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During the last decades string theory has provided several new results and

applications in various fields. These results are often a consequence of 
dualities:

matrix models

operator theory

geometry 

gravity 

string theory

gauge theory

Introduction and Motivation



Introduction and Motivation

Example 1: Mirror symmetry [Candelas et al]

Underlying intuition: string propagation in both spaces is identical.

Application: difficult computations on one manifold can be 
mapped into simpler problems on its mirror partner. 

manifold X manifold X̃



geometrical 

objects 

Z
dMe�NTr(V (M))algebraic 


objects 

Example 2:  [Witten, Kontsevich]

Intersection theory

on moduli space of

Riemann surfaces 

Matrix models

Another interesting aspect:

Introduction and Motivation

Geometry as emergent phenomena: guideline to study quantum modifications 
to classical geometrical structures



Introduction and Motivation

Example 3: String/Gauge dualities [’t Hooft]. 

String Theory on 
AdS background 


Conformal Field Theory 
on lower dimensional 
background

(dual) non-perturbative definition of string theory

 A well known example is the AdS/CFT correspondence [Maldacena]


                

 



Today’s Talk: Kyiv Formula and String Dualities 

String Model: Topological String Theory on Toric  CY3

Duality: Topological String / Spectral Theory of Quantum Curves

We will see: (1) Kyiv formula can be used to prove some aspects of this duality

(2) The interplays between these topics lead to new (conjectural but 
well tested) results in the context of q-difference Painlevé 
equations



In string theory point particles are replaced by strings. Formally this is modelled by 
considering maps from Riemann surfaces into a target manifold X. 

Topological String Theory 

Periodic trajectories 
generate genus g 
Riemann surfaces 

The details of this process 
are encoded in the genus g 
free energies       Fg

g2sF2∼
g = 2

string coupling 
constant



�

 X: target     

      manifold

ϕ : →Σg X

Σ2

Here X is a 3 dimensional complex 
manifold (Calabi-Yau manifold)

This is modelled by considering holomorphic maps from Riemann surfaces into a 
target manifold X. 



Topological string theory: the free energies encode the enumerative geometry of the target 

manifold X  


 

 are the Gromov-Witten (GW) invariants: “count” holomorphic mapsNd
g

�

ϕ : →Σg X

t: Kähler parameter of X

For the geometries X that we will be considering, these have been computed explicitly. 


[Aganagic-Klemm-Mariño-Vafa, Bershadsky-Cecotti-Ooguri-Vafa, Bouchard-Klemm-Mariño-Pasquetti, Kontsevich, 
Pandharipande-Thomas, … ] 

Fg(t) = ∑
d≥1

Nd
g e−dt



The (formal) partition function Z is obtained by summing over all genera

+ + + · · ·

Problem: Fg(t) ⇠ (2g � 2)! g � 1 zero radius of convergence
[Gross- Periwal, Shenker] 

We are missing some interesting (non-perturbative) phenomena

F = log Z = ∑
g≥0

g2g−2
s Fg(t) (1)



Question: is there a well-defined function  such that (1) is its series expansion? F = log Z

Our answer : =   spectral traces of suitably constructed quantum 

     mechanical operators on the real line

AG, Hatsuda, Mariño

This gives a new and exact relation between the spectral theory of certain quantum 
mechanical operators and enumerative geometry/topological string

 Topological String / Spectral Theory duality

Z



� Consider the target geometry X to be the 
canonical bundle over  also 
known as local 

ℂℙ1 × ℂℙ1
ℙ1 × ℙ1

Example:

Using the mirror symmetry we can relate such geometry to  [Batyrev, Hori-Vafa, Katz-Klemm-
Vafa, Dijkgraaf et al, . . . ]. 

This is the classical version of the operator

mex + ep + e−p + e−x + κ = 0

𝒪( ̂x, ̂p) = me ̂x + e− ̂x + e ̂p + e− ̂p [x̂, p̂] = iℏ

Terminology:  is the quantum mirror curve to local 𝒪 ℙ1 × ℙ1

(mirror curve to 

  local )ℙ1 × ℙ1

X



TrρN = ∑
n≥0

E−N
n < ∞

[AG-Hatsuda-Mariño

Kashaev-Mariño

Laptev-Schwimmer-Takhtajan]

Theorem:  The operator  has a discrete spectrum  and it is of trace class on ρ = 𝒪−1 {E−1
n }n≥0 L2(𝕀ℝ)

The kernel of the operator  is  ρ ρ(x, y) =
e−u(x,m,ℏ)−u(y,m,ℏ)

