1. Tamagawa number of SL_2

Consider the action of $\text{SL}_2(\mathbb{R})$ on the upper half plane \mathcal{H} via Möbius transformations. The subgroup $\text{SL}_2(\mathbb{Z})$ has a famous fundamental domain whose closure is

$$F = \left\{ z = x + iy \mid -1/2 \leq x \leq 1/2, y \geq \sqrt{1-x^2} \right\}.$$

Consider the Poincaré metric on \mathcal{H}, given by $d\sigma^2 = dx^2 + y^2 dy^2$. Under this metric \mathcal{H} has constant curvature -1, and F is a (generalized) geodesic triangle with angles $\pi/3, \pi/3, 0$. By Gauss-Bonnet or direct calculation the area of F is equal to $\pi/3$ under the measure $y^{-2} dx dy$ induced by $d\sigma^2$.

Let $K = \text{SO}_2(\mathbb{R}) \subset \text{SL}_2(\mathbb{R})$. We have $\text{SL}_2(\mathbb{R})/K \sim \to \mathcal{H}, g \mapsto gi$. From this we see that F, which is roughly $\text{SL}_2(\mathbb{Z}) \setminus \mathcal{H} = \text{SL}_2(\mathbb{Z}) \setminus \text{SL}_2(\mathbb{R})/K$, is closely related to the quotient $\text{SL}_2(\mathbb{Z}) \setminus \text{SL}_2(\mathbb{R})$.

We now make this more precise.

We have the Iwasawa decomposition for $\text{SL}_2(\mathbb{R})$:

$$N \times A^+ \times K \sim \to \text{SL}_2(\mathbb{R})$$

$$(u \in \mathbb{R}, a \in \mathbb{R}_{>0}, \phi \in [0, 2\pi[) \mapsto \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & \phi \\ a^{-1} \sin \phi & \cos \phi \end{pmatrix}.$$

Thus $N \times A^+ \sim \to \mathcal{H}$. We introduce a Haar measure on $\text{SL}_2(\mathbb{R})$ in the following way. Consider the differential form

$$\omega = x^{-1} \, dx \wedge dy \wedge dz,$$

where x, y, z are the coordinates in $\begin{pmatrix} x & y/2 \\ z & 1+yz \end{pmatrix}$. It is easy to see that ω is bi-invariant. Thus we get a Haar measure on $\text{SL}_2(\mathbb{R})$:

$$\mu_\infty = |\omega| := |x^{-1}| \, dx \, dy \, dz,$$

where dx, dy, dz mean the Lebesgue measures on \mathbb{R}.

Exercise 1.0.1. $\mu = a^{-3} \, du \, da \, d\phi$ in the (u, a, ϕ) coordinates.

The quotient measure on \mathcal{H} induced by $d\mu$ is $2^{-1} y^{-2} \, dx \, dy$. Moreover, it is not hard to see that a fundamental domain for the left action of $\text{SL}_2(\mathbb{Z})$ on $\text{SL}_2(\mathbb{R})$ is given by $F \times \{ \phi \in [0, \pi[\}$. Thus the knowledge that F has area $\pi/3$ is equivalent to

$$\mu_\infty(\text{SL}_2(\mathbb{Z}) \setminus \text{SL}_2(\mathbb{R})) = \pi^2/6.$$

This number is of course the value of Riemann’s zeta function $\zeta(s)$ at $s = 2$.
Recall we got the measure μ_∞ on $\text{SL}_2(\mathbb{R})$ from the invariant differential form ω by taking absolute values. This still makes perfect sense if we replace the archimedean absolute value by the p-adic ones. We write

$$\mu_p = |\omega|_p = |x^{-1}|_p \, dx \, dy \, dz,$$

where $|\cdot|_p$ is the p-adic absolute value and dx, dy, dz are the Haar measures on the additive group \mathbb{Q}_p normalized by requiring \mathbb{Z}_p has volume 1. This expression gives a Haar measure μ_p on $\text{SL}_2(\mathbb{Q}_p)$. Let’s compute the volume of $\text{SL}_2(\mathbb{Z}_p)$ under this measure. Firstly, consider the reduction map $\text{SL}_2(\mathbb{Z}_p) \to \text{SL}_2(\mathbb{F}_p)$.

It is surjective. Call the kernel Γ. Then we have $\mu_p(\text{SL}_2(\mathbb{Z}_p)) = \# \text{SL}_2(\mathbb{F}_p) \cdot \mu_p(\Gamma)$, and

$$\mu_p(\Gamma) = \int_{x,y,z \in p\mathbb{Z}_p} dx \, dy \, dz = p^{-3}.$$

But $\# \text{SL}_2(\mathbb{F}_p) = p(p^2 - 1)$, so we get

$$\mu_p(\text{SL}_2(\mathbb{Z}_p)) = 1 - p^{-2}.$$

These numbers relate to the number $\pi^2/6$ in (2) by

$$\pi^2/6 = \sum_n 1/n^2 = \prod_p (1 - p^{-2})^{-1},$$

and consequently

(3) \hspace{1cm} \mu_\infty(\text{SL}_2(\mathbb{Z})\backslash \text{SL}_2(\mathbb{R})) \cdot \prod_p \mu_p(\text{SL}_2(\mathbb{Z}_p)) = 1.

Does (3) result from smart normalizations of Haar measures? No. In fact, the measures μ_v all come from the same invariant differential form ω defined over \mathbb{Q}. Any other such choice will be $c\omega, c \in \mathbb{Q}^\times$, and each measure μ_v will be scaled by $|c|_v$. But $\prod_v |c|_v = 1$, so (3) will remain true.

We now rewrite (3) in an even neater way. Recall the adelic group $\text{SL}_2(\mathbb{A})$ is the restricted product of $\text{SL}_2(\mathbb{Q}_v)$ with respect to the compact open subgroups $\text{SL}_2(\mathbb{Z}_v)$. $\text{SL}_2(\mathbb{Q})$ sits diagonally inside $\text{SL}_2(\mathbb{A})$ and is discrete. We define the Tamagawa measure on $\text{SL}_2(\mathbb{A})$ to be the product measure of the μ_v’s, which is Haar measure canonically defined independent of choices.

Definition 1.0.2. The Tamagawa number $\tau(\text{SL}_2)$ of SL_2 is the volume of $\text{SL}_2(\mathbb{Q}) \backslash \text{SL}_2(\mathbb{A})$, under the Tamagawa measure.

