EMERGENT CONFORMAL SYMMETRY IN DYSON-SELBERG INTEGRALS

P. Wiegmann

(Joint work with A. Zabrodin)

Krichever 60 th

May 6, 2011

Selberg Integral

$$\int_0^1 \prod_{i=1}^N \xi_i^{a_1-1} (1-\xi_i)^{a_2-1} \prod_{i>j} |\xi_i - \xi_j|^{2\beta} d\xi_1 \dots d\xi_N$$

Conformal Field Theory (CFT)

Comment:

 β = 1/2, 1, 2 possesses a determinantal structure and corresponds τ -functions of integrable hierarchies

Outline

- ▶ Dyson-Selberg Integrals (of *N* variables),
- Conformal Covariance (Symmetry)
- ► Emergent conformal symmetry at a large *N* limit.

Motivation: Finite Dimensional Reduction of Conformal Field Theory (CFT)

Traditional view: CFT is a limit of 2D lattice statistical mechanics when a mesh tends to zero.

 N^2 - variables;

Smirnov: Conformal Symm. is proved for Ising model and Percolation.

Holomorphic nature of CFT suggests only *N* variables are essential:

 $N^2 \rightarrow N$ - boundary vs bulk

Motivation: Fekete theory - finite dimensional approx. of conformal maps

▶ Riemann mapping f(z): $\mathbb{C} \setminus \mathcal{D} \to \mathbb{C} \setminus \mathbb{D}$, $f(z) \to z$, $z \to \infty$ an exterior of a domain \mathcal{D} to the exterior of a disk of a radius r,

$$f(z) = \lim_{N \to \infty} \left(\prod_{i=1}^{N} (z - \xi_i) \right)^{1/N}$$

▶ A set $\xi_1, ..., \xi_N$ are Fekete points, minimizing a Coulomb energy of a conductor

$$\min \sum_{i>j} [-\log |\xi_i - \xi_j|], \quad \xi_i \in \Gamma = \partial D$$

Density of Fekete points and Harmonic measure

- At large N images of Fekete point are uniformly distributed along a circle.
- ▶ Density of Fekete points tends to Harmonic measure

$$\rho(z)|dz| = \lim_{N \to \infty} \frac{1}{N} \sum_{i} \delta_{\Gamma}(z, \xi_{i})|dz| = \frac{1}{2\pi} |f'(z)||dz|$$

► Inversed density represents a metric on a boundary $|dz| = \rho^{-1}|df|$.

Dyson-Selberg Integrals

Selberg Integral:

$$\begin{split} & \int_0^1 \prod_{i=1}^N \xi_i^{a_1-1} (1-\xi_i)^{a_2-1} \prod_{i>j} |\xi_i - \xi_j|^{2\beta} d\xi_1 \dots d\xi_N = \\ & = \prod_{j=0}^{N-1} \frac{\Gamma(a_1 + \beta j) \Gamma(a_2 + \beta j) \Gamma(1 + \beta + \beta j)}{\Gamma(a_1 + a_2 + (N+j-1)\beta) \Gamma(1 + \beta)} \end{split}$$

Dyson integral

$$(2\pi i)^{-N} \int_{S^{1}} \prod_{i=1}^{N} \xi_{i}^{\frac{1}{2}a_{1}-1} |1 + \xi_{i}|^{a_{2}} \prod_{i>j} |\xi_{i} - \xi_{j}|^{2\beta} d\xi_{1} \dots d\xi_{N} =$$

$$= \prod_{j=0}^{N-1} \frac{\Gamma(a_{2} + \beta j)\Gamma(1 + \beta + \beta j)\Gamma(1 + a_{1} + a_{2} + \beta j)}{\Gamma(a_{2} - \alpha_{1} + \beta j)\Gamma(1 + \beta)} =$$

$$= \frac{\Gamma(1 + N\beta)}{\Gamma^{N}(1 + \beta)}, \quad a_{1} = a_{2} = 0.$$
(1)

Expectation values of operators (Dyson Integral)

$$\langle \mathscr{O} \rangle = Z^{-1} \int_{S^1} \prod_{i=1}^N \mathscr{O}(\xi_1, \dots, \xi_N) \prod_{i>j} |\xi_i - \xi_j|^{2\beta} d\xi_1 \dots d\xi_N,$$

$$Z = \int_{S^1} \prod_{i>j} |\xi_i - \xi_j|^{2\beta} d\xi_1 \dots d\xi_N = \frac{\Gamma(1 + N\beta)}{\Gamma^N(1 + \beta)}$$

