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Analytic description of surfaces

Conformally parametrized surfaces

f = (f1, f2, f3) : R → R3,

< fu, fu >=< fv , fv >= e2h, < fu, fv >= 0, < n,n >= 1.

Complex coordinate z = u + i v . First and second fundamental
forms

< df ,df > = e2hdzdz̄,
− < df ,dn > = He2hdzdz̄ + Qdz2 + Q̄dz̄2

Mean curvature H = 1
2(k1 + k2), Gaussian curvature K = k1k2.

< fzz̄ ,n >=
1
2

He2h.

Hopf differential
Q =< fzz ,n > .
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Gauss-Codazzi equations. Bonnet theorem

Gauss equation hzz̄ + 1
4 H2 e2h − |Q|2 e−2h = 0,

Codazzi equation Qz̄ = 1
2 Hz e2h.

Theorem (Bonnet theorem)
Given a metric e2h dzdz̄, a quadratic differential Q dz2, and a
mean curvature function H on R satisfying the Gauss–Codazzi
equations, there exists an immersion

f : R̃ → R3

with the corresponding fundamental forms. Here R̃ is the
universal covering of R. The immersion f is unique up to
Euclidean motions in R3.
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The Bonnet problem

I A natural question is whether some of the data e2h,Q,H of
the fundamental forms are superfluous.

I Note that the Gaussian curvature is determined by the
metric

I Do the metric and the curvatures determine a surface?
I Generally yes.

3 exceptional cases (known to Bonnet):
I cmc surfaces
I Bonnet pairs: two surfaces
I Bonnet families: one parameter family of non-cmc surfaces

Local and global theory
All 3 cases are described by integrable systems
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Constant mean curvature surfaces

Wente torus:
one family of planar curvature

lines
∆u = sinh u

I Cmc surfaces: associated
family Q → λQ, |λ| = 1.

I Modern global theory of
cmc surfaces.

I Wente torus [’86], Abresch,
Walter [87].

I all tori, description as
integrable systems.
Hitchin, Pinkall, Sterling
[’89]

I explicit formulas in terms
of RS (theta functions).
Bobenko [’91]

I Higher genus: Heller
[2010-]
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Bonnet pairs

I A Bonnet pair is two
non-congruent isometric
surfaces F+ and F− with
the same mean curvature
at corresponding points.

I Lawson-Tribuzy [’81], 3
immersions⇒
one-parameter family

I ⇒ There exist at most 2
compact immersions

I Claims (retracted) that they
do not exist. Sabitov [’12]

I Sufficient conditions for
non-existence. Jensen
-Musso-Nicolodi [’18]
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Compact Bonnet pairs?

A smooth Bonnet pair F± is given by conformal immersions

f± : R → R3

of the same Riemann surface, with common metric e2h,
common mean curvature function H and different Hopf
differentials Q+ 6≡ Q−.
I Codacci equations⇒ Qh := Q+ −Q− is holomorphic
I There exists no Bonnet pairs of genus g = 0.

Lawson-Tribuzy [’81], Qh = 0 on a sphere.
I The set of umbilic points coincides with the zero divisor of

Qh. Bobenko [’08] , Sabitov [’12]
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Bonnet pairs of genus g = 1?

No umbilic points on Bonnet tori:

Q± =
1
2

(α± i ),

where α : R → R smooth.
The Gauss–Codazzi equations of Bonnet tori

4hzz̄ + H2e2h − (1 + α2)e−2h = 0,
αz̄ = e2hHz .

I solve the GC equations
I solve the frame equations
I find doubly periodic immersions
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Bonnet pairs of genus g = 1?

No umbilic points on Bonnet tori:

Q± =
1
2

(α± i ),

where α : R → R smooth.
The Gauss–Codazzi equations of Bonnet tori

4hzz̄ + H2e2h − (1 + α2)e−2h = 0,
αz̄ = e2hHz .