Recall strong approximation: $\text{SL}_2(\mathbb{A}) = \text{SL}_2(\mathbb{Q})(\text{SL}_2(\mathbb{R}) \times \prod_p \text{SL}_2(\mathbb{Z}_p))$. Consequently $\text{SL}_2(\mathbb{Q}) \backslash \text{SL}_2(\mathbb{A})$ has a fundamental domain of the form $\Omega \times \prod_p \text{SL}_2(\mathbb{Z}_p)$, where $\Omega \subset \text{SL}_2(\mathbb{R})$ is a fundamental domain for $\text{SL}_2(\mathbb{Z}) \backslash \text{SL}_2(\mathbb{R})$. Thus (3) can be reinterpreted as

Proposition 1.0.3. $\tau(\text{SL}_2) = 1.$
2. Weil’s conjecture

Let G be any semisimple group over \mathbb{Q}. The construction above carries over, and we define the Tamagawa measure, and Tamagawa number for G. More precisely, we take a top degree invariant differential form ω on G, defined over \mathbb{Q}. For each \mathbb{Q}_v choose a Haar measure on $\left(\mathbb{Q}_v, + \right)$ s.t. the volume of \mathbb{Z}_v is 1 when v is finite and the volume of $[0,1]$ is 1 when $v = \infty$. With these choices $|\omega_v|$ defines a Haar measure μ_v on $G(\mathbb{Q}_v)$. Define $\mu = \prod_v \mu_v$, a Haar measure on $G(\mathbb{A})$, called the Tamagawa measure. Since two choices of ω differ by $\mathbb{Q} \times \mathbb{Q}$, by the product formula μ is well defined. Define the Tamagawa number to be

$$\tau(G) = \mu(G(\mathbb{Q}) \backslash G(\mathbb{A}))$$

However note that it is a non-trivial fact that the local measures μ_v multiply together to give a measure on $G(\mathbb{A})$, i.e. that the infinite product $\prod_p \mu_p(G(\mathbb{Z}_p))$ absolutely converges.

Theorem 2.0.1 (Conjecture of Weil, Theorem of Langlands–Lai–Kottwitz). If G is simply connected, then $\tau(G) = 1$.

This was originally conjectured by Weil, who examined many cases.

For a general semisimple group G, $\tau(G)$ can be related to $\tau(\tilde{G})$ in a certain fashion (due to Ono), where \tilde{G} is the simply connected cover of G. The formulation can also be extended to reductive groups, although in that case the Tamagawa number is defined in a more subtle way (always a finite number but in general no longer the volume of $G(\mathbb{Q}) \backslash G(\mathbb{A})$ under any Haar measure, which can be infinite.)

We have the following

Theorem 2.0.2 (Kottwitz-Sansuc). Let G be a reductive group over a number field, then

$$\tau(G) = \frac{|\text{Pic} G|}{|\text{IHG}|}.$$

This Theorem follows from Theorem 2.0.1 and the understanding of Tamagawa numbers of tori (due to Ono).

Remark 2.0.3. One could also consider Tamagawa numbers for reductive groups over a number field F. The problem reduces to $F = \mathbb{Q}$ by considering Weil restriction of scalars.

3. Mass formulas

From the knowledge of Tamagawa numbers, one can deduce a lot of interesting formulas. The classical example is the Smith–Minkowski–Siegel mass formula for quadratic forms.

Let q be a \mathbb{Z}-valued quadratic form on \mathbb{Z}^n. We get an algebraic group $G = O_q$ defined over \mathbb{Z}. Let q' be another \mathbb{Z}-valued quadratic form on \mathbb{Z}^n. We say q' is isomorphic to q, if they are related by changing coordinates using a matrix in $\text{GL}_n(\mathbb{Z})$. We say q' and q are in the same genus, if they are equivalent over \mathbb{R} and equivalent over $\mathbb{Z}/N\mathbb{Z}$ for all $N \in \mathbb{Z}$. By a compactness argument, q' and q are in the same genus if and only if they are related by a matrix in $\text{GL}_n(\mathbb{R}) \times \text{GL}_n(\hat{\mathbb{Z}}) = \text{GL}_n(\mathbb{R}) \times \prod \text{GL}_n(\mathbb{Z}_p)$. By the Hasse principle, if q and q' are in the same genus, then they are also equivalent over \mathbb{Q}.
Let X_q be the set of isomorphism classes in the genus of q. Claim: we have a bijection of finite sets

$$X_q \xrightarrow{\sim} Y = G(\mathbb{Q}) \backslash G(\mathbb{A}_f)/G(\hat{\mathbb{Z}}).$$

What is the map here? Given $q' \in X_q$, by assumption $\exists a \in \text{GL}_n(\mathbb{Q}), b \in \text{GL}_n(\hat{\mathbb{Z}})$ such that $q' = q(a \cdot), q = q'(b)$. Then $ab \in G(\mathbb{A}_f)$ gives a well-defined element of Y. Injectivity is easy to show. For example, if $ab = [1]$ in Y, then we may re-choose a, b such that $ab = 1 \in G(\mathbb{A}_f)$. Then $a = b^{-1} \in \text{GL}_n(\mathbb{Q}) \cap \text{GL}_n(\hat{\mathbb{Z}}) = \text{GL}_n(\mathbb{Z})$, which shows that q, q' are isomorphic. Surjectivity follows from the fact that the analogue of the set Y for GL_n is trivial (which follows from strong approximation for SL_n, and the fact that \mathbb{Q} has class number 1). The finiteness of Y is called “finiteness of the class number of G”, and is a consequence of reduction theory.

We are interested in computing

$$M(q) = \sum_{q' \in X_q} |\text{Aut } q'|^{-1} = \sum_{q' \in X_q} |\text{O}_q(\mathbb{Z})|^{-1},$$

called the mass of the genus of q. From the claim, it easily follows

$$M(q) = \sum_{\gamma \in Y} |\text{G(\hat{\mathbb{Z}}) \cap \gamma^{-1}\text{G(\mathbb{Q})}\gamma}|^{-1}. $$

The above formula is also equivalent to:

$$M(q) = \frac{\mu(G(\mathbb{A})/G(\mathbb{Q}))}{\mu(G(\hat{\mathbb{Z}} \times \mathbb{R}))},$$

where μ is any Haar measure on $G(\mathbb{A})$.

