The Riemann—Hilbert Problem in Higher Genus and Some
Applications

Marco Bertola

Mathematics and Statistics, Concordia University, Montréal
Area of Mathematics, SISSA-ISAS, Trieste, Italy
Centre de recherches mathématiques (CRM), UdeM

IDPEIS-22, June 27, 2022.

o "Nonlinear steepest descent approach to orthogonality on elliptic curves”, arXiv:2108.11576, JAT

e " Abelianization of Matrix Orthogonal Polynomials”, arXiv:2107.12998, IMRN

© Padé approximants on Riemann surfaces and KP tau functions”, arXiv:2101.09557, Anal. Math. Phys. 11 (2021)

0 “Higgs fields, non-abelain Cauchy kernels and Goldman symplectic structure” arXiv:2102.09520 with Ch&t a thn 2’
3}{4"('0 Ry ee0_

Abstract Painlevé transcendents as well as solutions of nonlinear waves are deeply linked to solutions of Riemann—Hilbert problems on
the sphere. At their core, these problems define a (trivial) vector bundle on the sphere, and the poles of the transcendents correspond to
non-trivial bundles where the partial indices of the associated problem become non-zero. In higher genus there are additional issues linked
to the index; the role of degree—zero bundles is better played by degree ng (with n the rank and g the genus). The practical application
of the theory of infinitesimal variations then requires a matrix version of the Cauchy kernel that contains as parameters the Turin data,
namely the moduli of a reference bundle. While these notions seem closer to algebraic geometry than to Integrable Systems, | will indicate
how they become necessary to address certain problems stemming from asymptotic analysis of Padé approximations on Riemann surfaces.
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Introduction: genus and index for people in the RH community

On the plane, the prototype RHP is Cine Axy
Y(24) =Y (2_)G(2), z€ S', Y(0) =1, Y(z),Y '(2)anal. & bdd. on C\S"

Obstruction!

indSl det G # 0.

Let C be a smooth R.S. of genus g and ~ the bdry of an embedded disk D.

Can we repeat the problem above?

, TP Mt Nz e,

G ¥ ErEs &
G:¥Y-> cl,@&)
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Introduction: genus and index for people in the RH community

On the plane, the prototype RHP is
Y(24) =Y (2_)G(2), z€ S', Y(0) =1, Y(2),Y '(2)anal. & bdd. on C\S"

Obstruction!

indsl det G # 0.

Let C be a smooth R.S. of genus g and ~ the bdry of an embedded disk D.

Can we repeat the problem above?

- If we insist on index 0 we must allow poles (try even for the scalar problem!).

- If we insist on holomorphicity of Y (z) we must choose ind,, de@

Alg. geometers know this very well; this is a vector bundle & of degree ng and Riemann—Roch says

RO (&) = h' (&) + ng — n(g — 1) = h' (&) + n.

Generically we have unique solution (modulo normalization); on the non-Abelian Theta divisor J

h'(&) > 0.
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Inevitability of Tyurin

For a RHP of index ng then det' Y will have ng zeros!

Example (Simple zeros)

div (detY) = Y9 p;, =: F. Then Y (p;) has co-rank 1; Ker,ow (Y (p;)) = C{h;}.
j=1Pj J J J

Definition (Tyurin data)

The collection of 7 (divisor of degree ng) and h; € P" 1 is called Tyurin data.
They classify the moduli space of vector bundles of degree ng (up to common G L,, action)

For higher multiplicity points the description is subtler, see loc.cit.
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Deformation theory and the non-abelian Cauchy kernel

With an eye to small norm theorems and Deift—Zhou-type of problems we need to study
“infinitesimal” deformations:

Y(zy5¢) =Y (2_;¢) (G(2) + e6G(z)), ze€n.