I solve the GC equations
I solve the frame equations
I find doubly periodic immersions

This is not the way to solve the problem!
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Main result: Bonnet pairs of genus g = 1 do exist

A compact Bonnet pair of genus g = 1.
Corresponding generators are shown.
The orange generators are not congruent
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Isothermic surfaces

Isothermic surfaces = conformal curvature line parametrization

fuv ∈ span{fu, fv}, Q(z, z̄) ∈ R

Dual isothermic surface

df ∗ := e−2h(fudu − fv dv).

The periodicity properties of f : R → R3 are not respected.
Quaternionic description of surfaces

(u, v)→ f (u, v) ∈ Im H

df ∗ = −(fu)−1du + (fv )−1dv
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Bonnet pairs from isothermic surfaces

Description of Bonnet pairs (frames) in terms of isothermic
surfaces in S3 by Bianchi [1903].
Quaternionic description for simply connected D ⊂ R2 is crucial
in our construction

Theorem (Kamberov-Pedit-Pinkall (’98))
The immersions f± : D → Im H = R3 build a Bonnet pair if and
only if there exists an isothermic surface f : D → Im H and a
real number ε ∈ R such that

df± = (±ε− f )df ∗(±ε+ f ),

where f ∗ is the dual isothermic surface.
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Periodicity conditions

Torus R = C/L. If γ is a cycle on R that is closed on the
isothermic surface f : R → R3.
The corresponding curves are closed on the Bonnet pair iff

(A−periodicity condition)

∫
γ
−fdf ∗f + ε2df ∗ = 0,

(B−periodicity condition)

∫
γ

[df ∗, f ] = 2
∫
γ

ImH(df ∗f ) = 0.

I Parameter ε is not essential
I Isothermic surfaces are Möbius invariant

Lemma
Let f be an isothermic torus such that f ∗ and (f−1)∗ are also
tori. Then the A-periodicity condition for Bonnet pairs is
satisfied for any γ∫

−fdf ∗f + ε2df ∗ = (f−1)∗ + ε2f ∗.
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Discrete Bonnet pairs. Local theory

Discrete isothermic surfaces Bobenko-Pinkall [’96].
f : Z2 → ImH = R3 is a discrete isothermic net if for each quad

(f1 − f )(f12 − f1)−1(f2 − f )(f12 − f2)−1 = −1

Discretization of the Kamberov-Pedit-Pinkall formula by
Hoffmann-Sageman-Furnas-Wardetzky [’17]
⇒ Discrete Bonnet pairs

f±1,2 − f± := ImH

(
(±ε− f )(f ∗1,2 − f ∗)(±ε+ f1,2)

)

Alexander Bobenko Bonnet Problem



Discrete compact Bonnet pairs. Numerical example

Two views of a discrete isothermic torus. Extremely coarse
numerical example on a 5× 7 lattice.
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Discrete compact Bonnet pairs. Numerical example

The corresponding discrete Bonnet pair
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Discrete compact Bonnet pairs. Numerical example

On the discrete isothermic torus, the curvature lines with 5
vertices are planar (orange) and the curvature lines with 7
vertices are spherical (blue)
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Isothermic surifaces with one family of planar
curvature lines

Classification by Dabroux [’1883]. Involved and tricky
computations

Theorem
Every isothermic surface f (u, v) with one family (u-curves) of
planar curvature lines has its planes tangent to a cone, and is
given by

f (u, v) = Φ−1(v)γ(u,w(v))jΦ(v)

Φ′(v)Φ−1(v) =
√

1− w′(v)2W1(w(v))k,

where w(v) is a reparametrization function satisfying
|w′(v)| ≤ 1, the lattice is rectangular, and ω ∈ R, and γ(u,w)
and W1(w) are given by explicit formulas in theta functions.
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Formula for the curves γ

γ(u,w) = −i
2ϑ4(ω)2

ϑ′1(0)ϑ1(2ω)

ϑ1
(u+i w−3ω

2

)
ϑ1
(u+i w+ω

2

) e(u+i w)
ϑ′4(ω)

ϑ4(ω) .