Note that the algebraic group G is not connected: it has two connected components, and the identity component $G^0 = \text{SO}_q$ (which is the kernel of $\text{det} : G \to \mu_2$) is semi-simple. Define

$$M^0(q) = \frac{\mu(G^0(\mathbb{A})/G^0(\mathbb{Q}))}{\mu(G^0(\hat{\mathbb{Z}} \times \mathbb{R}))},$$

where μ is any Haar measure on $G^0(\mathbb{A})$. If we take μ to be the Tamagawa measure, then we get

$$M^0(q) = \frac{\tau(G^0)}{\mu(G^0(\hat{\mathbb{Z}} \times \mathbb{R}))}.$$

But $\tau(G^0) = 2$, and $\mu(G^0(\hat{\mathbb{Z}} \times \mathbb{R}))$ can be calculated explicitly, so we obtain an explicit formula for $M^0(q)$.

In order to go back to $M(q)$, we let $d(R) \in \{1, 2\}$ denote the index $[G(R) : G^0(R)]$ for any \mathbb{Z}-algebra R. Observe that if $x \in \mathbb{Z}^n$ is any element satisfying $q(x) \neq 0$, then the reflection along x defines a $\mathbb{Z}[\frac{1}{q(x)}]$-valued point of the component $G - G^0$.

It easily follows that $d(\mathbb{Q}) = d(\mathbb{R}) = 2$, and $d(\mathbb{Z}_p) = 2$ for almost all primes p. In particular, $\prod_p \text{det} : G(\mathbb{A}) \rightarrow \prod_p \{\pm 1\}$ is surjective. Comparing (4) and (5), we get

$$M(q) = 2^{k-1} M^0(q),$$

where k is the number of primes p such that $d(\mathbb{Z}_p) = 1$. Finally, note that if q is self-dual over \mathbb{Z}_p, then there exists $x \in \mathbb{Z}_p^n$ such that $q(x) = \mathbb{Z}_p^\times$, and reflection along x is a \mathbb{Z}_p-point of $G - G^0$, i.e., $d(\mathbb{Z}_p) = 2$. Hence if q is unimodular, then $k = 0$.

Example 3.0.1. Assume \(q \) is unimodular and positive definite of rank \(n \) (where \(n \) is necessarily divisible by \(8 \)). Then

\[
M(q) = \left| \frac{B_{n/4}}{n} \right| \prod_{1 \leq j < n/2} \frac{B_{2j}}{4j}.
\]

In fact, in this case we also know that the genus of \(q \) consists of all the unimodular and positive definite quadratic lattices of rank \(n \), so we may write \(X_n \) for \(X_q \) and write \(M(n) \) for \(M(q) \). For \(n = 8 \), the above formula gives \(M(8) = 696729600^{-1} \).

On the other hand, we have \(E_8 \in X_8 \), and \(|\text{Aut} E_8| = 696729600 \). It follows that \(X_8 = \{ E_8 \} \). For \(n = 32 \), the formula implies \(|X_n| > \) eighty million.

Similar arguments as before can be used to obtain mass formulas for other arithmetic objects. We consider one more example.

Recall an elliptic curve \(E \) over \(\overline{\mathbb{F}_p} \) is said to be supersingular if one of the following two equivalent conditions holds:

1. \(E(\overline{\mathbb{F}_p})[p] = 0 \).
2. \(\text{End}(E) \) has rank 4 over \(\mathbb{Z} \).

For any such \(E \), \(\text{End}(E) \otimes \mathbb{Q} \) is the Quaternion algebra \(D \) over \(\mathbb{Q} \) ramified at \(\infty \), \(p \), and \(\text{End}(E) \) is a maximal order of \(D \). Fix an \(E_0 \). Let \(G = D^\times \) as an algebraic group over \(\mathbb{Q} \). The order \(\text{End} E_0 \subset D \) gives a \(\mathbb{Z} \)-structure of \(G \). Similar to the situation before we have a bijection

\[
\{ E/\overline{\mathbb{F}_p} \text{ s.s.} \} / \cong \rightarrow G(\mathbb{Q}) \backslash G(\mathbb{A}) / G(\mathbb{R} \times \hat{\mathbb{Z}}).
\]

The map here is defined using the Tate module away from \(p \) and the Dieudonné module at \(p \). Analogous as before, the input about \(\tau(G) \) (although here \(G \) is only reductive, not semi-simple) gives us a mass formula, due to Eichler-Deuring:

\[
\sum_{E/\overline{\mathbb{F}_p} \text{ s.s.}} |\text{Aut} E|^{-1} = \frac{p^{-1}}{24}.
\]

Note that since \(\text{Aut} E \) are easy to understand, we can get the precise number of supersingular elliptic curves from the above formula, which is

\[
\left[\frac{p}{12} \right] + \begin{cases} 0, & p \equiv 1 \mod 12 \\ 1, & p \equiv 5, 7 \mod 12 \\ 2, & p \equiv 11 \mod 12. \end{cases}
\]

4. Relation to the BSD conjecture

The equality \(\tau(G) = |\text{Pic}(G)_{\text{tors}}| / |\text{III}G| \), which holds for reductive groups \(G \), may still make sense for more general \(G \), e.g. abelian varieties. Of course the finiteness of \(\text{III}G \) is very non-trivial, and only known for some elliptic curves. Nevertheless we have the following interesting relation to the BSD conjecture (for abelian varieties) discovered by S. Bloch [A Note on Height Pairings, Tamagawa Numbers, and the Birch and Swinnerton-Dyer Conjecture].

Let \(A \) be an abelian variety over a number field \(K \). We assume \(A(K) \) is a finite group. Let \(L(s, A) \) be the Hasse-Weil zeta function of \(A \) away from the bad primes. Then the BSD conjecture predicts that \(L(s) \) is non-zero, holomorphic at \(s = 1 \), and

\[
L(1, A) = \frac{|\text{III}A| \cdot \det(\langle \cdot, \cdot \rangle) \cdot V_{\text{bad}} V_{\infty}}{|A(K)| \cdot |\text{Pic}(A)_{\text{tors}}|}.
\]
Block constructs a torus extension of A:

$$0 \to T \to X \to A \to 0,$$

and deduces \[\text{[6]}\] from the following hypotheses

- III_X is finite.
- $\tau(X) = |\text{Pic}(X)_{\text{tor}}| / |\text{III}_X|.$

5. Sketch of the proof of Theorem 2.0.1

Throughout we admit the following result, whose proof uses the Langlands theory of Eisenstein series:

Theorem 5.0.1 (Langlands, Lai). *The conjecture holds if G is quasi-split.*

Recall that for G arbitrary, it has a (essentially unique) inner form G_0 which is quasi-split. Here being an inner form means that there is an isomorphism

$$\psi : (G_0)_\bar{\mathbb{Q}} \xrightarrow{\sim} G_{\bar{\mathbb{Q}}},$$

s.t. for any $\sigma \in \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$, the automorphism $\sigma(\psi)^{-1} \psi : G_{\bar{\mathbb{Q}}} \to G_{\bar{\mathbb{Q}}}$ is inner, i.e. given by $\text{Int}(g)$ for some $g \in G(\bar{\mathbb{Q}})$.

