as the
following exercise demonstrates), but when it does, it is unique (convince yourself of
this intuitively). We may therefore speak of the limit.

Example 1.3. Show that limx→4(5x− 7) = 13.
We first work backwards. Let ϵ be given. We want to determine δ. We have

|f(x)− L| < ϵ =⇒ |(5x− 7)− 13| < ϵ =⇒ |5x− 20| < ϵ

=⇒ |5||(x− 4)| < ϵ =⇒ |x− 4| < ϵ

5

Note that we want to now let δ = ϵ
5 . We can now write the proof:

Suppose ϵ > 0 has been provided. Define δ = ϵ
5 . Since ϵ > 0, we also have δ > 0.

Now for every x, the statement 0 < |x− c| < δ implies 0|x− c| < ϵ
5 . Then

|5x− 20| < ϵ =⇒ |(5x− 7)− 13| < ϵ.

Therefore limx→4(5x− 7) = 13.

Example 1.4. Prove that limx→5(3x
2 − 1) = 74.

Let’s begin with some scratch work. Recall that the statement |a| < b is equivalent
to −b < a < b.

|f(x)− L| < ϵ =⇒ |(3x2 − 1− 74| < ϵ =⇒ |3x2 − 75| < ϵ

=⇒ −ϵ < 3x2 − 75 < ϵ =⇒ 25− ϵ

3
< x2 < 25 +

ϵ

3
.

Since the square root function is increasing, it preserves <. So√
25− ϵ

3
< x <

√
25 +

ϵ

3
=⇒ −5 +

√
25− ϵ

3
< x− 5 < −5 +

√
25 +

ϵ

3
.

where we subtracted 5 since we want to evaluate the limit there. There are now two
candidates for δ, and δ needs to be less than or equal to both of them. We can just let
δ = min{

√
25− ϵ

3 ,−5 +
√
25 + ϵ

3}. However, note that the expression on the left is
undefined for ϵ > 75. We will handle this situation by introducing a smaller ϵ in the
proof.

We can now prove the limit. Suppose we are given ϵ > 0. Let ϵ2 = min{ϵ, 72}
(this avoids the “large ϵ" situation. Define δ = min{

√
25− ϵ2

3 ,−5 +
√
25 + ϵ2

3 }. Since
ϵ2 > 0, we also have δ > 0. Now for every x, the expression 0 < |x− c| < δ implies

−δ < x− c < δ =⇒ −5 +

√
25− ϵ2

3
< x− 5 < −5 +

√
25 +

ϵ2
3

which we have seen is equivalent to

−ϵ2 < 3x2 − 75 < ϵ2.

Therefore
|3x2 − 75| = |(3x2 − 1)− 74| < ϵ2 ≤ ϵ.

Therefore, limx→5(3x
2 − 1) = 74.
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1.3 Continuity of Functions

Definition 8 (Continuous function). A function f : R → R is said to be continuous
at a ∈ R if

lim
x→a

f(x) = f(a).

The same function f is said to be continuous if f is continuous at a for every a ∈ R.

Example 1.5. For all p ∈ R, p > 0, limx→p
√
x =

√
p.

Given ϵ > 0 we must show that |
√
x − √

p| < ϵ, provided that x and p are close

enough. Now |
√
x−√

p| = |x− p|
|
√
x+

√
p|

< |x−p|√
p . Therefore, choosing δ = ϵ√

p gives the

desired result.

1.3.1 Exercises

1. Consider the function

f(x) =


−x2 if x ≤ −2,

x− 1 if − 2 < x ≤ 1,

log(x) if x > 1.

For which a does the limit lim
x→a

f(x) exist?

2. ⋆ Show that the Heaviside step function

H(x) =

{
0 if x < 0

1 if x ≥ 0

has no limit at 0.

3. ⋆ Show that limx→2 x
2 = 4.

4. Prove, formally, that limits are unique.

5. Suppose that both lim
x→a

f(x) and lim
x→a

g(x) exist. Prove that the limit lim
x→a

(
f(x) +

g(x)
)

exists, and that

lim
x→a

(
f(x) + g(x)

)
= lim

x→a
f(x) + lim

x→a
g(x).

Does the converse hold?

6. Suppose that both lim
x→a

f(x) and lim
x→a

g(x) exist. Prove that the limit lim
x→a

f(x)g(x)

exists, and that
lim
x→a

f(x)g(x) = lim
x→a

f(x) · lim
x→a

g(x).

Does the converse hold?

7. ⋆ Prove that the function f(x) = 2x is continuous.

8. Prove that the Heaviside step function is continuous everywhere except for 0.
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9. Suppose f : R → R and g : R → R are both continuous. Prove that f + g is also
continuous.

10. Suppose f : R → R and g : R → R are both continuous. Prove that f · g is also
continuous.
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