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What’s the problem?

Random matrices without any symmetry constraints often appear in
natural phenomenological models. For instance, the time evolution of
a system of interacting agents u = (u1, . . . , un) may be described by
a linear ODE system of the form

d

dt
u(t) = Xu(t)

where we assume the coefficient matrix X to be random (May 1972).
Such models have been studied extensively in neuroscience and
ecology and they often appear in the form

d

dt
u(t) = (−I + gX)u(t), (1)

Thomas Bothner (Bristol) eGinUE June 30th, 2022 3 / 34



where the identity matrix represents an exponential decay at unit rate
and the coupling constant g > 0 expresses the strength of the
random couplings in the model. The main task is to tune g so that
the resulting system is stable. However, the maximal growth rate of
the solution of (1) is determined by the maximal real part of the
spectrum of −I + gX, thus we wish to

understand accurately the real part of the rightmost eigen-
value of a large non-Hermitian random matrix

We will achieve this for an interpolating random matrix ensemble.
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One side of the coin

Consider the Gaussian Unitary Ensemble (GUE), i.e. matrices

X =
1

2
(Y + Y†) ∈ Cn×n : Yjk

iid∼ N

(
0,

1√
2

)
+ iN

(
0,

1√
2

)
as in (Porter 1965). Equivalently think of a log-gas system {xj}nj=1

⊂ R with joint pdf for the particles’ locations equal to (Mehta 1967)

pn(x1, . . . , xn) =
1

Zn

∏
1≤j<k≤n

|xk − xj |2 exp

− n∑
j=1

x2j

 .

Question: How do the particles {xj}nj=1 behave for large n?
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The particles {xj}nj=1 form a DPP on R (Dyson 1970),

Rk(x1, . . . , xn) :=
n!

(n − k)!

∫
Rn−k

pn(x1, . . . , xn)
n∏

j=k+1

dxj = det
[
Kn(xi , xj)]ki,j=1

with correlation kernel

Kn(x , y) =
e−

1
2 (x

2+y2)

√
π

n−1∑
k=0

1

2kk!
Hk(x)Hk(y), Hn(z) =

n!

2πi

∮
e2zt−t

2 dt

tn+1
.

Now analyze Rk asymptotically in different scaling regimes:
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(A) The global eigenvalue regime: define the ESD

µX(s) =
1

n
#{1 ≤ j ≤ n, xj ≤ s}, s ∈ R,

then, as n→∞, the random measure µX/
√
n converges almost surely

to the Wigner semi-circular distribution (Wigner 1955)

ρ(x) =
1

π

√
(2− x2)+ dx (2)
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Figure 2: Wigner’s law for one (rescaled) 2000× 2000 GUE matrix on the left,

plotted is the rescaled histogram of the 2000 eigenvalues and the semicircular

density ρ(x). On the right we compare Wigner’s law to the exact eigenvalue

density for n = 4 and the associated eigenvalue histogram (sampled 4000 times).
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(B) The local eigenvalue regime: We shall zoom in on x0 =
√

2n only
(Bowick, Brézin 1991, Forrester 1993, Nagao, Wadati 1993),

1
√

2n
1
6

Kn

(√
2n +

x
√

2n
1
6

,
√

2n +
y
√

2n
1
6

)
→ KAi(x , y), (3)

as n→∞ uniformly in x , y ∈ R chosen from compact subsets, with

KAi(x , y) =

∫ ∞
0

Ai(x + z)Ai(z + y) dz ,

which yields a trace class operator on L2(t,∞).
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In turn, the largest eigenvalue in the GUE obeys

max
i=1,...,n

λi (X)⇒
√

2n +
1
√

2n
1
6

F2, n→∞,

where the cdf of F2 equals (Forrester 1993)

Prob(F2 ≤ t) = det(I − KAi �L2(t,∞)),

which famously connects to Painlevé special function theory (Tracy,
Widom 1994).

Universality

Wigner’s law (2) is a universal limiting law (Arnold 1967, ...) and so
is the soft edge law (3) (Soshnikov 1999). Both laws holds true for
centered and scaled Hermitian Wigner matrices X = (Xjk)nj ,k=1 with
E|Xjk |2 <∞ where Xjk , j < k are iid complex variables and Xjj iid
real variables independent of the upper triangular ones (⊕ decay).
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The other side of the coin

Consider the Complex Ginibre ensemble (GinUE), i.e. matrices

X = Y ∈ Cn×n : Yjk
iid∼ N

(
0,

1√
2

)
+ iN

(
0,

1√
2

)
as in (Ginibre 1965). Equivalently think of a log-gas system {zj}nj=1

⊂ C with joint pdf for the particles’ locations equal to (Ginibre 1965)

pn(z1, . . . , zn) =
1

Zn

∏
1≤j<k≤n

|zk − zj |2 exp

− n∑
j=1

|zj |2
 .