We will sketch the proof of the following

Theorem 5.0.2 (Kottwitz). $\tau(G) = \tau(G_0)$.

The proof inducts on $\text{dim} \ G$. Note that for a given dimension n, Theorem \[5.0.2\] for G with $\text{dim} \ G \leq n$ implies Theorem \[2.0.1\] (since we admit Theorem \[5.0.1\]), which in turn implies Theorem \[2.0.2\] for reductive groups whose derived subgroups have dimensions $\leq n$ (with anisotropic center). In particular, when we prove Theorem \[5.0.2\] for G, we may assume the following is known: For any $\gamma \in G(\mathbb{Q})$ semi-simple and non-central, (s.t. G_{γ} has anisotropic center), we know that G_{γ} and any inner form of it have equal Tamagawa numbers, given by Theorem \[2.0.2\].

Example 5.0.3. Let V be an n-dimensional quadratic space over \mathbb{Q}, with n odd. Let V_0 be the n-dimensional quadratic space with quadratic form $X_1X_2 + X_3X_4 + \cdots + X_{n-2}X_{n-1} + X_n^2$. Then $G = \text{SO}(V)$ or $\text{Spin}(V)$, $G_0 = \text{SO}(V_0)$ or $\text{Spin}(V_0)$. The group G is anisotropic iff V is anisotropic.

Example 5.0.4. Let D be a central simple algebra of dimension n^2 over \mathbb{Q}. Then $G = D^\times$ or $D^\times/\mathbb{Q}^\times$ or $D^\times, \text{Nrd}=1$, and $G_0 = \text{GL}_n$ or PGL_n or SL_n. The group G is anisotropic mod center iff D is a division algebra.

The idea of the proof of Theorem \[5.0.2\] is to compare the Arthur-Selberg trace formulas for G and G_0. Since G_0 is not anisotropic, we need a version of simple trace formulas which is valid for special test functions.

5.1. **Anisotropic trace formula.** As a motivation, recall the Arthur-Selberg trace formula for G anisotropic. In this case $G(\mathbb{Q}) \backslash G(\mathbb{A})$ is compact. Let ρ denote the action of $G(\mathbb{A})$ on $L^2(G(\mathbb{Q}) \backslash G(\mathbb{A}))$. Let $d \gamma$ be the Tamagawa measure on $G(\mathbb{A})$. For $f \in C_c^\infty(G(\mathbb{A}))$, define

$$\rho(f) = \rho(f, d \gamma) : L^2(G(\mathbb{Q}) \backslash G(\mathbb{A})) \to L^2(G(\mathbb{Q}) \backslash G(\mathbb{A}))$$

$$v \mapsto \int_{g \in G(\mathbb{A})} \rho(g) v f(g) \, d \gamma.$$
Theorem 5.1.1. $\rho(f)$ is of trace class, and

$$\text{Tr} \rho(f) = \sum_{\gamma} a_{\gamma}(d\,i)O_{\gamma}(f, d\,g, d\,i).$$

Here γ runs through the elements of $G(\mathbb{Q})$ (necessarily semi-simple) up to $G(\mathbb{Q})$-conjugacy, and

$$a_{\gamma}(d\,i) := \text{vol}_{d\,i}(G_{\gamma}(\mathbb{Q}) \setminus G_{\gamma}(\mathbb{A}))$$

$$O_{\gamma}(f, d\,g, d\,i) := \int_{g \in G_{\gamma}(\mathbb{A}) \setminus G(\mathbb{A})} f(g^{-1}g_{\gamma}) \frac{dg}{d\,i},$$

where $d\,i$ is any chosen Haar measure on G_{γ}.

5.2. Simple trace formula. We want to write down trace formulas for both G and G_0. Even if we are only interested in anisotropic G, the group G_0 is in general not anisotropic. Therefore we need the Arthur-Selberg trace formula for general semi-simple groups. In general it is very complicated, but for special test functions, it assumes a shape almost identical to the anisotropic case.

Theorem 5.2.1 (Arthur). Let G be semi-simple simply connected. Let $f \in C_c^\infty(G(\mathbb{A}))$ be of the form $f = f_{v_1}f_{v_2}f_{v_1}^{\nu_1\nu_2}$, where $v_1 \neq v_2$ are two finite places, such that

A1: f_{v_1} is the coefficient of a supercuspidal representation of $G(\mathbb{Q}_{v_1})$.

A2: f_{v_2} has the property that for all $\gamma \in G(\mathbb{Q}_{v_2})$, $O_{\gamma}(f_{v_2}) = 0$ unless γ is semi-simple elliptic. Here elliptic means that G_{γ} contains a maximal torus that is elliptic (i.e., compact) in $G_{\mathbb{Q}_{v_2}}$. Then the operator $\rho(f) : L^2(G(\mathbb{Q}) \setminus G(\mathbb{A})) \to L^2(G(\mathbb{Q}) \setminus G(\mathbb{A}))$ has image in $L^2_{\text{cusp}}(G(\mathbb{Q}) \setminus G(\mathbb{A}))$ and is of trace class, and its trace is given by

$$\text{Tr} \rho(f) = \sum_{\gamma} a_{\gamma}(d\,i)O_{\gamma}(f, d\,g, d\,i).$$

Here γ runs through conjugacy classes in $G(\mathbb{Q})$ that are semi-simple and elliptic.

5.3. Comparison. To proceed, consider G and G_0 as before, with an inner twisting $\psi : G_0 \to G$. Take S to be a large enough finite set of places, including ∞ at least one finite place, s.t. for all $v \notin S$, $G_{\mathbb{Q}_v} \cong G_{0,\mathbb{Q}_v}$ as $G_{\mathbb{Q}_v}$ groups. More precisely, we assume that for all $v \notin S$, ψ is the composition of a \mathbb{Q}_v-isomorphism $\phi_v : G_{0,\mathbb{Q}_v} \cong G_{\mathbb{Q}_v}$ with an inner automorphism of $G_{\mathbb{Q}_v}$. We think of ϕ_v as the identity and omit it from the notation. We will define $f = \prod_v f_v$ on $G(\mathbb{A})$ and $f_0 = \prod_v (f_0)_v$ on $G_0(\mathbb{A})$ satisfying the hypotheses of the above Theorem 5.2.1 and write down the two trace formulas for G and G_0. More precisely, we fix a place $v_{\text{sc}} \notin S$ s.t. the group $G(\mathbb{Q}_{v_{\text{sc}}}) = G_0(\mathbb{Q}_{v_{\text{sc}}})$ admits a supercuspidal representation. (e.g. choose v_{sc} to split G.) We will choose $f_{v_{\text{sc}}} = (f_0)_{v_{\text{sc}}}$ to be the coefficient of such a supercuspidal representation s.t. $f_{v_{\text{sc}}}(1) \neq 0$.