4π cosh ( x − y
2 )

where  is determined by the Faddeev quantum dilogarithm  u(x, m, ℏ) ϕb
[Kashaev-Mariño-Zakany]  

u(x, m, ℏ) = πxb/2 + log
ϕb(x − 1

4πb log m + ib/4)

ϕb(x + 1
4πb log m − ib/4)

+
1
8

log m ℏ = πb2



Fredholm determinant:             det (1 + κρ) = ∏
n≥0

(1 +
κ
En )

Fermionic spectral traces:        Z(N, ℏ) =
1

N! ∑
σ∈SN

(−1)sgn(σ) ∫ℝN

dx1⋯dxN

N

∏
i=1

ρ(xi, xσ(i))

Some definitions: 

Example:    or   Z(1,ℏ) = Trρ Z(2,ℏ) =
1
2 ((Trρ)2 − Trρ2)

We have: det (1 + κρ) = ∑
N≥0

Z(N, ℏ)κN

 : permutation of N elementsSN



Claim:  [AG-Hatsuda-Mariño] 

when  with   fixed  ℏ, N → ∞ t =
N
ℏlog Z(N, ℏ) = ∑

g≥0

ℏ2−2gFg(t) + 𝒪(e−ℏ)

Enumerative geometry / Topological string 
amplitudes on the target geometry X = 
canonical bundle over ℂℙ1 × ℂℙ1

X= canonical bundle 
over ℂℙ1 × ℂℙ1

quantum mechanical operator ρ

Z(N, ℏ) =
1

N! ∑
σ∈SN

(−1)sgn(σ) ∫ℝN

dx1⋯dxN

N

∏
i=1

ρ(xi, xσ(i))

Note: ℏ = g−1
s

�

quantization


of mirror curve



Topological string/ 
Enumerative geometry 

�

Spectral theory of a class of  
quantum mechanical operators  
called quantum mirror curves  [AG-Hatsuda-Mariño]

ρ

gs
ℏ−1

E0

E1

E2

⋮

string perturbation theory 

  small                      ≡ gs

non-pert effects 

     large                    ≡ gs

 [AG-Codesido-Mariño]

non-pert effects in quantum 
mechanics  large≡ ℏ

WKB method in quantum 
mechanics  small≡ ℏ

Exact analytic solution for spectral theory of 
difference equations (relativistic integrale systems) 



To make contact with Painlevé equations and Kyiv construction it is useful to formulate our 
duality at the level of the Fredholm determinant.

Example: consider                                  and set  . Then we haveℏ = 2π, m = 1

det (1 + κρ) ∼ θ3 (ξ −
1
12

, τ)

4.1 ABJM with k = 2

As in the previous section, let us start with the simplest case, namely ABJM theory with k = 2.
In order to evaluate ⌅(µ, k = 2), we should use the formula (2.21), together with the explicit
expressions (3.23), (3.25) for the modified grand potential. Notice that the instanton part of
(3.23) depends on µ through z, so it is left invariant by the shift

µ ! µ + 2⇡in, n 2 Z, (4.1)

Therefore, the shift only a↵ects µe↵ . An easy calculation shows that

exp [J(µ + 2⇡in, 2)] = exp (J(µ, 2)) exp


⇡in2⌧ + 2⇡in

✓
⇠ � 1

12

◆�
, (4.2)

where

⌧ =
2i

⇡
@2
t F0 = � i

⇡

$0

2(z)

$0

1(z)
(4.3)

and

⇠ =
1

2⇡2

�
t@2

t F0 � @tF0
�
. (4.4)

In (4.3), $1,2(z) are the periods of local P1 ⇥ P1, and they are defined in (A.7). Notice that in
calculating J(µ + 2⇡in, 2) one obtains a cubic term in n3, but in deriving (4.2) we used that

exp

✓
�8⇡n3i

3

◆
= exp

✓
�2⇡ni

3

◆
, n 2 Z. (4.5)

We now recognize the form of the second factor in (4.2): it is the standard summand of
a Jacobi theta function. Of course, in order for this interpretation to be correct, one needs
Im(⌧) > 0. But the ⌧ appearing here is (up to an overall factor of 2 and an integer shift) the
modular parameter of the spectral curve describing the planar solution of ABJM theory [5].
Therefore, the resulting theta function is well-defined, and we finally obtain:

