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On the Nonrelativistic Purely Mag-
netic Supersymmetric Pauli Op-
erator (for the 2D particles with
spin 1/2) :

Introduction: Completely Inte-
grable PDE Dynamical Systems
and Linear Operators:

The typical 1D Case: KdV is
equivalent to the Lax Pair
ut = 6uux−uxxx → dL/dt = [A,L],

L = −∂2
x + u(x, t)

A = ∂3
x + 3/2(u∂x + ∂xu)

There are also (3/2)D Cases like
KP where Krichever’s contribu-
tion is enormous
L = σ∂y + ∂2

x + u(x, y, t)



The right 2D analog of Lax Pair
corresponds to one energy level:
dL/dt = [A,L] + fL
It was found and used since 1976
Manakov, Dubrovin-Krichever-N.:
L = −∆ + U∂x + V ∂y + V (x, y)
The operator A was chosen of
the 3d order in 1980s to get phys-
ically interesting Nonlinear Sys-
tems. We choose it now of the
order two for the second kind ap-
plications (below).

At least 3 different ways to use
this presentation are known:

I. From the spectral theory of
the operator L to the Solutions
of Nonlinear System (The Inverse



Scattering Transform for the Soli-
tons and Algebro-Geometric So-
lutions for the Periodic Problem).

II. It became immediately clear
(as Shafarevich pointed out to
me in 1974–see our joint Dok-
lady note with Dubrovin) that
AG solutions for the Completely
Integrable Systems lead to the
results in Algebraic Geometry. For
example, they give an effective
isomorphism of the total fam-
ily of hyperelliptic Jacobian Vari-
eties with unirational variety. The
use of Θ-functional formulas of
this Theory for the solution of
the Classical Riemann–Shottki Prob-
lem was started by Dubrovin and
myself in 1980 as an ” Effec-
tivization Program of Θ-functional



formulas”. Taimanov started to
apply it to the Prym function
(algebraic geometers who did not
know right 2D analog of Lax Pairs
above mistakably claimed that
it is impossible). Igor Krichever
with collaborators obtained fun-
damental results in this Program
recently.

III. For the Improvement of Spec-
tral Theory treating Nonlinear Sys-
tem as a Spectral Symmetry Group
for the Operator L:The Algebro-
Geometric Theory of Finite-Gap
Periodic 1D Schrodinger Oper-
ators and 2D scalar Schrodinger
Operators with One Selected En-
ergy Level (ǫ = 0)was constructed.



Following Conjecture was formu-
lated (N.,1984): The total 2D
family of Bloch-Floquet complex
eigenfunctions M2

L for the Peri-
odic Self-Adjoint Operator L =
−∆ + V (x, y) can be a (Quasi)-
Projective Algebraic Variety in the
trivial case only V = u(x)+v(y).
It was proved several years later
by Knorrer and Trubowitz. There
are famous counterexamples in
the nonself-adjoint case.

An Extended Conjecture follows
from our Analysis: Let L = −∆+
U∂x + V ∂y + W (x, y) be a pe-
riodic self-adjoint operator, and
Γ ⊂ M2

L be an algebraic curve.
Then either the operator can be
reduced to 1 variable or Γ has



a DKN form ǫ = ǫ0,, and such
”algebraic” level ǫ0 is unique.

A number of counterexamples are
known in the nonselfadjoint case.

Our Goal now is to extend these
ideas to the Purely Magnetic Non-
relativistic Pauli Operator LP . Let
me start with History of this Prob-
lem:

History: In 1979-1980 three groups
of authors studied the ground level
of this operator written in the
Lorenz gauge: Avron-Seiler[AS],
Aharonov-Casher[AC], Dubrovin
and myself [DN]



Let LP = L+ ⊕
L−,and −L± =

= (∂x+ iΦy)2 +(∂y − iΦx)2 ±B,
acting on the space of vector-
function Ψ = (Ψ+,Ψ−) consist-
ing of 2 spin-sectors ±.

