Tasuki Kinjo, December 9, 2022
Title: Cohomological Donaldson-Thomas theory for 2-Calabi--Yau categories
Abstract : Cohomological Donaldson-Thomas (CoDT) invariants were introduced by Kontsevich-Soibelman and Brav-Bussi-Dupont-Joyce-Szendroi as categorifications of the Donaldson-Thomas invariants counting objects in 3-Calabi-Yau categories. In this talk, I will explain applications of the CoDT theory to the cohomological study of the moduli of objects in 2-Calabi-Yau categories. Among other things, I will construct a coproduct on the Borel-Moore homology of the moduli stack of objects in these categories and establish a PBW-type statement for the Kapranov-Vasserot cohomological Hall algebras. This talk is based on a joint work in progress with Ben Davison.