Then, like in genus 0: >/(00 )___ i

Y(z4) = Y(2_)G(2) + Y(2_)6G(2)

How to solve this non-homogeneous RHP? In genus zero

. 1d
V() = | §Y (wo)sG )Y we) e |V (2)
(w — z)2imw
5
The problem is what goes instead of % 7
/,fr K’\ V.
W/)a& 2~_—v/)

SW{’”’@ ad 0o zﬂ‘/mf,& Yo 2= CO
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Simple Tyurin points (example): equation for@

Consider 7 = 77| p; \N,
&
Tyurin vectors : h,Y(p) =0 h,e Pt

Let we(z) € H°(K¢) be the (normalized) holomorphic differentials:

we(T) = diag(wg(pl),...,wg(png)) € Maty,gxng H:= € Matngxn

Brill-Noether—Tyurin matrix

Ti=[ wi(IH | w2(T)H | ... | wg(T)H | € Matngxng
20 FeorenkT]
4

The non-Abelian Theta divisor is thus a divisor: 2 = {det T = 0}.
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Cauchy kernel and affine connection

The Cauchy kernel Co, (w, z) = Co (w, z) dw is a differential /function matrix such that

Q Cx(w,z) = (wl_z + F(z) + O(w — z)) dwie. res Cyp = 1;
w=q
@ as a differential in w/function in z:

div (Cp(w, 2))y = —0— 2z div(Cxp(w,2)), = —w+ 00— F

e for every p; € g (here version for simple Tyurin data only)

4
h!Cy(w, 2) = Ow — p;y) Qs W R (1)
h;Vj
Co(w, z) = + regular (2)
Z — Py

It exists and is unique for & ¢ E.

Affine connection

The matrix F(z) is an affine connection under change of coordinates:

d 1 d d
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Formula for C

The kernel is not abstract:

w1 (J)H wg (T )H wp oo (T)He;
det
wi(ge; | -+ | wgla)e; wWp,o0(9) 03
ng(Qap) = det T y 4,] = 17 y T
h
w;(p1) 0 0 0 1
30 w;(p2) 0 0 _hy
Wj(g) = - € Matnang H = ] € Matnan
0 0] :
0 0 wj(Png) e

Explicit formulas are essential for applications.
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Applications: from symplectic geometry of moduli
space to nonlinear steepest descent (Padé)
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Logarithmic form of Liouville's tautological form

v EEL 7(2) M m(e, QL)

F' o reference affine connection constructed directly from Cauchy kernel,

M the monodromy map;

°
°
@ V moduli space of (stable) vector bundles of degree ng
® <7/ (P) connections (with fixed polar divisor).

°

R(C, GL,,) is the character variety

If O.qrn is tautological one form on T*Y then

@ p:= (M YHN*0.4, is a “potential” on M(C, GLy,,) for the Goldman symp. form:
dy = wg

@ ¢ is a LOGARITHMIC FORM on R (C, GL,,) with pole along M(E) and residue —h'(&):

@+ dlndet T = O(1). (&%w5> y

Informally: the (class of the) Goldman symplectic form is “Poincaré dual’ to =.

T = = =

Ill
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More practical application: Padé on Riemann surfaces

e
Given a measure the Weyl-(Stiltjes) function (or generating function of moments):

Mankov - — -
W(z) : ._‘f(::zézkﬁf }:

— g—i—l
z X i>0 z

The Padé approximation is a rational apprOX|mation scheme:

Qn—l (Z)

O —2n+1 N .
Pn(Z) + (Z )7 |Z| o0

Wi(z) =

The denominators are the orthogonal polynomials for the measure.

Can we merge these two worlds? (B)OPs on RSs?