⌅(µ, k = 2) = exp (J(µ, 2)) #3

✓
⇠ � 1

12
, ⌧

◆
, (4.6)

where #3(v, ⌧) is the Jacobi theta function, defined in (B.1).
The function (4.6) is very similar to the “non-perturbative partition function” Z↵,�(⌃) in-

troduced in [28, 29] and further studied in [30]. Let us briefly review its construction, following
the notations of [30] (see also [52] for an overview in the context of matrix model asymptotics).
The function Z↵,�(⌃) is canonically associated to a spectral curve ⌃, together with a choice of
meromorphic di↵erential

� = y(x)dx. (4.7)

The basic ingredients in constructing this function are the free energies Fg, determined by the
pair (⌃, �) via special geometry and the topological recursion of [53] (we use a boldface notation
since these free energies di↵er from the ones used above in overall normalizations). Let us focus
on the case in which ⌃ has genus one, which is the relevant one for us. Given two symplectically
conjugated cycles on ⌃, A, B, one defines the genus zero free energy F0(✏) from the standard
relationships in special geometry,

✏ =
1

2⇡i

I

A

�, F
0

0 =

I

B

�, (4.8)
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t = t() = (quantum) mirror mapwhere and with

� genus zero GW


invariants on local 

F0 :
ℙ1 × ℙ1

We can compute the Fredholm determinant of  using topological string/enumerative geometryρ

Claim:  [AG-Hatsuda-Mariño] 

ρ(x, y) =
e−u(x,m,ℏ)−u(y,m,ℏ)

4π cosh ( x − y
2 )



det (1 + κρ) = ∑
n∈ℕ

exp [J(μ + 2πin, ℏ, m)], κ = eμ

 topological string grand potentialJ :

More generically the expression has the following form

Next: it exists a particular limit where our duality makes contact with well known 
statements in theory of Painlevé equations —> proof in this particular limit.

[Bonelli-AG-Tanzini]

This is a particular combination of 
topological string free energy and 
“refined” topological string free energy 
in the Nekrasov-Shatashvili limit



Painlevé equations

VI :
d2q
dt2

=
1
2 ( 1

q
+

1
q − 1

+
1

q − t ) ( dq
dt )

2

− ( 1
t

+
1

t − 1
+

1
q − t ) dq

dt
+

2q(q − 1)(q − t)
t2(t − 1)2 (α+

βt
q2

+
γ (t − 1)
(q − 1)2

+
δt(t − 1)
(q − t)2 )

V :
d2q
dt2

= ( 1
2q

+
1

q − 1 ) ( dq
dt )

2

−
1
t

dq
dt

+
(q − 1)2

t2 (αq +
β
q ) +

γq
t

−
1
2

q(q + 1)
q − 1

I :
d2q
dt2

= 6q2 + t

II :
d2q
dt2

= 2q3 + tq+α

IV :
d2q
dt2

=
1

2q ( dq
dt )

2

+
3
2

q3 + 4tq2 + 2(t2−α)q +
β
q

III1 :
d2q
dt2

=
1
q ( dq

dt )
2

−
1
t

dq
dt

+
q2 (α+4q)

4t2
+

β
4t

−
1
q

III2 :
d2q
dt2

=
1
q ( dq

dt )
2

−
1
t

dq
dt

+
2q2

t2
+

α
4t

−
1
q

III3 :
d2q
dt2

=
1
q ( dq

dt )
2

−
1
t

dq
dt

+
2q2

t2
−

2
t



Painlevé equations can be organised into a confluence diagram

VI V III1

IV

III2 III3

III

III2 :
d2q
dt2

=
1
q ( dq

dt )
2

−
1
t

dq
dt

+
2q2

t2
+

α
4t

−
1
q

Example:

t = sϵ

α = − 4/ϵ

ϵ → 0III3 :
d2q
ds2

=
1
q ( dq

ds )
2

−
1
s

dq
ds

+
2q2

s2
−

2
s



Recently there has been an important progress in constructing generic solutions to such 


equations in an explicit form by using the Nekrasov partition function of a corresponding  


Seiberg-Witten theory

VI V III1

IV

III2 III3

III

Nf = 4 Nf = 3 Nf = 1 Nf = 0

H1H2 H0

Nf = 2

Painlevé equations four dimensional Seiberg-Witten theory

Painlevé free parameters                masses of hypermultiplets/mass deformations ∼

time                gauge coupling                    ∼ e−1/g2
YM

[Gamayun-Iorgov-Lisovyy]