Let

$$S_1 = S \cup \{v_{\text{sc}}\}.$$

We choose $f^{S_1} = (f_0)^{S_1}$ arbitrarily, on the same group $G(\mathbb{A}^{S_1}) = G_0(\mathbb{A}^{S_1})$ (with the usual condition that for a.a. v, $f_v = (f_0)_v = 1_{G(\mathbb{Q})}$). We postpone the definition.

\footnote{Since reductive groups over \mathbb{Q}_{v_2} have elliptic maximal tori, it is equivalent to the condition that $Z_{G_{\gamma}}$ is anisotropic over \mathbb{Q}_{v_2}.}
of f_S and $(f_0)_S$ for a moment, but suppose for now that for a place $v \in S$ the condition $\textbf{A2}$ holds for f_v and $(f_0)_v$.

Then by Theorem $5.2.1$ we have

\[
\text{Tr} \rho_{\text{cusp}}(f) = \tau(G) \sum_{\zeta \in Z(\mathbb{Q})} f(\zeta) + \sum_{\gamma \in G(F) \setminus Z(F), \text{ell ss./conj}} a_{\gamma}(d \, i) \rho_{\gamma}(f, d \, g, d \, i)
\]

and similarly

\[
\text{Tr} \rho_{\text{cusp}}(f_0) = A_0 + B_0.
\]

Here $\rho_{\text{cusp}}(f)$ denotes the restriction of $\rho(f)$ to $L^2_{\text{cusp}}(G(\mathbb{Q}) \backslash G(\mathbb{A}))$, which is an invariant subspace of $\rho(f)$ according to Theorem $5.2.1$.

Proposition 5.3.1. Assume, as an induction hypothesis, that Theorem 5.0.2 is true for all G_γ and $(G_0)_\gamma_0$ that appear in B and B_0. It is possible to choose f_S and $(f_0)_S$, s.t. for any choice of f_S and $(f_0)_S$, the following statements hold for $f := f_S f_v \in S$ and $f_0 := (f_0)_S (f_0)_v f_S$.

(I): $B(f) = B_0(f_0)$

(II): $f_S(1) = (f_0)_S(1) \neq 0$. In particular $f(1) = f_0(1)$.

(III): For one (actually all) $v \in S - \{1\}$, the functions f_v and $(f_0)_v$ both satisfy the condition $\textbf{A2}$.

Proof of Theorem 5.0.2 assuming Proposition 5.3.1 Choose f_S and $(f_0)_S$ as in Proposition 5.3.1. Fix a place $v_0 \not\in S_1$ to be used later, s.t. $G(\mathbb{Q}_{v_0}) = G_0(\mathbb{Q}_{v_0})$ is non-compact and unramified. For all $v' \not\in S_1 \cup \{v_0\}$, fix the choice of $(f_0)_v$ s.t. $f_v(1) \neq 0$. Moreover for each such $v' \not\in S_1 \cup \{v_0\}$, shrink the support of f_v if necessary to assume that for $\zeta \in Z(F) - \{1\}$, $f_v(\zeta) = 0$. Then we have

\[
\text{Tr} \rho_{\text{cusp}}(f) - \text{Tr} \rho_{\text{cusp}}(f_0) = (\tau(G) - \tau(G_0)) f(1).
\]

Let $f_{v_0} = (f_0)_{v_0}$ vary. Suppose $\tau(G) \neq \tau(G_0)$. Recall that we assumed that $f_{v_0}(1) = (f_0)_{v_0}(1) \neq 0$. Thus by (II), \eqref{eq:tracial} expresses a non-zero multiple of the functional $f_{v_0} \mapsto f_{v_0}(1)$ in terms of a discrete sum $f_{v_0} \mapsto \sum c_i \text{Tr} \pi_i(f_{v_0})$, where π_i are the unitary representations of $G(\mathbb{Q}_{v_0})$. This contradicts with the fact that the Plancherel formula for the non-compact group $G(\mathbb{Q}_{v_0})$ has a continuous part. \qed

The rest of this exposition is devoted to sketching a proof of Proposition 5.3.1.

5.4. Recall of stable conjugacy

Let G be a reductive group over a field $F = \mathbb{Q}$ of \mathbb{Q}_v. Assume G^{der} is simply connected.

Definition 5.4.1. Two semi-simple elements of $G(F)$ are stably conjugate if they are conjugate in $G(\bar{F})$.

Let $\psi : G_0 \to G$ be the inner twist from the quasi-split inner form G_0. If $\gamma \in G(F)$ is semi-simple, the $G(\bar{F})$-conjugacy class of γ is a subvariety of G_F (which can be identified with $G(\bar{F})$) defined over F. The image under ψ^{-1} of this subvariety is a subvariety of $(G_0)_F$ defined over F, and a theorem of Steinberg implies that this subvariety has an F-point. In this way we get a multi-valued map $G(F)_{ss} \to (G_0(F))_{ss}$. In fact this induces an injection

\[
\iota : G(F)_{ss/\text{stab. conj.}} \to G_0(F)_{ss/\text{stab. conj.}}
\]
Unfortunately, stable conjugacy among elements in $G(F)$ is not the same as conjugacy in $G(F)$, in general. The summation index sets for B and B_0 however involves conjugacy in $G(\mathbb{Q})$. This difficulty, called endoscopy, adds complication to comparing B with B_0. The general strategy to overcome this difficulty is to stabilize the expression B. There are two steps. The first step, sometimes called pre-stabilization, uses Galois cohomology to rewrite B in terms of stable orbital integrals plus error terms. The second step equates the error terms with stable stabilized the expression to comparing B in involves conjugacy in G. The second step assumes the Langlands-Shelstad transfer conjecture and the Fundamental Lemma. For the proof of Proposition 5.3.1, the second step is not needed, as the functions f_{S_1} and $(f_0)_{S_1}$ to be chosen automatically kill the error terms in the first step.

