TOPICS IN REPRESENTATION THEORY:
HAMILTONIAN MECHANICS AND SYMPLECTIC
GEOMETRY

We’'ll now turn from the study of specific representations to an attempt to
give a general method for constructing Lie group representations. The idea in
question sometimes is called “geometric quantization.” Starting from a classical
mechanical system with symmetry group G, the corresponding quantum me-
chanical system will have a Hilbert space carrying a unitary representation of
G and the hope is that many if not most irreducible representations can be
constructed in this way. The first step in such a program involves understand-
ing what sort of mathematical structure is involved in a classical mechanical
system with a Lie group G of symmetries. This material is fairly standard and
explained in many places, two references with many more details are [1] and [2].

1 Hamiltonian Mechanics and Symplectic Ge-
ometry

The standard example of classical mechanics in its Hamiltonian form deals with
a single particle moving in space (R?). The state of the system at a given time ¢
is determined by six numbers, the coordinates of the position (g1, g, ¢3) and the
momentum (p1, pa, p3). The space R® of positions and momenta is called “phase
space.” The time evolution of the system is determined by a single function of
these six variables called the Hamiltonian and denoted H. For the case of a
particle of mass m moving in a potential V(q1, g2, g3),

1
H= %(P% + 3 +3) + Vg, g2, 43)

The time evolution of the state of the system is given by the solution of the
following equations, known as Hamilton’s equations
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and there is an obvious generalization of this to a phase space R?" of any even
dimension.

A more obvious set of similar equations is the equations for a gradient flow
in 2n dimensions

dpi  Of
dt B _8pi
dg;  Of
dt _5%



These equations correspond to flow along a vector field Vy which comes from
choosing a function f, taking —df, then using an inner product on R?" to dualize
and get a vector field from this 1-form. In other words we use a symmetric non-
degenerate 2-form (the inner product < -,- >) to produce a map from functions
to vector fields as follows:

f—>Vf:<Vf,->:—df

Hamilton’s equations correspond to a similar construction, with the sym-
metric 2-form coming from the inner product replaced by the antisymmetric

2-form
n
w = Z dp; N\ dg;
i=1
In this case, starting with a Hamiltonian function H, one produces a vector field

Xpg as follows
H—>XH : w(XH,~) :iXHw =—dH

Hamilton’s equations are then the dynamical system for the vector field Xy .
Here w is called a symplectic form and Xy is sometimes called the symplectic
gradient of H. While the flow along a gradient vector field of f changes the
value of f as fast as possible, flow along Xy keeps the value of H constant since

dH = —w(XH, )

dH(XH) = —w(XH,XH) = 0

since w is antisymmetric.
One can check that the equation

iXHu) = —dH

implies Hamilton’s equations for Xy since equating
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Another important property of Xy is that
£XHw = (diXH + iXHd)w = d(—dH) =0

since dw = 0 (where Lx,, is the Lie derivative with respect to Xp. In general



Definition 1 (Hamiltonian Vector Field). A vector field X that satisfies
Exw =0

is called a Hamiltonian vector field and the space of such vector fields on R?"
will be denoted Vect(R?",w).

Since w is non-degenerate, the equation
inw = —df

implies that if X; = 0, then df = 0 and f = constant. As a result, we have an
exact sequence of maps

0 — R — C®°(R*™) — Vect(R*",w)

One can also ask whether all Hamiltonian vector fields (elements of Vect(R?",w))
actually come from a Hamiltonian function. The equation

Lxw = (dZX —l—’ixd)w =0

implies
d’ixw =0

so ixw is a closed 1-form. Since H'(R?",R) = 0, this must also be exact, so
one can find a Hamiltonian function f.

Just as we saw that df = 0 along Xy, one can compute the derivative of an
arbitrary function g along Xy as

dg(-) = —w(Xy, ")
dg(Xy) = —w(Xg, Xy) = w(Xy, Xy)
which leads to the following definition

Definition 2 (Poisson Bracket). The Poisson bracket of two functions on
R?™ w is
{f:9} = w(Xy, Xy)

The Poisson bracket satisfies

{fag}zi{gaf}

and
{1, {f2, f3}} + {fa, {f1. fo}} + {fos {f3, f1}} =0

where the second of these equations can be proved by calculating

dw(XflaXwafs) =0



These relations show that the Poisson bracket makes C*°(R?") into a Lie alge-
bra. As an exercise, one can show that

(X7, Xgl = X109y
which is the condition that ensures that the map
feC®RM) - X5 € Vect(R*™,w)

is a Lie algebra homomorphism, with the Lie bracket of vector fields the product
in Vect(R*",w).

So far we have been considering a classical mechanical system with phase
space R?". The same structures can be defined on an arbitrary manifold satis-
fying the following definition:

Definition 3 (Symplectic Manifold). A symplectic manifold M is a 2n-
dimensional manifold with a two-form w satisfying

e w is non-degenerate, i.e. for each m € M, the identification of T,, and
Ty given by w is an isomorphism

e w is closed, i.e. dw = 0.
The two main classes of examples of symplectic manifolds are

e Cotangent bundles: M =T*N.
In this case there is a canonical one-form 6 defined at a point (n, a) € T*N
(ne N, aeT}(N)) by
On.o(v) = a(m,v)

where 7 is the projection from T*N to N. The symplectic two-form on
T*N is
w=db

Physically this case corresponds to a particle moving on an arbitrary man-
ifold M. For the special case N = R",

0= Zpidéh
i—1

e Kéhler manifolds. Special cases here include the flag manifolds Go/P
used in the Borel-Weil construction of irreducible representation of G.

On a symplectic manifold M, the same arguments as in R?",w go through
and we have an exact sequence of Lie algebra homomorphisms

0—R— C®(M)— Vect(M,w) — H' (M,R) — 0

In what follows we will generally be assuming for simplicity that H'(M,R) =
0.



References

[1] Bryant, R., An Introduction to Lie Groups and Symplectic Geometry, in
Geometry and Quantum Field Theory, Freed, D., and Uhlenbeck, K., eds.,
American Mathematical Society, 1995.

[2] Guillemin, V. and Sternberg, S., Symplectic Techniques in Physics, Cam-
bridge University Press, 1984.