I Problem: γ(u,w) is never periodic in u
I Darboux classification contains no cylinders or tori. He

considers elliptic functions on rectangular lattices only.
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Formula for the curves γ

γ(u,w) = −i
2ϑ4(ω)2

ϑ′1(0)ϑ1(2ω)

ϑ1
(u+i w−3ω

2

)
ϑ1
(u+i w+ω

2

) e(u+i w)
ϑ′4(ω)

ϑ4(ω) .

I Problem: γ(u,w) is never periodic in u
I Darboux classification contains no cylinders or tori. He

considers elliptic functions on rectangular lattices only.
I Classification must be extended by including the elliptic

functions on rhombic lattices
I Similar to the story with cmc tori, but more involved
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Rectangular and rhombic lattices: the curves γ

Rectangular: τ ∈ iR

γ(u,w) = −i
2ϑ4(ω)2

ϑ′1(0)ϑ1(2ω)

ϑ1
(u+i w−3ω

2

)
ϑ1
(u+i w+ω

2

) e(u+i w)
ϑ′4(ω)

ϑ4(ω) .

Rhombic: τ ∈ 1
2 + iR

γ(u,w) = −i
2ϑ2(ω)2

ϑ′1(0)ϑ1(2ω)

ϑ1
(u+i w−3ω

2

)
ϑ1
(u+i w+ω

2

) e(u+i w)
ϑ′2(ω)

ϑ2(ω) .
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Zeros of ϑ′2 for rhombic lattices

ϑ′4(ω) in rectangular case never vanishes,
ϑ′2(ω) in rhombic case can vanish.
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Bonnet periodicity conditions when f has a family of
closed planar curvature lines

The Bonnet periodicity conditions (A and B) simplify

f
f⇤

(f inv)⇤

f inv

u-curve plane

0

|R(!)|S2
<latexit sha1_base64="5T6i3S0jm84Xss7GJwEF+GGBLQA="></latexit>

The spherical inversion and dualization operations map each
planar curvature line, and therefore the entire surface, onto
(minus) itself
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Fundamental piece

The fundamental piece Π is the parametrized cylindrical patch

Π = {f (u, v)
∣∣u ∈ [0,2π], v ∈ [0,V]},w(v + V) = w(v).

I f has an axis A and
generating rotation angle
θ ∈ [0, π] with
Φ(0)−1Φ(V) =
cos(θ/2) + sin(θ/2)A.
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Bonnet periodicity conditions when f has a family of
closed planar curvature lines

Theorem
Let f (u, v) be an isothermic cylinder with one family (u-curves)
of closed planar curvature lines, and with periodic
w(v + V) = w(v) that yields a fundamental piece with axis A
and generating rotation angle θ ∈ [0, π]. Denote its Gauss map
by n and metric by e2h.
Then the resulting Bonnet pair cylinders f± are tori if and only if

1. (Rationality condition)

kθ ∈ 2πN for some k ∈ N,

2. (Vanishing axial B part)〈
A,
∫ V

0
e−h(ω,w(v))n(ω, v)dv

〉
R3

= 0.
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Second family of spherical curvature lines

I The primary challenge, is that the angle θ, axis A, and
Gauss map n, depend on the frame Φ(v), which cannot be
computed explicitly.

I The periodicity conditions can be refined when the second
family of curvature lines is spherical.

I The key geometric insight is that the centers of the
curvature line spheres are collinear and lie on the axis.

I Both periodicity conditions are given as Abelian integrals.
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Periodicity conditions as Abelian integrals

Theorem
Let f (u, v) be an isothermic cylinder of rhombic type, with
spherical v-curvature lines. Then the arising Bonnet pair
cylinders f± are tori if and only if there exist parameters
ω, δ, s1, s2 such that

Rationality condition:
θ

2
=

∫ s+
1

s−1

Z0

Q̃2(s)

Q2(s)√
Q(s)

ds ∈ πQ.