Question: How do the particles {zj}nj=1 behave for large n?
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The particles {zj}nj=1 form a DPP on C ' R2 (Mehta 1967),

Rk(z1, . . . , zn) :=
n!

(n − k)!

∫
Cn−k

pn(z1, . . . , zn)
n∏

j=k+1

d2zj = det
[
Kn(zi , zj)

]k
i,j=1

with correlation kernel

Kn(z ,w) =
e−

1
2 (|z|

2+|w |2)

π

n−1∑
k=0

1

k!
(zw∗)k .

Now analyze Rk asymptotically in different scaling regimes:
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(A) The global eigenvalue regime: define the ESD

µX(s, t) =
1

n
#{1 ≤ j ≤ n, <zj ≤ s, =zj ≤ t}, s, t ∈ R

then, as n→∞, the random measure µX/
√
n converges almost surely

to the uniform distribution on the unit disk (Ginibre 1965)

ρ(z) =
1

π
χ|z|<1(z)d2z (4)
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Figure 3: The circular law for 1000 complex (rescaled) Ginibre matrices of

varying dimensions n × n in comparison with the unit circle boundary. We plot

n = 4, 8, 16 from left to right.
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Figure 4: Rescaled eigenvalue density for X ∈ GinUE with n = 5, 50, 250 from

left to right. The larger n, the better its approach to the uniform density on

x2 + y2 ≤ 1.
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(B) The local eigenvalue regime: We shall zoom in on |z0| =
√
n only

(Ginibre 1965, Mehta 1967)

1√
n
Kn

(
z0 +

z√
n
, z0 +

w√
n

)
→ Ke(z ,w) (5)

as n→∞ uniformly in z ,w ∈ C chosen from compact subsets, with

Ke(z ,w) =
1

2π
erfc

(√
2
(
eiθw∗ + e−iθz

))
e−

1
2
(|z|2+|w |2)+zw∗

where θ = arg z0.
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In turn the rightmost eigenvalue in the GinUE obeys

max
i=1,...,n

< zi (X)⇒
√
n +

√
γn
4

+
G√
4γn

, n→∞,

where γn = 1
2
(ln n − 5 ln ln n − ln(2π4)) and the cdf of G equals

(Cipolloni, Erdős, Xu, Schröder 2022)

Prob(G ≤ t) = e−e
−t
,

so no Painlevé transcendents are floating about.

Universality

The circular law (4) is a universal limiting law (Girko 1985, ...) and
so is the edge law (5) (Cipolloni, Erdős, Xu, Schröder 2022). Both
laws holds true for centered and scaled matrices X = (Xjk)nj ,k=1 with
iid complex entries so that E|Xjk |2 <∞ (⊕ decay).
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Connecting both sides

Consider the Complex Elliptic Ginibre ensemble (eGinUE), i.e.
matrices

X =

√
1 + τ

2
X1 + i

√
1− τ

2
X2 ∈ Cn×n : X1,X2 ∈ GUE independent

as in (Girko 1986). Here, 0 ≤ τ ≤ 1. Equivalently think of a log-gas
system {zj}nj=1 ⊂ C with joint pdf equal to (Ginibre 1965)

pτn (z1, . . . , zn) =
1

Z τn

∏
1≤j<k≤n

|zk − zj |2 exp

− 1

1− τ 2
n∑

j=1

(
|zj |2 − τ<z2j

) .

Question: How do the particles {zj}nj=1 behave for large n?
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The particles {zj}nj=1 from a DPP on C ' R2 (Di Francesco,... 1994),

Rτk (z1, . . . , zn) :=
n!

(n − k)!

∫
Cn−k

pτn (z1, . . . , zn)
n∏

j=k+1

d2zj = det
[
K τ
n (zi , zj)

]k
i,j=1

with correlation kernel

K τ
n (z ,w) =

e
− 1

2(1−τ2)
(|z|2−τ<z2+|w |2−τ<w2)

π
√

1− τ 2

n−1∑
k=0

τ k

2kk!
Hk

(
z√
2τ

)
Hk

(
w∗√

2τ

)
.