The Scalar Operators L± are
Strongly Factorized L+ = QQ+,
L− = Q+Q, ∂z = ∂ = ∂x−i∂y, Q =
∂z −Φz, and magnetic field B =
∆Φ, Electric Field is zero.

The most interesting classes of

magnetic fields are [AC] and [DN].



1.AC: Rapidly decreasing fields,

|[B]| = | ∫

R2Bdxdy| < ∞. Ground

states form a finite-dimensional

space of dimension m ∈ Z,

m ≤ (1/2π)[B] < m+ 1

2.DN: Arbitrary periodic fields with
integer flux through the elemen-
tary cell 0 6= (1/2π)

∫
cellBdxdy.

The ground states form an infi-
nite dimensional subspace in the
Hilbert Space L2(R

2) isomorphic
to the Landau level.
In both these cases Magnetic Field
is Topologically Nontrivial because
(1/2π)[B] is a Chern Number of

the line bundle over CP1 [AC]
and 2-torus [DN] (if integer).



We developed this subject using ideas
of Transversality borrowed from Differ-
ential Topology. The ”Generic” oper-
ators and their Topology in the space
of Quasimomenta were studied as a
byproduct of this work in 1980-81. In
particular Chern numbers of the transver-
sal dispersion relations appeared in our
works with A.Lyskova. It was partly re-
discovered by physicists of the Thou-
less group few years later after the ex-
perimental discovery of the ”Integral
Quantum Hall Fenomenon”.

In the cases AC and DN all ground
states are the Instantons belong-
ing to one spin-sector only:

a.They satisfy to the 1st order

equations Q+ψ = 0 for the case



[B] > 0 and Qψ = 0 for the case

[B] < 0. It is a simple prototype

of the self-duality equation.

b.They belong to the Hilbert Space
L2(R

2)

The operator S : (Ψ+,Ψ−) →
(0, Q+Ψ+) is called a ”Super-

Symmetry” for LP . The ”ad-

joint” supersymmetry operator is

S∗ : (Ψ+,Ψ−) → (QΨ−,0)



Both operators S, S∗ commute
with LP and SS∗ + S∗S = LP .
It implies that all higher levels
are 2-degenerate (the ground level
is ∞-degenerate).

Remark: In the work of the present
author with A.Veselov (1997) non-
trivial periodic cases were found
such that some higher levels are
also infinitely degenerate similar
to the ground level ǫ = 0. Our
technic was associated with the
”Laplace Transformations”.

Question: Is this Theory related
to the Algebro-Geometric (AG)
Theory of the scalar 2D Schrodinger
Operators based on the Selected



Energy Level ǫ = 0 and 2D Soli-
ton Theory? In the AG case Mag-
netic Field is always Topologi-
cally Trivial

∫
cellBdxdy = 0

The Reduction Problem Some

important time-invariant Reduc-

tions were actively studied in 1980s.

Several authors found them ei-

ther for Nonlinear Systems or for

Inverse Spectral (Scattering) Data

(or for both).Solution of this prob-

lem for the Inverse Data is more dif-

ficult: it implies in particular the de-

scription of all reduced hierarchy.



However, the existence of time-invariant

reduction is much easier to see for the

Nonlinear Equation. This how we use

Nonlinear Systems here.

Our Main Goal here is Quantum

Mechanics and Spectral Theory.

1.The Data leading to the Self-

Adjoint Periodic Operators were

found by Cherednik in 1980 [Ch].

2. The Data leading to the tra-

ditional operators L = −∆ + U



with zero magnetic were found

by Veselov and myself in 1984.

Prym Varieties appear here.

Extension of these results to the

Rapidly Decreasing Potentials was

studied in the works made by Man-

akov, Grinevich, R.Novikov and

myself in the late 1980s.

Krichever proved that every 2D

smooth periodic potential can be

approximated by the AG ones.



The Problem solved now: Cal-

culate AG Data for the Reduc-

tion leading to the Factorized Op-

erators and to the Pauli Opera-

tors as a by-product.