Remark 5.4.2. In some cases, for instance when $G = D^\times/\mathbb{Q}^\times$ and $G_0 = \text{PGL}_n$ as in Example 5.0.4, there is no endoscopy, i.e. stable conjugacy is the same as conjugacy. In this particular example, ι induces a bijection between the summation index sets for B and B_0. However in this case G is not simply connected, and the subtlety that G_γ is no longer connected intervenes.

5.5. The Euler-Poincaré measure and function. To prove Proposition 5.3.1, we choose $f_{S_1\setminus\{\infty\}}$ and $(f_0)_{S_1\setminus\{\infty\}}$ to be the Euler-Poincaé functions. We recall this concept below, and we use a local notation. Let $F = \mathbb{Q}_v$ be a local field, and $\psi : G_0 \to G$ an inner twist over F, with G_0 quasi-split.

Theorem 5.5.1 (Serre). There is a Haar measure $\text{d}\, g_{EP}$ on $G(F)$, called the Euler-Poincaré measure (positive or negative), characterized by the following condition: For all subgroup $\Lambda \subset G(F)$ which is discrete, cocompact, and torsion free, we have

$$\text{d}\, g_{EP}(\Lambda \backslash G(F)) = \chi(H^\ast(\Lambda, \mathbb{Q})).$$

Here the RHS is the Euler-Poincaré characteristic of the group cohomology of Λ.

When $F = \mathbb{R}$, the Theorem is a consequence of the Gauss-Bonnet-Chern Theorem, and when $F = \mathbb{Q}_p$, it uses the Bruhat-Tits theory of buildings.

Theorem 5.5.2 (Kottwitz). Assume F is p-adic. There is a function $f_{EP} \in C_c^\infty(G(F))$, called an Euler-Poincaré function, s.t.

(1) f_{EP} satisfies A2.

(2) Let $\gamma \in G(F)$ be elliptic semi-simple. Let $\text{d}\, g_{EP}$ and $\text{d}\, i_{EP}$ be the Euler-Poincaré measures on $G(F)$ and $G_\gamma(F)$ respectively. Then

$$O_\gamma(f_{EP}, \text{d}\, g_{EP}, \text{d}\, i_{EP}) = 1.$$

Definition 5.5.3. Let $\text{d}\, g$ on $G(F)$ and $\text{d}\, g_0$ on $G_0(F)$ be Haar measures. We say that they are associated, if there is a non-zero constant $\lambda \in \mathbb{R}$ s.t. $\text{d}\, g = \lambda |\omega|_F$ and $\text{d}\, g_0 = \lambda |\psi^\ast \omega|_F$, for some top degree invariant differential form ω on G defined over F. (ψ^\ast is also an invariant differential form on G_0 defined over F).

Theorem 5.5.4. Let F be p-adic. The measures $e(G) \text{d}\, g_{EP}$ and $e(G_0) \text{d}\, g_{EP}$ are associated. Here $e(G) \in \{\pm 1\}$ is a sign canonically associated to the group G.

We have $e(G) = (-1)^{\text{dim}(G) - \text{dim}(G_0)}$, where by definition $\text{dim}(G)$ is one half of the \mathbb{R}-dimension of the symmetric space of $G(F)$ when $F = \mathbb{R}$, and $\text{dim}(G)$ is the F-rank of G when F is non-archimedean.
5.6. **Pre-stabilization.** The goal is to write B in terms of the so-called κ-orbital integrals, which are local in nature. Here κ is an element in a certain finite abelian group. For $\kappa = 1$, we get stable orbital integrals, which are nice objects; for other κ we get what we think of as error terms. In the proof of Proposition 5.3.1 these error terms will automatically vanish.

Definition 5.6.1. Let $F = \mathbb{Q}$ or \mathbb{Q}_v. Let G be a semi-simple, simply connected group over F. Let $\gamma \in G(F)_{ss}$. Let $I := G_{\gamma}$. Define

$$\mathcal{R}(\gamma/F) = \mathcal{R}(I/F) := \pi_0(Z(\hat{I})^{\text{Gal}F}).$$

It is a finite abelian group.

We come back to the global setting with $\psi : G_0 \to G$ an inner twisting between semi-simple simply connected groups over \mathbb{Q} with G_0 quasi-split. Fix $\gamma_0 \in G_0(\mathbb{Q})_{ss}$. Let $I_0 := G_{0,\gamma_0}$. Let $\gamma \in G(\hat{\mathbb{A}})$ that is conjugate to $\psi(\gamma_0)$ in $G(\hat{\mathbb{A}})$. Kottwitz constructs for such γ an element $\text{obs}(\gamma) \in \mathcal{R}(I_0/\mathbb{Q})^D := \text{Hom}(\mathcal{R}(I_0/\mathbb{Q}), \mathbb{C}^\times)$.

Lemma 5.6.2 (Kottwitz). $\text{obs}(\gamma) = 1$ iff there is an element $\delta \in G(\mathbb{Q})$ s.t. δ is conjugate to γ in $G(\hat{\mathbb{A}})$.

Definition 5.6.3. For $\kappa \in \mathcal{R}(I_0/\mathbb{Q})$ and $f \in C_c^\infty(G(\hat{\mathbb{A}}))$, define the κ-orbital integral:

$$\mathcal{O}^\kappa_{\gamma_0}(f, dg_0, d i_0) := \sum_{\gamma \in G(\hat{\mathbb{A}})/\text{conj. } \gamma \text{ conj. to } \psi(\gamma_0) \text{ in } G(\hat{\mathbb{A}})} e(\gamma) \langle \text{obs}(\gamma), \kappa \rangle O_{\gamma}(f).$$

Here dg_0 is a Haar measure on $G_0(\mathbb{A})$, di_0 is a Haar measure on $I_0(\mathbb{A})$, and each $O_{\gamma}(f) = O_{\gamma}(f, dg, di)$ is defined using dg on $G(\mathbb{A})$ associated to dg_0 and di on $G(\hat{\mathbb{A}})$ associated to di_0 (i.e. w.r.t. the inner twisting $\psi : G_0 \to G$ and a natural inner twisting $(I_0)_{\mathbb{Q}_v} \to G_{v,\gamma_0}$ for each v). The sign $e(\gamma) := \prod_v e(G_{v,\gamma_0})$. When dg_0 and di_0 are Tamagawa measures we omit them from the notation. Define

Remark 5.6.4. $\mathcal{O}^1_{\gamma_0}(f)$ is also known as $SO_{\gamma_0}(f)$, the stable orbital integral. When $\kappa \neq 1$, it follows from landmark theorems of Waldspurger and Ngô that $\mathcal{O}^\kappa_{\gamma_0}(f)$ is equal to some stable orbital integral on an endoscopic group.

