Discrete flows of Goncharov-Kenyon integrable systems.

June 30, 2022

GK integrable systems.

Defined by a convex polygon Δ in the plane with integral vertices.

Phase space — pairs (C, \mathcal{L}) .

 $C \subset (\mathbb{C}^{\times})^2$ a planar curve of genus g with Δ as a Newton polygon.

 $\mathcal{L}\in \mathrm{Pic}^{g-1}(ar{\mathcal{C}})$ a line bundle of degree g-1 on the compactification $ar{\mathcal{C}}$ of $\mathcal{C}.$

Hamiltonians and Casimirs: forgetting \mathcal{L} .

Polygons and curves:

$$C = \{(\lambda, \mu) | P(\lambda, \mu) = \sum_{ij \in \Delta} c_{ij} \lambda^i \mu^j = 0\}$$

Points inside $\Delta \leftrightarrow$ basis of holomorphic forms:

$$ij \leftrightarrow \operatorname{Res} rac{\lambda^i \mu^j d\lambda d\mu}{\lambda \mu P(\lambda, \mu)}$$

(Side (a,b) of the polygon) $\leftrightarrow m = \gcd(a,b)$ points of $\bar{C} \setminus C$.

$$(a/m, b/m) \leftrightarrow (\operatorname{ord} \mu, -\operatorname{ord} \lambda)$$

 $P(\lambda,\mu)$ and $\alpha P(\beta\lambda,\gamma\mu)$ as well as $\lambda^e\mu^fP(\lambda^a\mu^b,\lambda^c\mu^d)$ with ad-bc=1 define the same curve. $g=(\text{genus of }C)=\text{number of points inside }\Delta$ $n=(\text{number of points of }\bar{C}\setminus C)=(\text{number of boundary points of }\Delta).$

For any side of Δ one can change coordinates and make it connect (0,0) and (k,0) and thus the polynomial becomes

$$P(\lambda,\mu) = P_0(\lambda) + \mu P_1(\lambda) + \cdots$$

Thus roots of P_0 are points at infinity.

Group \mathcal{G} of discrete flows.

 Div_0 — group of divisors of degree 0 supported on $\bar{C} \setminus C$. $\mathsf{div} \subset \mathsf{Div}_0$ — subgroup generated by (λ) and (μ) .

$$\mathcal{G} = \frac{\mathsf{Div}_0}{\mathsf{div}}.$$

Obviously acts on the phase space by $(C,\mathcal{L})\mapsto (C,\mathcal{L}+d).$

The group $\mathcal G$ does not depend on the curve $\mathcal C$ if the sides of Δ are of length 1 or if the Casimirs are fixed.

Let $A - n \times 2$ matrix given by the sides of the Δ .

$$\mathcal{G} = \mathbb{Z}^{n-1}/\mathrm{Im}\ A$$
.

$$\mathcal{G} = \frac{\mathbb{Z}\text{-valued function on the vertices of } \Delta}{\text{functions} \quad ai + bj + c}$$

Example: for $A(\lambda, \lambda^{-1}) \in \widehat{GL}(N)/H$. $f: A^{-}(\lambda^{-1})A^{+}(\lambda) \mapsto A^{+}(\lambda)A^{-}(\lambda(\lambda^{-1}))$.

Example: Poncelet porism. (Exactly 200 years old!)

Example: Poncelet

C — Pairs of points $(q_1,q_2)\in (Q_1,Q_2)$ such that the segment (q_1,q_2) is tangent to Q_2 .

 $\sigma_1(q_1,q_2)\mapsto (q_1',q_2),\ \sigma_2(q_1,q_2)\mapsto (q_1,q_2'),$

Coordinates:

$$P(\lambda, \mu) = \lambda^2 + \mu^2 - \lambda^2 \mu + b\lambda \mu + c\mu$$

$$\sigma_1:(\lambda,\mu)\mapsto(\lambda,\lambda^2\mu^{-1}) \text{ and } \sigma_2:(\lambda,\mu)\mapsto(\mu\lambda^{-1}\frac{\mu+c}{1+\mu},\mu)$$

Trajectory in the (λ, μ) -plane

Higher genus generalization:

Aim: Define involutions on the phase space of GK integrable system.

Fix the value of the Casimirs (coefficients in the corners of Δ). (Phase space)={Curve, divisor of degree g}=(collections of points $(\lambda_1, \mu_1), \ldots, (\lambda_g, \mu_g)$)

Claim: The curves containing the divisor and corresponding to the two sets of Casimirs intersect in 2g points.

Proof: Generic curves with the same Newton polygon Δ intersect in 2S = 2g + n - 2 points, where S is the area of Δ . But n - 2 points of these curves intersect at infinity.