Exercise 1. For \(p \) an odd prime, let \(\zeta \in \overline{\mathbb{F}}_p \) be a primitive 8-th root of unity. Show that \(\zeta + \zeta^{-1} \) represents \(\sqrt{2} \). Use this to prove \(\left(\frac{2}{p} \right) = (-1)^{\frac{p^2-1}{8}} \).

Exercise 2. Let \(p \) be an odd prime. We view the Legendre symbol \(\left(\frac{\cdot}{p} \right) \) as an element \(\sigma \in \text{Gal}(\mathbb{Q}(i)/\mathbb{Q}) \cong \{ \pm 1 \} \), where \(-1 \) acts on \(\mathbb{Q}(i) \) via \(i \mapsto -i \). Show that \(\sigma a \equiv a^p \mod p \) for \(a \in \mathbb{Z}[i] \) and any prime factor \(p \in \mathbb{Z}[i] \) of \(p \). (Recall the different ways \(p \) factorizes into prime factors inside \(\mathbb{Z}[i] \))

Exercise 3. Prove that a UFD is integrally closed.

Exercise 4. Show that the identity \(3 \cdot 7 = (1 + 2\sqrt{-5})(1 - 2\sqrt{-5}) \) gives two essentially different factorizations of 21 into irreducible elements in the ring \(\mathcal{O}_{\mathbb{Q}(\sqrt{-5})} = \mathbb{Z}[\sqrt{-5}] \). Therefore \(\mathbb{Z}[\sqrt{-5}] \) is not a UFD.

Exercise 5. In the previous exercise, we saw that unique factorization fails in \(\mathbb{Z}[\sqrt{-5}] \) because for instance
\[
3 \cdot 7 = (1 + 2\sqrt{-5})(1 - 2\sqrt{-5}).
\]
But we have the factorizations into prime ideals
\[
(3) = (3, \sqrt{-5} + 1)(3, \sqrt{-5} - 1),
\]
\[
(7) = (7, \sqrt{-5} + 3)(7, \sqrt{-5} - 3),
\]
\[
(1 + 2\sqrt{-5}) = (3, \sqrt{-5} - 1)(7, \sqrt{-5} - 3)
\]
\[
(1 - 2\sqrt{-5}) = (3, \sqrt{-5} + 1)(7, \sqrt{-5} + 3).
\]
Prove these identities.