Definition 5.6.5. Define E^κ_0 to be (a set of representatives in $G_0(\mathbb{Q})$ of) the set of stable conjugacy classes in $G_0(\mathbb{Q})$ which are semi-simple elliptic and non-central.

Proposition 5.6.6 (Kottwitz). Assume the induction hypothesis as in Proposition 5.3.1. The expression B is equal to

$$B = \sum_{\gamma_0 \in E^\kappa_0} \sum_{\kappa \in \mathcal{R}(G_0,\gamma_0/\mathbb{Q})} \mathcal{O}^\kappa_{\gamma_0}(f).$$

5.7. **The local nature of κ-orbital integrals.**

Definition 5.7.1. Let v be a place of \mathbb{Q}. Let $\gamma_v \in G(\mathbb{Q}_v)_{ss}$. Let $\kappa_v \in \mathcal{R}(G_{\gamma_v}/\mathbb{Q}_v)$. For $f_v \in C_c^\infty(G(\mathbb{Q}_v))$, define

$$\mathcal{O}^\kappa_{\gamma_v}(f_v) = \sum_{\gamma'} e(G_{v,\gamma'}) \langle \text{inv}(\gamma_v, \gamma'), \kappa_v \rangle O_{\gamma'}(f_v).$$

\footnote{For G reductive it is defined to be the subgroup of $\pi_0(\mathcal{H}(\hat{I}/\mathcal{H}(\hat{G}))^{\text{Gal}F})$ consisting of elements whose image in $\mathcal{H}(F, Z(\hat{G}))$ is (locally) trivial. Note that for G semi-simple simply connected, $Z(\hat{G}) = 1$.}
Here γ' runs through conjugacy classes in $G(Q_v)$ that are stably conjugate to γ_v. Note that the set of such conjugacy classes is in bijection with the set $\mathcal{D}(G_{\gamma_v}/Q_v) := \ker(H^1(Q_v,G_{\gamma}) \to H^1(Q_v,G))$, which has a map to $R(G_{\gamma_v}/Q_v)^D$. (This map is a bijection when v is finite). Denote by $\imath(\gamma',\gamma)$ the image of γ' in $\mathcal{D}(G_{\gamma}/\bar{K})$.

Lemma 5.7.2. Suppose the summation index set in the definition of the κ-orbital integral in Definition 5.6.3 is non-empty, (in which case we say γ_v comes from $G(\bar{K})$). Let $\gamma \in G(\bar{K})$ be an element in that summation index set. Write $\gamma = (\gamma_v)_v$ and for each v let κ_v be the image of κ under the natural map $\mathcal{R}(I_0/Q) \to \mathcal{R}(G_{\gamma_v}/Q_v)$. For $f = \prod f_v$, we have

$$O_{\gamma_v}(f) = \langle \imath(\gamma_v),\kappa_v \rangle \prod_v O_{\gamma_v}^\kappa_v(f_v)$$

Proof. We use the relation

$$\langle \imath(\gamma'),\kappa \rangle = \langle \imath(\gamma),\kappa \rangle \prod_v \langle \imath(\gamma_v,\gamma_v'),\kappa_v \rangle$$

for $\gamma' = (\gamma'_v)$ another element in $G(\bar{K})$ that is conjugate to $\psi(\gamma_0)$ in $G(\bar{K})$. \hfill \square

Lemma 5.7.3. Let v be a finite place of Q. Let $\gamma_0 \in G(Q_v)_{ss}$ and $\kappa_v \in \mathcal{R}(G_{\gamma_v}/Q_v)$. Assume either $\kappa_v \neq 0$ or γ_v is non-elliptic. Let f_v be an Euler-Poincaré function on $G(Q_v)$. Then $O_{\gamma_v}^\kappa_v(f_v) = 0$.

Proof. In the summation (10) the elements $\imath(\gamma_v,\gamma_v')$ runs precisely through $\mathcal{R}(G_{\gamma_v}/Q_v)^D$. All γ_v' are simultaneously elliptic or simultaneously non-elliptic, because the center of G_{γ_v} is the same as that of G_{γ_v}. When γ_v is elliptic, the terms $e(G_v,\gamma_v')O_{\gamma_v'}(f_v)$ is independent of γ_v, since for various γ_v the orbital integrals O_{γ_v} are computed using associated measures (i.e. for γ_v, there is a natural inner twisting $G_{\gamma_v} \to G_{\gamma_v}$).

Corollary 5.7.4. Assume the induction hypothesis as in Proposition 5.3.1. Assume $f = \prod f_v$ with one finite place v_{EP} s.t. $f_{v_{EP}}$ is an Euler-Poincaré function. Then

$$B = \sum_{\gamma_0 \in E_{0,v}^*} O_{\gamma_0}^1(f).$$

Proof. By Proposition 5.6.6, it suffices to prove that for $\gamma_0 \in E_0^*$ and $\kappa_0 \in \mathcal{R}(I_0/Q) - \{0\}$ (where $I_0 = G_{\gamma_0}$), we have $O_{\gamma_0}^\kappa(f) = 0$. If γ_0 does not come from $G(\bar{K})$, there is nothing to prove. Assume the opposite, i.e. there is $\gamma = (\gamma_v)_v \in G(\bar{K})$ that is conjugate to $\psi(\gamma_0)$ in $G(\bar{K})$. If $\gamma_{v_{EP}}$ is elliptic, the map $\mathcal{R}(I_0/Q) \to \mathcal{R}(G_{\gamma_v}/Q_v)$ is injective. We are done by Lemma 5.7.2 5.7.3. \hfill \square

5.8. Proof of Proposition 5.3.1

Proof. For all $v \in S - \{\infty\}$ (assumed to be non-empty), choose f_v, resp. $(f_0)_v$, to be an Euler-Poincaré function on $G(F_v)$, resp. $G_0(F_v)$. Then (III) holds. By the work of Clozel-Delorme and Shelstad, it is possible to choose f_∞ and $(f_0)_\infty$ s.t. they have $c(G_\mathbb{R})e(G_{0,\mathbb{R}})$-matching (i.e. matching or -1-matching) stable orbital integrals. This means the following:

- if $\gamma_{0,\infty} \in G_0(\mathbb{R})_{ss}$ and $\gamma_\infty \in G(\mathbb{R})_{ss}$ are s.t. γ_∞ is conjugate to $\psi_0(\gamma_{0,\infty})$ in $G(\mathbb{C})$, then

$$e(G_\mathbb{R})O_{\gamma_\infty}(f_\infty) = e(G_{0,\mathbb{R}})O_{\gamma_{0,\infty}}^1(f_0)$$
• if \(\gamma_{0,\infty} \in G_0(\mathbb{R})_{ss} \) does not come from \(G(\mathbb{R}) \), in the sense that \(\gamma_{\infty} \) as above does not exist, then

\[
O^1_{\gamma_0}(f_{0,\infty}) = 0.
\]

Here \(O^1_{\gamma_0} \) and \(O^1_{\gamma_0} \) are defined as in (10).