Vanishing axial B- part:
∫ s+

1

s−1

Q2(s)√
Q(s)

ds = 0.

Here, s−1 , s
+
1 are the two real zeroes of the v-elliptic curve

Q(s) = −(s − s1)2(s − s2)2 + δ2Q3(s), where the u-elliptic
curve Q3(s) and Q2, Q̃2,Z0 are given by explicit formulas.
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Proof of existence

I Proof of existence by asymptotic analysis δ → 0
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Compact Bonnet pairs from isothermic tori with planar
and spherical curvature lines

Fundamental pieces of an example with 3-fold symmetry

Alexander Bobenko Bonnet Problem



Compact Bonnet pairs from isothermic tori with planar
and spherical curvature lines

The pair of corresponding orange curves and the fundamental
piece of the isothermic torus
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Compact Bonnet pairs from isothermic tori with planar
and spherical curvature lines

The example with 3-fold symmetry
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Compact Bonnet pairs from isothermic tori with planar
and spherical curvature lines

The corresponding isothermic torus
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Example with 4-fold symmetry

The fundamental piece and full isothermic surface
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One surface!

I The corresponding Bonnet tori f + and f− are mirror images
of each other. Note that the mirror symmetry mapping f +

to f− is not the mean curvature preserving isometry.
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Compact Bonnet pairs with two different surfaces

Proof by a small perturbation.
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Bonnet families

Bonnet family:
non-cmc surface

I One parameter families of
non-cmc surfaces

I Umbilic free surface is a
Bonnet surface iff
[Graustein ’24]:

(i) it is isothermic
(ii) 1/Q harmonic
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Local classification

[E. Cartan ’42] 3 types

A : |Q|2 =
4

sin22t

B : |Q|2 =
4

sinh22t

C : |Q|2 =
1
t2

Analytic treatment via ODE. Hazzidakis equation [1887]((
H ′′

H ′

)′
− H ′

)
1
|Q|2 = 2− H2

H ′
.

1/Q = h + h̄, w =

∫
dz
h′
, t = w + w̄ , H ′(t) < 0, eu = −2|Q|2

H ′

Intrinsic isometries by imaginary shifts w 7→ w + ia
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Description via monodromy problems

Bobenko, Eitner [’98]

x = e−4(w+w̄), λ = e−4w

Frame equations of Bonnet families B:

∂Φ

∂λ
Φ−1 =

B0(x)

λ
+

B1(x)

λ− 1
+

Bx (x)

λ− x
,

∂Φ

∂x
Φ−1 = −Bx (x)

λ− x
+ C(x),

and Hazzidakis equation

4
(

x
H′′(x)

H′(x)

)′
+H′(x) =

4
(x − 1)2

(
2 +

H2(x)

4 x H′(x)

)
,
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Description via Painlevé equations

For any solution of the Painlevé VI

d2 y
d x2 =

1
2

(
1
y

+
1

y − 1
+

1
y − x

)
y ′2 −

(
1
x

+
1

x − 1
+

1
y − x

)
y ′+

y (y − 1) (y − x)

2 x2 (x − 1)2

(
θ2 (x − 1)

(y − 1)2 − θ (θ + 2)
x (x − 1)

(y − x)2

)
The function

H(x) ≡ −2
(x − 1) (θ2 y(x)2 − x2y ′2(x))

y(x) (y(x)− 1)(y(x)− x)

solves the Hazzidakis equation.
Similar formulas for Bonnet families C and Painlevé V.
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Bonnet families. Global classification

Bonnet families as maximal immersions of open stripe,
half-plane and disc. Also with critical points dH = 0 (isolated).
No compact examples. Bobenko-Eitner [’00]

Maximal immersions of Bonnet families of types A, B and C.
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