See Y. Yamada’s talk



Theorem:  [Gamayun,Iorgov,Lisovyy - Its, Lisovyy, Tykhyy- Iorgov, Lisovyy, Teschner-  Bershtein,Shchechkin  -     
Gavrylenko,Lisovyy] 

solves Painlevé III3

with initial conditions specified by  and .σ η

q(t, σ, η) = te−2πiη τGIL(t, σ, η)

τGIL(t, σ + 1
2 , η)

2

III3 :
d2q
dt2

=
1
q ( dq

dt )
2

−
1
t

dq
dt

+
2q2

t2
−

2
t

Kyiv Formula: an example PIII3



τGIL(t, σ, η) = ∑
n∈ℕ

e2πinηZ(σ + n, t)

where Z(σ, t) = tσ2 ℬ(σ, t)
G(1 + 2σ)G(1 − 2σ)

ℬ(σ, t) = Nekrasov instanton function for the pure 4 dim   SYM theory 
(in the self-dual phase )— also called  theory

SU(2) 𝒩 = 2
ϵ1 = − ϵ2 = ϵ Nf = 0

with

ℬ(σ, t) = 1 + ∑
n≥1

cn(σ)tn = 1 +
t

2σ2
+

8σ2 + 1
4σ2(4σ2 − 1)

t2 + ⋯

gauge theory language:   : vev of scalars in vector multiplet σ = a /ϵ
 : instanton counting parametert = Λ4/ϵ4

Kyiv Formula: an example PIII3



What does this have to do with topological string and spectral theory?

Reminder:

∑
n∈ℕ

exp [J(μ + 2πin, b, m)] = det (1 + κρ), κ = eμ

 topological string grand 
potential (GW invariants)
J :

enumerative 
geometry /

GW invariants

�

spectral theory of quantum

mechanical operators on 

L2(ℝ)

ρ(x, y) =
e−u(x,b,m)−u(y,b,m)

4π cosh ( x − y
2 )



On the spectral theory side:

Set   ,    log m =
iσ
2π

+ b2 log(b2/t) log κ =
b2

2
log(b2/t) + log(1 + e iσ

2π)

Take b → ∞

det (1 + κρ) b→∞ det (1 + cos(σ)ρIII)

u(x, b, m) = −
xb2

4
− log

ϕb ( bx
2π − 1

4πb log m + ib/4)
ϕb ( bx

2π + 1
4πb log m − ib/4)

+
1
8

log mρ(x, y) =
e−u(x,b,m)−u(y,b,m)

4π cosh ( x − y
2 )

Bonelli-AG-Tanzini

ℏ = πb2



u(x, b, m) = −
xb2

4
− log

ϕb ( bx
2π − 1

4πb log m + ib/4)
ϕb ( bx

2π + 1
4πb log m − ib/4)

+
1
8

log m

On the spectral theory side:

det (1 + κρ) b→∞ det (1 + cos(σ)ρIII)We have:

where ρIII(x, y) =
e−t1/4 cosh x−t1/4 cosh y

4π cosh ( x − y
2 )

It was proven by  [McCoy et al, Widom, …]  that   solves Painlevé  with a particular 
choice of initial conditions. 

det (1 + cos(σ)ρIII) III3

Bonelli-AG-Tanzini

ρ(x, y) =
e−u(x,b,m)−u(y,b,m)

4π cosh ( x − y
2 )



What does this have to do with topological string and spectral theory?

Reminder:

∑
n∈ℕ

exp [J(μ + 2πin, b, m)] = det (1 + κρ), κ = eμ

 topological string grand 
potential (GW invariants)
J :

enumerative 
geometry /

GW invariants

�

spectral theory of quantum

mechanical operators on 

L2(ℝ)

ρ(x, y) =
e−u(x,b,m)−u(y,b,m)

4π cosh ( x − y
2 )



On the enumerative geometry side:

∑
n∈ℕ

exp [J(μ + 2πin, b, m)] → τGIL(t, σ, η = 0)

By using recent results of [Lisovyy et al, Its 
et al,  Bershtein et al] it follows that  
solves Painlevé  with same initial 
conditions.