Very little literature:
@ Fasondini-Olver-Xu (2020) arXiv:2011.10884: Orthogonal “polynomials” on elliptic curves

@ C. Charlier: spectral curves and matrix OPs Trans. Math. Appl. 5 (2021), no. 2, tnab004,
35 pp.
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Two generalization directions

Generalizations: either via meromorphic functions or meromorphic half—differentials.

| Pae)Vdz Pz e
JPR (2) P (z)ew(gc) dz = en om (5)

Meromorphic functions with pole at a given point.

| am going to describe only the second setting here. The first one is necessary for application to
MOPs: also generalizes nicely multi—point Padé approximations. J
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Padé on Riemann surfaces

We need the following data:
@ A smooth R.S. C of genus g;

@ a (generic) divisor & of degree g;

@ a fixed chosen point o0 € C;

@ a local coordinate z : Doy — C such that Z(})O) = 0.
@ acurve v C C;

@ a density (measure)on 5.

The (scalar) Cauchy kernel

Cx (p, q) is a differential in p and function in g such that: 3_@
@ as a differential w.r.t. p it has poles at g, o0 and residues +1, —1; zeros at p € Z;

@ as a function w.r.t. ¢ it has poles at p, Z and zero at o0.

Such object exists and is unique.

Example (genus 1)

Coo(z,w) = (((z2 —w) + ((w = a) = ¢(2) + ((a)) d=.

Wisz=0and 9 = a.
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Definition (Weyl differential)

We define it by

W(p) = Co(p, q) du(q) 2 0p.) - VJ(F-) =2l (p)

g€y

The space of polynomials of degree n is now replaced by the line bundle .Z(noo + 2) (of
dimension n + 1 like the space of polynomials by Riemann—Roch).

Problem (Padé approximation problem)

Find P,, € Z(Z 4+ nw) and Q,_1 € K((n + 1)o0)

div (Q;‘l — W> > 29 + (2n — 1)o0.

n

Theorem (" Orthogonality”)

(now eWh'QA->

J Pn(P)Pm(p) d,u,(p) = hndnm-
Y
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What survives?

We now use the local coordinate z and define a reference basis of “monic” meromorphic functions ;

) ) [ W\
S,65(0) = res 2(p)’Clp.q) = 27 +OG. o ovounin Oy \
' ’ $

© Pseudo—moments 1, (not Hankel!):

My = 3€Cj (P)Ck () dp(p) = — res jg ¢ (@)C(q, p)Ck (p) dp(p)

peEY

n—1

D, := det [,uj,k]
J, k=0

@ Heine formula

ZH | det [Ca_l(pb)]:,bzl [1 du@;),  pu+1 =p

j=1

I

P (p) = Din L” det [Ca—l(pb)]

© Riemann—Hilbert problem (see next).

The departed

@ Three term recurrence relation; replaced by a 2g + 3 recurrence relation.
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sleand Irs K"*M\/ OP
Problem

Let Y,, be a 2 x 2 matrix with functions in the first column and differentials in the second column,

meromorphic in C\ry

1 du(p) ] —

Yas) = Yalo) [ 5

In addition we require that the matrix is such that it has poles at & in the first column and zeros
in the second column, and also the following growth condition at co:

- O(P +nw)  K(=D — (n — 1))
Ya () ‘[ D+ (n— 1)) K(—D — (n — 2)o0) ] (©)
Yar) = (14 0G()™) [ e ] . row )
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Let Y,, be a 2 x 2 matrix with functions in the first column and differentials in the second column,

meromorphic in C\ry

1 du(p) ] —

Yas) = Yalo) [ 5

In addition we require that the matrix is such that it has poles at & in the first column and zeros
in the second column, and also the following growth condition at co:

- O(P +nw)  K(=D — (n — 1))
@)= | o4 1) K (mm D) | e
Vo) = (1+0Gm)™) [ e ] . pow (7
P 4

Problem inherently of index 2g

det Y,, € K(200); it has 2g zeros! How to prove uniqueness? Existence? Tyurin divisor....
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The solution of the RHP exists and is unique if and only if D,, # 0.

Note that it is different from genus 0; the solution if it exists is unique. Now it may exist and be
not unique (if D,, = 0).

~

_ Pn(p) R (p)
Yn(p) B [ f)n—l(p) SC{n—l(p) ]

R, (p) := f C(p, q)Prn(q) du(q) Rp_1(p) 1= J C(p, q)Prn_1(q) du(q).

