Speaker: Francesco Maggi
Title: A stability theory for isoperimetric and minimal area problems
Abstract: We offer a non-technical, panoramic view on some old and new results concerning the quantitative description of minimizers and critical points in basic geometric variational problems involving area. In the first part of the talk we review basic results on almost-isoperimetric and almost-constant mean curvature boundaries, both in the Euclidean and in the Riemannian setting. In the second part of the talk, we introduce the approximation of possibly singular minimal surfaces by “soap films” with positve, small volume. Finally, we revisit some of these results in the more physical context of Allen-Cahn surface tension energies, and introduce a new convergence theorem for the diffused interface volume preserving mean curvature flow.
Where: Mathematics Hall, room 520
When: Wednesday, November 30, 2022 at 04:30pm