Now analyze Rk asymptotically in different scaling regimes:
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(A) The global eigenvalue regime: define the ESD

µX(s, t) =
1

n
#{1 ≤ j ≤ n, <zj ≤ s, =zj ≤ t}, s, t ∈ R

then, as n→∞, the random measure µX/
√
n converges almost surely

to the uniform distribution on the ellipse

Eτ :=
{
z ∈ C : (<z)2/(1 + τ)2 + (=z)2/(1− τ)2 < 1

}
,

(Crisanti, Sommers, Sompolinsky, Stein 1988)

ρ(z) =
1

π(1− τ2)
χEτ (z)d2z
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Figure 5: The elliptic law for 500 complex (rescaled) elliptic Ginibre matrices of

dimension 10× 10 in comparison with the ellipse boundary. We plot τ = 0, 0.25,

0.75 from left to right.
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(B) The local eigenvalue regime: One can look at

n→∞ : 1− τ > 0 uniformly in n strong non-Hermiticity

as done in (Forrester, Jankovici 1996). Or, more interestingly, one
can look at

n→∞ : τ ↑ 1 weak non-Hermiticity

as first investigated by (Fyodorov 1997). To this end, set

σn := nα
√

1− τn > 0, (τn)∞n=1 ⊂ [0, 1),

which will allow us to interpolate between GUE and GinUE statistics.
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We shall zoom in on the rightmost particle of the process {zj}nj=1

≡ {(xj , yj)}nj=1 ⊂ R2 (Bender 2009). Centering and scaling,

xj 7→ x̃j =
xj − cn
an

, yj 7→ ỹj =
yj
bn
, α =

1

6
,

accordingly, the eigenvalue process Pτn
n = {(x̃j , ỹj)}nj=1

(i) converges weakly to a Poisson process on R2 when σn →∞,

(ii) converges weakly to the interpolating Airy process on R2 when
σn → σ ∈ [0,∞).

The Poisson process is determined by the correlation kernel

Kp(z1, z2) = δz1z2
1√
π
e−x1−y

2
1 , zk = (xk , yk) ∈ R2
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and the interpolating Airy process by the correlation kernel

Kσ
Ai(z1, z2) =

1

σ
√
π

exp

[
− 1

2σ2
(y2

1 + y2
2 ) +

1

2
σ2(x1 + iy1 + x2 − iy2) +

1

6
σ6

]
×
∫ ∞
0

esσ
2

Ai

(
x1 + iy1 +

1

4
σ4 + s

)
Ai

(
x2 − iy2 +

1

4
σ4 + s

)
ds,

where we write zk = (xk , yk) ∈ R2 for shorthand. In addition

max
i=1,...,n

xj(X)⇒ cn + anBσ, σn → σ ∈ [0,∞)

where the cdf of Bσ equals (Bender 2009)

F (t, σ) := Prob(Bσ ≤ t) = det(I − Kσ
Ai �L2((t,∞)×R)).
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The problem and its solution

Gernot Akemann’s question

What can you say about F (t, σ)? Any Painlevé transcendents
floating around? What about asymptotics?

and our answer

B-Little 2022

For all (t, σ) ∈ R× [0,∞),

F (t, σ) = exp

[
−
∫ ∞
t

(s − t)

{∫ ∞
−∞

q2σ(s, λ)dνσ(λ)

}
ds

]
,

dνσ

dλ
=

1

σ
√
π
e−λ

2/σ2

where qσ(t, λ) solve the integro-differential Painlevé-II equation

∂2

∂t2
qσ(t, y) =

[
t + y + 2

∫ ∞
−∞

q2σ(t, λ)dνσ(λ)

]
qσ(t, y), qσ(t, y) ∼ Ai(t + y), t → +∞.
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The above shows in particular that

F (t, σ) = det(I − Kσ
Ai �L2((t,∞)×R)) = det(I − Lσ �L2(t,∞)),

where Lσ is trace class on L2(t,∞) with kernel

Lσ(x , y) =

∫ ∞
−∞

Φ
( z
σ

)
Ai(x + z)Ai(z + y) dz , (6)

with Φ(x) = 1√
π

∫ x

−∞ e−y
2
dy = 1− 1

2
erfc(x). Note that (6) is an

example of a so-called finite-temperature Airy kernel.
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Some details

Why a Painlevé connection? Put Jt := (t,∞)× R ⊂ R2.