τ
III3

Bonelli-AG-Tanzini



∑
n∈ℕ

Z(σ + n, t) = det (1 + cos(σ)ρIII) Painlevé  equationIII3

topological string on target 
geometry X= canonical 
bundle over ℂℙ1 × ℂℙ1

spectral theory of

ρ(x, y) =
e−u(x,m,b)−u(y,m,b)

4π cosh ( x − y
2 )

�

E0

E1

E2

⋮

This is a small piece of a bigger picture….



q- difference Painlevé equations Topological string on toric geometries

VI V III1

IV

III2 III3

III

Nf = 4 Nf = 3 Nf = 1 Nf = 0

H1H2 H0

Nf = 2

· · ·
· · ·qPIII3qPIII2qPIII1

qPVqPVI

· · ·
· · ·

Painlevé equations 4d SU(2) Seiberg-Witten-Nekrasov theory

Today’s talk

Kyiv formula



Today’s Plan  

String Model: Topological String Theory on Toric  fold CY3

Duality: Topological String / Spectral Theory Duality

We will see: (1) Kyiv formula can be used to prove some aspects of this duality

(2) This interplays lead to new (conjectural but well tested) results in 
the context of q-difference Painlevé equations



· · ·
· · ·qPIII3qPIII2qPIII1

qPVqPVI

· · ·
· · ·

Claim: Fredholm determinant of quantum mirror curves to such geometries

solves a corresponding q-Painlevé equation

[Bonelli, AG, Tanzini]



In the example of local P1xP1 the relevant operator   isρ

ℏ = πb2

ρ(x, y) =
e−u(x,m,ℏ)−u(y,m,ℏ)

4π cosh ( x − y
2 )

u(x, b, m) = −
xb2

4
− log

ϕb ( bx
2π − 1

4πb log m + ib/4)
ϕb ( bx

2π + 1
4πb log m − ib/4)

+
1
8

log m

det (1 + κρ)
Its Fredholm determinant

· · ·
· · ·qPIII3qPIII2qPIII1

qPVqPVI

· · ·
· · ·

Example: 

 local ℙ1 × ℙ1

solves q-Painlevé III3



The Fredholm determinant   τq(κ, ξ) ∼ det (1 + κ )

where ,   , solves q-Painlevé   q = e4π2
ℏ ξ = log m III3

τq (−κ, ξ −
4π2i

ℏ ) τq (−κ, ξ +
4π2i

ℏ ) (1 + e−ξ/2) = τq(κ, ξ)2 + e−ξ/2τq(−κ, ξ)2

ρ

· · ·
· · ·qPIII3qPIII2qPIII1

qPVqPVI

· · ·
· · ·

Example: 

 local ℂℙ1 × ℂℙ1

 provides a generalisation of the  McCoy et at solution for q-Painleve III3det (1 + κρ) PIII3



Using the interplay between the topological string/spectral theory 
duality and Kyiv formula we can construct geometrically new 
Fredholm determinant solutions to q-difference Painlevé 
equations



Another problem in which this connection is useful is in the study of long-
distance expansion of q-Painlevé equations

. . . let us make one step back to Painlevé equation . . .

WIP with P.Gavrylenko and Q. Hao



PIII3 tau function at short-distance (small t)

τGIL(t, σ, η) = ∑
n∈ℕ

e2πinηZ(σ + n, t)

Z(σ, t) = tσ2 ℬ(σ, t)
G(1 + 2σ)G(1 − 2σ)

ℬ(σ, t) = Nekrasov instanton function for the pure 4 dim   SYM theory 
(in the self-dual phase )— also called  theory

SU(2) 𝒩 = 2
ϵ1 = − ϵ2 = ϵ Nf = 0

ℬ(σ, t) = 1 + ∑
n≥1

cn(σ)tn = 1 +
t

2σ2
+

8σ2 + 1
4σ2(4σ2 − 1)

t2 + ⋯

This construction was generalised to q-Painleve first by Bershtein and Shchechkin

Gamayun,Iorgov,Lisovyy



What about expansion around ?t = ∞

Can we generalise this to q-Painleve?  Yes, on the topological string this is related to the 
expansion around the conifold point

WIP with P.Gavrylenko and Q. Hao

τ∞(ρ, ν, r) = e
r2
16r

1
4 ∑

n∈ℤ

C(ν + in)e4πinρe(ν+in)rr
1
2 (ν+in)2ℬ∞(ν + in, r)

C(ν) = G(1 + iν)2ν2e
iπν2

4 (2π)− iν
2 , t = 2−12r4

ℬ∞(ν, r) = 1 +
ν(2ν2 + 1)

8r
+

ν2(4ν4 − 16ν2 − 11)
128r2

+ . . .

Its, Lisovyy, Tykhyy- Bonelli, Lisovyy, Maruyoshi, Sciarappa, Tanzini -


Gavrylenko, Marshakov,Stoyan - …



Summary & Conclusions

Topological String

Theory 

Spectral Theory of 
quantum mirror curves

(q-) Painlevé equations 

We have three main players

… and many connections among them leading to new and interesting results



Thank you!


