
Abstract

THE HYPERBOLIC GEOMETRY OF SKEW CONVEX HEXAGONS AND $P S L(2, \mathbb{C})$ DISCRETENESS SEQUENCES

JANE GILMAN, RUTGERS-NEWARK

We present a new approach to the $\operatorname{PSL}(2, \mathbb{C})$ discreteness problem. A subgroup, G, of $\operatorname{PSL}(2, \mathbb{C})$ (equivalently $\operatorname{Isom}\left(\mathbb{H}^{3}\right)$) is not discrete if there exists an infinite sequence of distinct elements of the group that converges to the identity. To date there are only ad hoc techniques for finding such a sequence of primitive elements in any given G. When G is the image of a non-elementary representation of a rank two free group, it may or may not be discrete or free, but the representation determines a set of so called core points in \mathbb{H}^{3} and a new ordering of the rational numbers, the representation ordering. We use the hyperbolic geometry of \mathbb{H}^{3} as applied to palindromes in G and the representation ordering of the rationals to construct a unique sequence of primitive elements corresponding to a given representation. Theorem: (i) The sequence of core points is finite if and only if the group is discrete and free (ii) if the sequence is infinite and converges to a point on the boundary of \mathbb{H}^{3}, the group is either not geometrically finite or not discrete and (iii) if the sequence is infinite and converges to an interior point of \mathbb{H}^{3}, the group is not discrete. The proof involves an extension of Fenchel's theory of right angled hexagons in \mathbb{H}^{3} to skew-convex hexagons. This is joint work with Linda Keen.