HO0,0 H1,0 Hn,0

1 Ho,1 Hi,1 Hn,1

| Co(p) CGi(p) -+ Cal(p)
[ HO0,0 H1,0 Hn—1,0
~ 1 Ho,1 M1 Hn—1,1
| Co(p) Ci(p) -+ Cn-1(p)
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Guaranteed existence: Harnack-curves. A case study. |

If C has antiholomorphic involution fixing v and dpu is a positive measure, then D,, > 0 (easy to
show).
Genus 1. Elliptic curve E; = C/2w1Z + 2w2Z, In WeierstraB form the elliptic curve is

Y2 =4X? — g2 X — gs = 4(X — e1)(X —e2)(X — e3)

with e1 +es +e3 = 0and e; < es < e3.

Antiholomorphic involution z — =Lz = Z. We choose 00 = {0} and 2 = {a}, with
1

a € (0,2wy).

L(P +n0) = C{1,¢(2) = C(z = a) = C (a) , p(2), 9/ (2), -, 0" D (2) |

Real-analytic: f(z) = f(Z).

The orthogonal sections 7, exist and have n + 1 zeros. These lie all on ~y for (n + 1) even, while
for (n + 1) odd one zero belongs to c.

Interlacing?
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Guaranteed existence: Harnack-curves. A case study. I

7%
T T+ 1
Y «
T \
2 ’Y’ €3 €9 €1 X
9
. \
0 17 al 1

Figure: An example of real elliptic curve (specifically w2 = 4(X — 1)(X — 2)(X + 3)). On the left pane we have the “elliptic”
parametrization as the quotient of C by the lattice A+. On the right the representation of the real section of £+ in the Weierstrass
parametrization. The divisor & consists of a single point on the real oval of the « cycle (in this example 2 = 1/3 in the elliptic
parametrization), while the measure of orthogonality is defined on the cycle « and it is given by an arbitrary smooth positive function

w(p) on ~ times the holomorphic normalized differential dp = 2:}% Also plotted are the zeros of the orthogonal section mg

with respect to the “flat” measure with w(p) = 1. Note that the zero on « is already (for n = 6) extremely close to e : this zero,
for even m converges to e exponentially fast.
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We now present the asymptotic analysis under

The function w(p) is analytic in a strip containing ~ and real on ~.

This is a non-scaling regime.

f Pn(p)Pm(p)ew(p) dp = 6nmhn
Y
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Nonlinear Steepest descent analysis

In genus 1 no practical difference between functions/differentials.

Let Y = Y., (p) be the 2 X 2 matrix, meromorphic on £;\y and with poles at p = 0, &, such that
@ Near p = 0 = A, we have the behaviour

Y(p) = (1 + O(p)) [ p;n pno_g ] , p— 0 mod A,

@ Near p = 2 mod A, we have that

[ op—2)"") O@-2)
Y“’)‘[ Ollp—2)"") Olp— 2) ]

© The boundary values at p € v are bounded and satisfy:

v v 1 ew(®
y
Note that det Y (p) has 2 zeros: usual argument for uniqueness fails. But the theorem earlier
guarantees existence since (using Andreief) one sees D,, > 0. J
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A quick rundown of the DZ method and novelties |

@ The g—function is found explicitly and along similar lines;

@ the steps of (i) normalization (using the g—function) of the singularity and (ii) opening lenses
is also without major surprises.