Consider a simplest ”Manakov-

type” System Lt = [H,L] + fL

where H is a second order oper-

ator: L = ∂x∂y + G∂y + S,H =

∆ + F∂y +A.



It was pointed out in 1988 that

the reduction S = 0 is time-invariant

and looks like the 2D analog of

the famous Burgers system

(Konopelchenko). How to de-

scribe it in terms of the Inverse

Spectral Data?

Making replacement x, y → z, z̄

we are coming to elliptic opera-

tors most interesting for us.



The description of Periodic AG

Inverse Data for the Nonlinear

System above and the whole hi-

erarchy was obtained in 1976 (DKN)

but the ”2D Burgers” reduction

S = 0 never has been studied.

Our recent result describes cor-

responding Inverse Problem Data:

Take Riemann Surface (the Com-

plex Fermi Curve) splitted into

nonsingular pieces Γ = Γ′ ⋃
Γ′′ with

genuses g′, g′′. They cross each



other Pj = Qj, Pj ∈ Γ′′, Qj ∈ Γ′,

j = 0, ..., l.

Take 2 points ∞1 ∈ Γ′,∞2 ∈ Γ′′

with local parameters k′−1, k′′−1.

Construct function ψ = (ψ′, ψ′′)

with asymptotic ψ′ ∼ c(x, y)ek
′z̄(1+

O(k′−1)), ψ′′ = ek
′′z(1+O(k′′−1))

and divisors of poles D′, D′′ of

degree g′ + l, g′′ not crossing in-

finities and intersection points.

No problem to include time dy-

namics in this Data.



Our Theorem claims that such

Data generate a function ψ =

(ψ′, ψ′′) and scalar operator

L′ = ∆ + G∂z̄ with S = 0 such

that L′ψ′ = L′ψ′′ = 0. To get

self-adjoint operator we need to

add the degenerate Cherednik-

type restriction and to make a

gauge transformation L′ → L =

(1/
√
c)L′√c, ψ → ψ/

√
c in Γ′,Γ′′,

This Data generate a Factorized

Operator L = QQ+.

Taking L+ = L and L− = Q+Q,



we construct a Purely Magnetic

Pauli Operator

LP = QQ+ ⊕
Q+Q. The Mag-

netic Field is real B = 1/2∆ log c,

periodic or quasiperiodic and Topo-

logically Trivial. It is nonsingu-

lar if c 6= 0, so the operator is

self-adjoint in this case.

To find ground states, we take

ψ0 = (c1/2,0) and φ0 = (0, c−1/2).



In the case of periodic c 6= 0 we

have only two periodic ground

state functions. They present

the bottom of the CONTINU-

OUS SPECTRUM. Full descrip-

tion of all complex nonsingular

Bloch functions of the ground

level see below. For the slowly

decreasing fields B = 1/2∆ log c

we will use property that c′ =

ceaz+bz̄ lead to the same field B.



The Case of Genus zero (Fig 1)

Fig 1

vanishing cycles

Γ

P1

=CP1Γ

P2

=CP1

D



We take l+1 intersection points

presented as k′ = ks and k′′ = ps

in Γ′,Γ′′, and divisor D′ = (a1, ..., al)

of degree l in Γ′. We have Ψ =

ek
′z̄ w0k

′l+...+wl
(k′−a1)...(k′−al),Ψ|k′=ks = epsz.

As we can see, c = w0.

So c =
∑l
s=0 κse

Ws(z,z̄), where

Ws is a linear form. All complex

coefficients are possible.

Ws = αsx+ βsy, (αs, βs) ∈ C2
W .

Transformation c→ c′ = ceγ+αx+βy

leads to the gauge equivalent op-

erator (the same magnetic field)



There exist 3 types of Real Non-

singular Solutions:

1.Purely Exponential Positive Case

(The Lump-type fields”)

κs > 0, (αs, βs) ∈ R.

2.Periodic Trigonometric Real Case.

