GROUPS OF MAPPING CLASSES THAT CANNOT BE REALIZED BY DIFFEOMORPHISMS

TOM CHURCH, UNIVERSITY OF CHICAGO

ABSTRACT. Morita proved that the mapping class group cannot be realized by diffeomorphisms. The mapping class group of a surface Σ with one marked point z fits into the short exact sequence

 $1 \to \pi_1(\Sigma, z) \to \operatorname{Map}(\Sigma, z) \to \operatorname{Map}(\Sigma) \to 1.$

The kernel is known as the point-pushing subgroup, since its elements are obtained by "pushing" the marked point along loops in the fundamental group of Σ . By using Milnor's inequality for the Euler number of a flat vector bundle over a surface, we show that the point-pushing subgroup cannot be realized by diffeomorphisms of Σ fixing z. We apply this result to construct a group isomorphic to $\pi_1(\Sigma') \times \mathbb{Z}/3\mathbb{Z}$ inside Map(Σ) that cannot be realized by diffeomorphisms; as a corollary, this yields a new proof of Morita's theorem. I will conclude by relating this group to the branched surface bundles constructed by Atiyah and Kodaira.

Joint work with Mladen Bestvina and Juan Souto.