Cinzia Casagrande, February 18, 2022
Title: Fano manifolds with Lefschetz defect 3
Abstract: We will talk about a structure result for some (smooth, complex) Fano variety X, which depends on the Lefschetz defect delta(X), an invariant of X defined as follows. Consider a prime divisor D in X and the restriction r:H^2(X,R)->H^2(D,R). Then delta(X) is the maximal dimension of ker(r), where D varies among all prime divisors in X. If delta(X)>3, then X is isomorphic to a product SxT, where S is a surface. When delta(X)=3, X does need to be a product, but we will see that it still has a very rigid and explicit structure. More precisely, there exists a smooth Fano variety T with dim T=dim X-2 such that X is obtained from T with two possible explicit constructions; in both cases there is a P^2-bundle Z over T such that X is the blow-up of Z along three pairwise disjoint smooth, irreducible, codimension 2 subvarieties. This structure theorem allows to complete the classification of Fano 4-folds with Lefschetz defect at least 3. This is a joint work with Eleonora Romano and Saverio Secci.