• $\mathcal{O}(\xi_1,\ldots,\xi_N)$ is a symmetric function (polynomial) of ξ_i .

$$\mathscr{O} = \prod_{i=1}^{N} \xi_{i}^{\frac{1}{2}\alpha_{1}} |1 + \xi_{i}|^{\alpha_{2}}$$

More general operators

$$\mathscr{O}(z_1, z_2, \dots) = \prod_{i=1}^{N} (z_1 - \xi_i)^{a_1} (z_2 - \xi_i)^{a_2} \dots$$

called primaries with charges
$$\alpha = a_1/\sqrt{\beta}$$
, $\alpha_2 = a_2/\sqrt{\beta}$,...

Primary interest:

Dyson integrals on
 an <u>arbitrary</u> (not circular) simple closed contour
 at large N.

Digression: Boundary Conformal Field Theory

- A Field Theory defined in a bounded simply-connected domain \mathcal{D} on a plane.
- ► There is a set of local operators called "**primary** " $\mathcal{O}_{\alpha}(z)$ which correlation functions are conformally covariant with respect to deformation of the boundary:

$$\langle \mathcal{O}_{h_1}(z_1)\mathcal{O}_{h_2}(z_2)\dots\rangle_{\mathscr{D}} = [f'(z_1)]^{h_1}[f'(z_2)]^{h_2}\dots\langle \mathcal{O}_{h_1}(f(z_1))\mathcal{O}_{h_2}(f(z_2))\dots\rangle_{\mathbb{D}}$$

$$f(z): \quad \mathscr{D} \to \mathbb{D}$$

ightharpoonup A set of h_k is called **dimensions** of primary operators.

Digression: Central Charge and β

Infinitesimal version:

$$f(z) = z + \epsilon(z)$$

$$\langle \delta_{\epsilon(z)} \mathcal{O}_h(z) \dots \rangle \equiv \langle T(z) \mathcal{O}_h(z) \dots \rangle \epsilon = (\epsilon \partial_z + h \partial_z \epsilon) \langle \mathcal{O}_h(z) \dots \rangle$$

- Operator T is called stress energy tensor.
- CFT are characterized by and a central charge.

$$\langle T(z)T(z')\rangle = \frac{c}{2}\frac{1}{(z-z')^4}$$

or parameter β such that

$$c = 1 - 6\left(\sqrt{\beta} - 1/\sqrt{\beta}\right)^2$$

- One-parametric family β .
- Customary to characterize operators by their charge:

$$h = \alpha(\alpha - \sqrt{\beta} + 1/\sqrt{\beta}), \quad a = \alpha\sqrt{\beta}$$

Digression: Degenerate operators

- Primary operators with special dimension obey differential equations.
- ► The simplest is an operator on the level 2:

$$\Psi_{12}(z) = \mathcal{O}_{h_{12}}(z), \quad a_{12} = 1, \ a_{21} = -\beta$$

$$D = 2\beta \partial_z^2 - \sum_k \frac{2}{z - z_k} \partial_{z_k} - \sum_k \frac{2h_k}{z - z_k}$$

$$D \left\langle \mathcal{O}_{12}(z) \mathcal{O}_{h_1}(z_1) \dots \right\rangle_{\mathbb{D}} = 0$$

Main result: Large *N* limit of Dyson's integral on an arbitrary contour

Define

$$\mathcal{O}_h(z) = (f(z))^{-aN} \prod_i (z - \xi_i)^a, \quad z \notin \mathcal{D}$$

$$h = \alpha(\alpha - \sqrt{\beta} + 1/\sqrt{\beta}), \quad \alpha = a/\sqrt{\beta}$$

