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Configuration space of n distinct points on the plane

Zn:{(21,...,Z,,),Z,‘7éZJ‘, Z,'G(C}:CH\A

Arnold (1969): Cohomology H*(X,) = H*(P») is generated by the elements
wij = dlog(zi — z)) = wji, ,i,j=1,...,n
with the relations
wij N\ wix — wik N\ wij + wij Awixk =0
for all triples i # j # k (Arnold’s relations)

Generalisations: Brieskorn, Orlik and Solomon
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Kohno-Drinfeld Lie algebra t,

is generated by t; = tj;, 1 < i < j < n with relations
[tfj7tkl] :07 I#J?ék?él

[ti, tic + tix] =0, i # j # k.

Properties:

1. Ut, is dual to H*(X,) (Drinfeld (?), Yuzvinski)

2. t, is holonomy Lie algebra of X, (Kohno)

3. Universal flat Knizhnik-Zamolodchikov connection (Drinfeld):

n ti-
V,‘:@;—Kzﬁjzj, [V;,V;]:O
J#i
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1. Ut, — UB®", & is a semisimple Lie algebra:

ti=y J @I eus®

2. Ut, — Uso(n) :

2

3. Ut, — C[S,] :

tij = sjj
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are abelian subalgebras g C ; =< t; > of maximal dimension
Lemma. dimg=n—1.
Examples.
1. Gaudin: Integrable spin chain model
an( —{Za’ a’t,,,ae(C z€Y,} C U2

Zj
i<j !

2. Quantum Hamiltonians of n-dimensional top (Mishchenko, Manakov):

gn(2) = {Z iz x,f, a€C",z€X,} C Uso(n)

i<j

3. Jucys, Murphy: Representation theory of symmetric group S,

IM =< tin, t1z + to3, tia + toa + t34, ..., tin + ton + - - - + ta_1n >C C[S,]
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Moduli space of stable rational curves

Let
Moni1={(z1,...,2n1), 2z # zj,zi € CP'}/PSLy(C) = ¥,/ Aff

Deligne, Mumford, Knudsen: compactification I\_/Io,,,+1 - moduli space of
stable genus zero curves C with n+ 1 marked points
1) Singularities are double points

2) The graph of components is a tree

3) Each irreducible component contains at least 3 marked or singular points.
Knudsen (1983): Mo .11 is a smooth projective variety

Examples. Mo 4 = CP', Mys = dPs is degree 5 del Pezzo surface.
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Fig. 1. (a) A generic configuration of distinct points x; on CP'. (b, c) To compactify the mioduli space,
one adds additional configurations in which the undetlying Rieroann surface breaks up into two or
‘more branches. .
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Kapranov, Devadoss
Mo, n+1(R) is smooth and glued from n!/2 copies of Stasheff polytopes
(associahedra) K,

Figure: Stasheff polyhedron Ks

Etingof, Henriques, Kamnitzer, Rains: cohomology ring of /\_407,,“(]1{)
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Main result

Let G, be the set of all Gaudin subalgebras of Kohno-Drinfeld algebra t,. Since

n(n—1

every Gaudin subalgebra is a linear subspace in t} ~ C
imbedding

we have a natural
¢:Gy— G(n—1,n(n—1)/2)

in the Grassmannian G(n — 1, n(n—1)/2).

Aguirre, Felder, Veselov:

Gaudin subalgebras in t, form a smooth subvariety in the Grassmannian
G(n—1,n(n—1)/2) isomorphic to the moduli space My, ni1.

Proof is based on results by Gerritzen, Herrlich and van der Put.
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Fig. 1. (a) A generic configuration of distinct points x; on CP". (b, c) To compactify the moduli space, | ‘

one adds additional configurations in which the underlying Riemann surface breaks up into two or |
more branches.
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