It will be considered below jointly

with the case g = 1

3.The Mixed case. It can be

realized only if its ”dominating

part” belongs to the case 1. So

we will not discuss it.



The case 1. Let ”the Tropical

Sum” of the forms in the set

{W} is nonnegative I ′{W}(φ) =

maxs(αs cosφ+ βs sinφ) ≥ 0.

Then c−1/2 is bounded in R2

For the angles I ′{W}(φ) > 0 we

have a rapid decay

c−1/2 → 0, R → ∞, Let I(φ) =

max{I ′(φ),0}



Fig 2a

I{W }j
(ϕ)=0

x

y

c=e  + e        + ey−2xy −y−2x

In every class c′ ∈ ceW ,W ′ ∈ R2
W ,

the set of representatives c′ with

nonnegative I = I ′{W ′}(φ) ≥ 0

forms a convex polytop T̄c. Its

inner part Tc ⊂ T̄c consists of all



c′ such that I{W ′} > 0. Open

part Tc is always nonempty for

l > 2. T̄c is nonempty for l > 1.

(see Fig 2b for l = 3)

Fig 2b
b) R

2 = (α, β)
Wj = αjx + βjy

β

α

T

−W3=(1,1)

−W =(0,−1)2

−W1=(−1,0)

Here ey + ex + e−y−x = c



Magnetic field is decaying for R →
∞ except some selected angles,

it is a Lump Type Field analo-

gous to the KP ”Lump Poten-

tials”.A linear sum under the

1/2∆ log() reflects lineariza-

tion of the Burgers Hierar-

chy in the variable c.
[B] =

∫ ∫

D2
R
Bdxdy =

= −1/2R
∮

S1 I{W}(φ)dφ+O(R−1)

All points in Tc define ground states

in the Hilbert Space L2(R
2). The

boundary points define the bot-

tom of continuous spectrum.



The Periodic Problem. Let lat-

tice in R2 be rectangular and z =

x + iy. For every real periodic

function c we can define a whole

family of ”possible” meromorphic

Bloch functions

ψ′′
ext,± = f(z)(

√
c)±euz−ζ(p)zσ(z+

p + R)/σ(z + R) where f(z) is

an arbitrary elliptic function. We

have Q+ψ′′
ext,− = 0 for L = L+ =

QQ+. For anti-holomorphic func-

tions we get Qψ′′
ext,+ = 0 for L− =

Q+Q.



Let c 6= 0. We need only nonsin-

gular functions, so our manifold

is u ∈ CP1 = Γ′′ and ψ′′
+ = euz

√
c

(or euz̄
√
c).

Let c has an isotropic zero. Mag-

netic field became singular. We

have larger family of the admis-

sible Bloch functions Ψ′′ in the

sector − because
√
c/σ(z + R)is

weakly singular now. So the full

Bloch manifold is M2 = CP1×Γ

where Γ is an elliptic curve. To



calculate ψ′ for the sector − we

need to deal with all real peri-

odic smooth functions c. Now

start the case of genus 1.

Fig 3 vanishing cycles

P1
P2

ΓΓ

D D



We take elliptic curve Γ′ = Γ′′ =

C/Λ with euclidean local param-

eters k, p (the point 0 is ”infin-

ity”), periods 1,2iω ∈ iR , n in-

tersection points Q0, Q1, ..., Qn ∈
Γ′ and R0, ..., Rn ∈ Γ′′. Divisors

D′ = (P1, ..., Pn), D
′′ = P have

degree n + 1,1 correspondingly.

We have ψ′ = e−z̄ζ(k)
∏
s σ(k−Qs)∏
l σ(k+Pl)

×

×(
∑
j wj

σ(k+z̄+P̃+Q̃−Qj)
σ(k−Qj) ). Here P̃ =

P1 + ...+ Pn, Q̃ = Q0 + ...+ Qn,

sum as in C



ψ′′ = e−zζ(p)σ(p+ z+ P)/(σ(z+

P)σ(p+ P)), ψ′(Qs) = ψ′′(Rs).