© The “model problem” (aka “outer parametrix”) is found explicitly M (p); alas, its
determinant has also 2 zeros div det M = (1/4) 4+ (3/4). These zeros and the
corresponding kernel spaces are the Tyurin data.
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A quick rundown of the DZ method and novelties Il

@ The issue is in the error analysis: to see consider the prototype

Yi(z) =Y_(2)J(2), |2/ =1, Y(o)=1.

dw

w — z

Y(2) =1+ i § Y_ (w)(J(w) — 1)

lw|=1

The latter expression needs a matrix Cauchy kernel that is defined given the Tyurin data:
Co(p, q) dp is a matrix—valued differential with respect to the variable p and meromorphic
function with respect to the variable g satisfying the following properties

@ It has a simple pole for p = g and p = 0 and no other poles with respect to p;

@ The residue matrix for p = g is 1 (and hence at p = 0 is —1)

© It has a simple pole for ¢ = p and at the Tyurin divisor 7 = (1/4) + (3/4) and all
entries vanish for ¢ = 0.

@ The expression M~ 1 (p)Co(p, ¢) M (q) is locally analytic with respect to ¢ and p at 7.
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Figure: The first few monic orthogonal sections plotted as a function of s € [0, 1] via p = % + s; here wp (p) € PPy, are the

“monic” sections behaving like wp, (p) = p~ ™ (1 + O(p)). The elliptic curve is
W2 =4x3 — 19X 4 15 = 4(X — 1)(X — 3/2)(X + 5/2). Here 7 ~ 0.6563i. We have set 2 = 1/3 € R and

00 = 0. The contour -y is the segment [7/2, 7/2 + 1] in £; in the X —plane this is the segment X € [e3, ea] (on both sheets).

The thick line is the plot of the orthogonal section obtained by computing explicitly the moments. The thin line is the approximation.

Observe that the approximation is almost perfect starting from n. = 2, confirming the exponential rate of convergence discussed in the

text.
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Asymptotic results |

@ For every compact subset of £\ we have

T (p) = e 5 My (p)e " T VIPIHFER (1 4 O(e7m00)).

01(2;271)01(p — 2 — 7;27)07(0; 27)02 5 (p; 27)
01(2 + 7;27)01(p — D; 27)01 (p; 27)02 33 (05 27)

M1 (p) = e '™

(8)

where the choice between 62, 63 is according to the parity of n. The function S(p) is the
“Szegd” function for the function w(p) defined in terms of the Cauchy kernel and w.
The g—function is given by:

gim(p-5)—ix _ 01(p;27) ST < 3p < 1
01(p — 7;271) 2
eI(P) _ ot
omimr(p=F)+F ilp —Ti21) o 1g
01(p; 27) 2
0’ (0;2 —in T
ez—i 1( T)e z7r72->0

01(1;27)
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Asymptotic results Il

@ For p € v we have the modulated oscillatory behaviour for p = s + & + 40:

iz 61 (s +

. (p) _ 2€(n—1)£—soo§R<Mll(p+)eS(p+) eiTrs— b}
61 (s -5 27’)

© For every continuous function ¢ defined on v C &

n+1
1 Az dp
lim — (n) :J ~ oo 2P
Jim ;:1 ¢(z;") qu(p) e1 — p(p) 5
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Asymptotic results |l

@ The extra zero of m,, for n even tends at exponential rate to p = % (ie. X =eq).

© The square of the norms of the monic orthogonal sections have the asymptotics

—2iw D pn2 . . . n
eZ(n—l)E—QSoo e—'L"Tl"T e 01 (@7 27—) 611 (07 27—) (93 (07 27—) )Ij (1 + O(e—nco))

2
n = 2
In ™ = 27 62(2 + 7:27) 04(0;27) \ 62(0;27)

where f},, = 1 for even n and —1 for odd n.
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Matrix (Bi)Orthogonal Polynomials |

Matrix weight W (z) on the real axis (or contour «y in C ) gives rise to matrix BOPs.
J P, ()W (2)P,} (z)dz = §p,mHy,
¥

Notable applications to the Aztec diamond (see Arno’s talk).

Connection with scalar orthogonality on a Riemann surface already recognized by [Charlier "20]
(implicitly in [Duits-Kuijlaars '17]).

It is sufficient that the eigenvectors of W (z) live on an algebraic surface C (of genus g).