By Corollary \[5.7.4\] we have

\[
B = \sum_{\gamma_0 \in E_0^*} O^1_{\gamma_0}(f)
\]

and

\[
B_0 = \sum_{\gamma_0 \in E_0^*} O^1_{\gamma_0}(f_0).
\]

To show \(B = B_0 \), it suffices to show that

\[
O^1_{\gamma_0}(f) = O^1_{\gamma_0}(f_0).
\]

If \(\gamma_0 \) does not come from \(G(\mathbb{A}) \), both sides are zero: \(O^1_{\gamma_0}(f) = 0 \) by definition and \(O^1_{\gamma_0}(f_0) = 0 \) because either (12) holds or there must be a finite place \(v \) in \(S_1 \) at which \(\gamma_0 \) is not elliptic. (Otherwise \(\gamma_0 \) comes from \(G_v \) for all \(v \in S_1 \), and we know \(\gamma_0 \) comes from \(G(\mathbb{A}^{an}) \).) Assume \(\gamma_0 \) comes from some \(\gamma = (\gamma_v) \in G(\mathbb{A}) \). Also write \(\gamma_{0,v} \) for the image of \(\gamma_0 \) in \(G_0(\mathbb{Q}_v) \). Then by Lemma \[5.7.2\]

\[
O^1_{\gamma_0}(f) = \prod_v O^1_{\gamma_v}(f_v)
\]

\[
O^1_{\gamma_0}(f_0) = \prod_v O^1_{\gamma_{0,v}}(f_{0,v}).
\]

If \(v \notin S \), we have \(O^1_{\gamma_v}(f_v) = O^1_{\gamma_{0,v}}(f_{0,v}) \), because \(f_v = f_{0,v} \) on \(G(\mathbb{Q}_v) \) and \(\gamma_v \) and \(\gamma_{0,v} \) are two elements of \(G(\mathbb{Q}_v) \) which are stably conjugate. For \(v = \infty \), the comparison is taken care of by (11). Let \(v \in S - \{\infty\} \). We may assume \(\gamma_v \) and \(\gamma_{0,v} \) are both elliptic, as otherwise they are both non-elliptic, and \(O^1_{\gamma_v}(f_v) = O^1_{\gamma_{0,v}}(f_{0,v}) = 0 \). If \(\mu \) is a Haar measure on a \(p \)-adic semi-simple group over \(\mathbb{Q}_p \), write \(\chi(\mu) \in \mathbb{R}^\times \) for the quotient of \(\mu \) by the Euler-Poincaré measure. By Theorem \[5.5.2\] and Theorem \[5.5.4\] we compute

\[
O^1_{\gamma_v}(f_v) = |D(G_{\gamma_v}/\mathbb{Q}_v)| e(\gamma_v) O^1_{\gamma_v}(f_v) = |D(G_{\gamma_v}/\mathbb{Q}_v)| e(\gamma_v) \chi(d g_v) \chi(d i_{0,v})^{-1}.
\]

Here \(d g_v \) is the local factor at \(v \) of the Tamagawa measure on \(G(\mathbb{A}) \), and \(d i_v \) is the Haar measure on \(G_{\gamma_v}(\mathbb{Q}_v) \) associated to the Haar measure on \(G_{0,\gamma_0}(\mathbb{Q}_v) \) which is the local factor of the Tamagawa measure on \(G_{0,\gamma_0} \). Also recall

\[
D(G_{\gamma_v}/\mathbb{Q}_v) := \ker(\text{H}^1(\mathbb{Q}_v, G_{\gamma_v}) \to \text{H}^1(\mathbb{Q}_v, G)).
\]

Similarly, we have

\[
O^1_{\gamma_{0,v}}(f_{0,v}) = |D(G_{0,\gamma_0}/\mathbb{Q}_v)| e(\gamma_{0,v}) \chi(d g_{0,v}) \chi(d i_{0,v})^{-1}.
\]

As a matter of fact we have \(|D(G_{\gamma_v}/\mathbb{Q}_v)| = |D(G_{0,\gamma_0,v}/\mathbb{Q}_v)| \). Here \(d g_{0,v} \) and \(d i_{0,v} \) are the local factors at \(v \) of the Tamagawa measures for \(G_0 \) and \(G_{\gamma_0} \) respectively. We may assume that \(d g_v \) is associated to \(d g_{0,v} \). By definition \(d i_v \) is associated to \(d i_{0,v} \). Therefore from Theorem \[5.5.4\] we conclude

\[
e(G_v) O^1_{\gamma_v}(f_v) = e(G_{0,v}) O^1_{\gamma_{0,v}}(f_{0,v}), \ \forall v \in S - \{\infty\}.
\]

\[4\] for chosen decompositions of the Tamagawa measures in question into local products.
In view of (11) and (15), to show (13) it suffices to show
\[\prod_{v \in S} e(G_v)e(G_{0,v}) = 1, \]
which follows from the product formula. Therefore \(B = B_0 \), and we have proved (I).

We now prove (II). Note that for any \(v \in S - \{\infty\} \) we know that 1 is elliptic in \(G_v \) and \(G_{0,v} \). The assertion that \(f_{S}(1) = f_{0,S}(1) \) follows from (11) and (15) too, because \(f_v(1) = e(G_v)\Omega_1(f_v) \) for all \(v \) and similarly for \(f_{0,v}(1) \). Finally we need to show \(f_{S}(1) \neq 0 \). From (14) we see \(f_{S-(\infty)}(1) \neq 0 \). It could also be arranged that \(f_{\infty}(1) \neq 0 \). In fact, the work of Clozel-Delorme and Shelstad allows one to start from quite arbitrary \(f_{\infty} \) and asserts the existence of a corresponding \(f_{0,\infty} \). \(\square \)