All singularity of the quantity c

disappear after multiplication c̃ =

cσ(z̄+Q̃+P̃ )σ(z+P). Take n =

1, Q0 = −Q1, R0 = Q1, R1 = Q0

and solution to the equation

ωζ(Q0) = η1Q0 We have P =

Q̃+P̃ , so −1/2∆|σ|2 = −2πδ(z).

So our Conclusion based on the

case g = 1 is:

The magnetic field B̃ = −1/2∆c̃



is periodic nonsingular with mag-

netic flux equal to ONE QUAN-

TUM UNIT. The magnetic field

B = 1/2∆c is always singular for

g = 1; it has magnetic flux equal

to zero through the elementary

cell and δ-singularity in the point

P . So this field corresponds to

the ”Aharonov-Bohm” (AB) sit-

uation with quantized flux.

For g > 1 number of quantized δ-functions

is equal to k > 1. Both pieces of the

original Riemann surface Γ = Γ′′ ⋃
Γ′



are presented in the form of k-sheeted

branching covering over elliptic curve

Γ′′ → Γ0 as it was in the works of

Krichever dedicated to the elliptic KP.

Comparison with [DN] shows that

the Aharonov-Bohm terms with

quantized δ-flux do not affect spec-

trum. This question was dis-

cussed in the physics literature.

The complex Bloch-Floquet man-

ifolds (consisting of nonsingular

Bloch functions) for the level ǫ =



0 and genus g = 1 isM = M2 ⋃
Γ′

with functions ψ′ and ψ′′
ext,− =

(1/
√
c)[euz×e−ζ(p)zσ(z+p+R)/σ(z+

R)], L+ψ′′
ext = L+ψ′ = 0.

We did not proved yet that ψ′

cannot be extended to the higher

dimensional component at the same

level, but it is highly probable.

Reconsider now the case g = 0

comparing it with g = 1.

For c 6= 0 and g = 0 the Bloch



manifold is equal to the union

Γ′′ ⋃
Γ′, and both are CP1; Let c

has an isolated zero (minimum)

which is isotropic. Magnetic field

became singular, with δ-term. The

extended Bloch function can be

defined for the operator on the

manifold M2 = CP1 × Γ0 where

Γ0 is an elliptic curve, ψ′′
ext,+ =

(const(u))epz̄−ζ(u)z̄σ(z̄+u)
√
c/σ(z̄).

Our Conclusion is that the peri-

odic case g = 1 gives the same



result as the special case g = 0

where c has an isolated isotropic

zero, interchanging sectors ±. The

higher number k ≥ 1 of isotropic zeroes

for g = 0 leads to the ”higher rank”

family of nonsingular Bloch functions

Mk+1 ⋃
Γ′. Removing δ-singularities by

the singular gauge transformations we

get smooth periodic magnetic field like

in DN with higher flux.

The algebro-geometric g = 0 case

simply corresponds to the case



of trigonometric polynomials. We

take rectangular lattice in the plane

x, y. Following relation is true

Q+ψ′ = M(k)
√
cez̄k. Renormal-

izing ψ′ such that M(k) = 1, we

extend this construction to the

infinite trigonometric series.

The identity S(ψ′,0) = (0, ez̄k)

is true for ”the Sypersymmetry

Operator” S.



Let us extend our theory to the

”infinite” trigonometric series

We use for that the formula

ψ′ =
= k

∑
j[κje

pjz−kjz̄/(k − kj)]e
kz̄ for

this new normalization where kj

are the lattice points.

Here
∑
j κje

pjz−kjz̄ = c

Apply this result to the function

c′ = 1/c which is an infinite trigono-

metric series. It gives us a func-

tion ψ′ for the second compo-

nent L− of the Pauli operator.



Problem: The component Γ′ of

the Bloch manifold does not af-

fect the ordinary spectrum in the

Hilbert space of functions in the

whole plane R2. How to use it

for solving physically meaningful

self-adjoint boundary problems?

New results dedicated to this prob-

lem will be published soon by the

authors.