Example (arxiv:2107.12998)

Z:C—CP', div(Z) = —ro

| wnine®s 9L e VR + ooy @ 2
Y

i) ()
T (2) = : :
Yot G vl )
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Matrix (Bi)Orthogonal Polynomials Il

The matrices
P, (2) i= Uh(2)¥g ' (2) , P (2) == (¥5) 7 (2)Ty (2)

are polynomials and (bi)-orthogonal for the weight

W(z) = W(z)dz := ¥o(2)A(2)¥, (2), A(z) = diag(Y(z(l)), . .,Y(z(")))

It works also if C is the sphere! Z(t) = (t — ¢)? : CP* — CP*
_ 1 a+l—c—+/z e CTVE
WL(Z)dZ_[a—i—l—c—\/E (a+1—c—+/2)2 ](c—k\/g) NG dz.
L2, +1+a—2c)d LS. d
e T
PJ(Z) = LY (s)(s+1+a—2c)ds LY (s)ds
res —24+1 res —24t1 -
s=00 z—Z(s) s=0o0 Z(s)—z
- L(2j+a+1) 0
)|
J P;(z)Wr, (z)P,ﬁ(z) dz = 01 (25)' L(2j+a+2) }
c? i+ D!
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KP and 2-Toda: stitching together Krichever's tau functions

¢
Tensor . by a zero-degree bundle with transition function e t¢% (P) near oo.
A section of Z;(noo + 2) satisfies:

(Pn) = —2, n(p) = 2" @ (14 0(=Y)).

For n = 0O it is the Baker—Akhiezer function of Krichever. \

Take
Ye L= P L(no+ 2)
n=0
qbe,,/S,’Z = C—D ZLs(now + )
n=0
Pairing:

G0 = | 60 () dulp)

We can construct biorthogonal sections {%,,, ¢ }nen (if non-degenerate!)
A basis is

Ci(pit) = I ek teze(l + (’)(z_l)) (similarly for s)
J
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Tau function

Definition (The Tau function)

The Tau function is defined by

1
Tn (t, 8) :=m®(F(t))@(1@(s))e@<t>+Q<s)+nA(t>+nA<s> «

xj det [Ca—1(rps )]} ,_, det [Cam1(rps8)]) ;[ du(ry) =
,77'1,

j=1

n—1

=7rcr (£)Trcr (8)e" MO TAG) det [Mab(t, 8)]
a,b=0

The expression Q(t) is a quadratic form and A(t) is a linear form in the times.
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The tau function

© /s a KP tau function w.r.t. both sets of times (satisfies HBI):
res o (t — [z], 8)7Tn (t + [], s)ei(m;t)_g(m;z) dz(x) =0
=00

@ It is a tau function for 2—Toda Hierarchy (Adler-VanMoerbeke)

ob(z5t) —&(z;E) + A(E—t) dz(z) B

res T (t — [=]; .3)7'm+1(z + [z]; 5) 2(z)m—n+1

o€ (i8) —E(w:2) + A(a=3) ()

Z(:U)n—m—}—l

= wr:ego Tn+1(t; s + [w])’l’m(z, s — [w])

©Q IfP,(p;t,s), Qn(p;t,s) are the biorthogonal sections then the Baker and dual Baker
functions are (up to prefactors) P, (x;t,s) and

Ry (z;t, 8) := J C(z,r;t)Qn_1(r;t,s)du(r)
rey

respectively (note that dual BA is a differential).

Q 7.(t,s) =0 if and only if Tk, = O or the pairing is degenerate on

Zi(no 4+ 2) Q Ls(nowo + 2)

31/32



Outlook

© © © o

Varying weights: this requires study of equilibrium problem on RS: we need appropriate Green
functions.

One can study DRPF: the projection operator (in the Harnack case) gives a TP kernel
defined on the curve.

New integrable systems? Connection with Hitchin systems (higher genus generalization of
Calogero—Moser types).

Interface with algebraic geometry of vector bundles.
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