Trace identities

We have for all n ∈ Z≥0 and (t, σ) ∈ R× [0,∞),

tr
L2(Jt)

(Kσ
Ai)

n = tr
L2(Jt)

K n
σ

where Kσ is trace class on L2(Jt) with kernel

Kσ(z1, z2) :=
1√
π
e−

1
2 y

2
1 KAi(x1 + σy1, x2 + σy2)e−

1
2 y

2
2 . (7)

The point is, (7) is an additive Hankel composition kernel in the
horizontal variable!
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Indeed, Kσ(z1, z2) is of the type

Kσ(z1, z2) =

∫ ∞
0

φσ(x1 + s, y1)φσ(s + x2, y2)ds

where

φσ(x , y) :=
1

π
1
4

e−
1
2
y2

Ai(x + σy).

Thus the methods of (Krajenbrink 2021) and (Bothner 2022) are
readily available in the analysis of F (t, σ) and the integro-differential
Painlevé-II equation appears quite naturally.
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Bulk excursions

How about (tail) asymptotics of F (t, σ)?

B-Little 2022

For any ε ∈ (0, 1), there exists t0 = t0(ε) such that

F (t, σ) = 1− A(t, σ)e−B(t,σ)
(
1 + o(1)

)
, (8)

for t ≥ t0 and 0 ≤ σ ≤ tε. Here,

A(t, σ) =
1

2πt
3
2

(√
4 + σ4t−1 − σ2t−

1
2

)− 5
2 (

4 + σ4t−1
)− 1

4 ,

B(t, σ) =
4

3
t

3
2

(
1 +

σ4

4t

) 3
2

− tσ2 − 1

6
σ6.

And beyond 0 ≤ σ ≤ tε, ε ∈ (0, 1)?
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B-Little 2022

There exist t0, σ0 > 0 such that

F (t, σ) = exp

[
σ

3
2C
( t
σ

)
+

1

4

∫ ∞
t
σ

{
d

du
D(u)

}2

du

] (
1 + o(1)

)
, (9)

for t ≥ t0 and σ ≥ σ0. Here,

C (y) =
1

π

∫ ∞
0

√
x ln Φ(x + y)dx , D(y) =

1

π

∫ ∞
0

1√
x

ln Φ(x + y)dx .

Note that (8) and (9) capture the full (t → +∞) crossover between

F2(t) = 1− 1

16πt
3
2

exp

[
−4

3
t

3
2

] (
1 + o(1)

)
; e−e

−t

= 1− e−t
(
1 + o(1)

)
The left tail (uniformly for all σ ∈ (0,∞)) is work in progress.
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Bulk excursions

Zooming in on bulk particles of the process {zj}nj=1 ≡ {(xj , yj)}nj=1

⊂ R2, gaps between consecutive xj , in the weak non-Hermiticity
limit, are governed by an interpolating sine process on R2 with kernel

Kσ
sin(z1, z2) =

1

σπ
3
2

exp

[
− 1

2σ2
(y2

1 + y2
2 )

] ∫ 1

0

e−(sσ)
2

cos
(
(z1 − z∗2 )s

)
ds,

where we write zk = xk + iyk for shorthand. In addition the limiting
gap function equals

H(t, σ) := det(I − Kσ
sin �L2((−t,t)×R)), t > 0, σ > 0,

thus generalizing the sine kernel determinant.
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Back to Painlevé

Gernot Akemann’s question

What can you say about H(t, σ)? Any Painlevé transcendents
floating around? What about asymptotics?

Trace identities

We have for all n ∈ Z≥0 and (t, σ) ∈ (0,∞)× (0,∞),

tr
L2(It)

(Kσ
sin)n = tr

L2(It)
Sn
σ, It := (−t, t)× R,

where Sσ is trace class on L2(It) with kernel

Sσ(z1, z2) :=
1√
π
e−

1
2 y

2
1 Ksin(x1 + σy1, x2 + σy2)e−

1
2 y

2
2 . (10)
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Based on the above trace identities one then proves

H(t, σ) = det(I − Kσ
sin �L2((−t,t)×R)) = det(I −Mσ �L2(−t,t))

where Mσ is trace class on L2(−t, t) with kernel

Mσ(x , y) =
t

2π

∫ ∞
−∞

Ψt/σ (z) cos
(
z(x − y)t

)
dz (11)

with Ψα(x) = π
(
Φ (α(x + 1))− Φ (α(x − 1))

)
. Note that (11) is an

example of a so-called finite-temperature sine kernel. In turn H(t, σ)
relates to an integro-differential Painlevé-V transcendent, (Bothner
2021, unpublished).
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Thank you very much for your attention!!!
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