► Then

$$\langle \mathscr{O}(z) \rangle = (f'(z))^{h/2}$$

$$\begin{split} \langle \mathscr{O}_{h_1}(z_1) \mathscr{O}_{h_2}(z_2) \dots \rangle_{\mathscr{D}} &\approx (f'(z_1))^{h_1} (f'(z_2))^{h_2} \dots \left(\frac{f(z_k) - f(z_l)}{z_k - z_l} \right)^{\alpha_k \alpha_l} = \\ &= (f'(z_1))^{h_1} (f'(z_2))^{h_2} \dots \langle \mathscr{O}_{h_1}(f(z)_1) \mathscr{O}_{h_2}(f(z)_2) \dots \rangle_{\mathbb{D}} \end{split}$$

Screening operators

► Find a general form of Dyson-Selberg density which preserve conformal covariance of the primary operators"?

$$\mathcal{O}_h(z) \propto \prod_i (z - \xi_i)^a, \quad z \notin \mathcal{D}$$

$$\langle \mathcal{O}(z) \rangle_{\mathcal{O}} = (rf'(z))^{h/2} \langle \mathcal{O}(f(z)) \rangle_{\mathcal{D}}$$

Modification of the Dyson-Selberg density a la Dotsenko-Fateev:

$$\prod_{i \le N} (z - \xi_i)^a \prod_{N \ge i > j} |\xi_i - \xi_j|^{2\beta} \times \left[\prod_{k=1}^r (z - t_i)^{-a/\beta} \frac{\prod_{r \ge k > l} |t_k - t_l|^{-2/\beta}}{\prod_{k \le r, i \le N} (\xi_i - t_k)^2} \right] dt_1 \dots dt_r$$

► There is a one parametric family of Dyson's type integrals reveling conformal symmetry

Degenerate operators as Dyson's integrals

If one of the charges is chosen to be

$$a = 1$$
, or $-\beta$

then the operator

$$D = 2\beta \partial_z^2 - \sum_k \frac{2}{z - z_k} \partial_{z_k} - \sum_k \frac{2h_k}{z - z_k}$$

nulls the integral

$$D \left\langle \left[\prod_{i \leq N} (z - \xi_i) \right] \mathscr{O}_{h_1}(z_1) \dots \right\rangle_{\mathbb{D}} = 0.$$

▶ No large *N* is necessary (proof through an integration by parts).

Other CFT operators in terms of Dyson's integral

▶ Bose Field

$$\varphi_{-}(z) = -\frac{1}{N} \sum_{i} \beta \log|z - \xi_{i}|^{2}$$

Current

$$\partial \varphi_{-}(z) = -\frac{1}{N} \sum_{i} \frac{\beta}{z - \xi_{i}}$$

Holomorphic component of s.e. tensor

$$T(z) = \left(\partial \varphi(z)\right)^2 + \frac{1}{N}(1 - \beta)\partial^2 \varphi(z)$$

▶ Boundary components of s.e. tensor

$$2T_{sn} = \operatorname{Im}(v^2T), \quad z \in \Gamma$$

$$2T_{nn} = \text{Re}(v^2T), \quad z \in \Gamma$$

v is a normal vector to the boundary

Conformal Boundary Conditions and Ward Identity

At large N CFT conditions emerge

► Conformal Boundary conditions: *sn*-component continuous through the boundary

$$\operatorname{disc} \langle [T_{sn}(z)]_{\Gamma} \rangle = 0$$

 Conformal Ward Id: nn component generates a deformation of the boundary

$$N^{-2}\delta \log Z_N = -\frac{1}{2\pi\beta} \oint_{\Gamma} \langle T_{nn}(z) \rangle \delta n(z) |dz|$$

A "quantum" version of Hadamard formula for variation of conformal maps.

Bose Field and Current

Conformal Boundary conditions for the Bose Field

$$\langle \varphi(z) \rangle = -2\beta \log |f(z)| + \frac{2}{N} (\beta - 1) \log |f'|$$

$$\beta^{-1}N^2\langle\varphi(z)\varphi(\zeta)\rangle_{\rm c}=G(z,\zeta)-\log|z-\zeta|$$

$$\langle \left(\partial \varphi(z)\right)^2 \rangle_{\rm c} = \frac{\beta}{6} \{f, z\}$$

Conclusion: Finite dimensional approximation of CFT

- ▶ Large *N* Dyson integrals represent objects of Boundary CFT.
- ► A sort of quantum Fekete theory:

Finite dimensional approximation of conformal maps \rightarrow Finite dimensional approximation of CFT.