Kyiv Formula and String Dualities

Alba Grassi

) SwissMAP

CUIN Tevsemasstrms
E R W’ National Centre of Competence in Research
(i ) 2% UNIVERSITE
ENGNF -
NLA R s oomon %% DE GENEVE




Mostly based on work (done and in progress) in collaboration with

G.Bonelli

S J
'\
\" )
ISR “\m\wk\

Y.Hatsuda M.Marino A.Tanzini



Introduction and Motivation

During the last decades string theory has provided several new results and
applications in various fields. These results are often a consequence of
dualities:

matrix models geometry

gauge theory e gravity

operator theory string theory



Introduction and Motivation

Example 1: Mirror symmetry [Candelas et al]

manifold X <« - manifold X

Underlying intuition: string propagation in both spaces is identical.

= Application: difficult computations on one manifold can be
mapped into simpler problems on its mirror partner.



Introduction and Motivation

Another interesting aspect:

| o/

geometrical algebraic / A0 e~ NT(V(21))
objects +t+—> objects

Example 2: [witten, Kontsevich]

Intersection theory
on moduli space of
Riemann surfaces

€ i > Matrlx models

—» Geometry as emergent phenomena: guideline to study quantum modifications
to classical geometrical structures



Introduction and Motivation

Example 3: String/Gauge dualities ['t Hooft].

A well known example is the AdS/CFT correspondence [Maldacena]

String Theory on Conformal Field Theory
AdS background € > on lower dimensional
background

ﬁ é'SA-\-\

—

=>» (dual) non-perturbative definition of string theory



Today’s Talk: Kyiv Formula and String Dualities

String Model: Topological String Theory on Toric CY 5

Duality: Topological String / Spectral Theory of Quantum Curves

We will see: (1) Kyiv formula can be used to prove some aspects of this duality

(2) The interplays between these topics lead to new (conjectural but
well tested) results in the context of g-difference Painlevé
equations



Topological String Theory

In string theory point particles are replaced by . Formally this is modelled by

considering maps from Riemann surfaces into a target manifold X.

/

Periodic trajectories
generate genus g
Riemann surfaces

The details of this process
are encoded in the genus g
free energies Fg

~9§F2

l

string coupling
constant




This is modelled by considering holomorphic maps from Riemann surfaces into a

target manifold X.

-
> X: target
manifold

Here X is a 3 dimensional complex
manifold (Calabi-Yau manifold)



Topological string theory: the free energies encode the enumerative geometry of the target

manifold X
— d —dt
Fy(1) = 2 Nd e
d>1
Ng are the Gromov-Witten (GW) invariants: “count” holomorphic maps ¢ : —
¢ ..
— - t: Kahler parameter of X

For the geometries X that we will be considering, these have been computed explicitly.

[Aganagic-Klemm-Marifio-Vafa, Bershadsky-Cecotti-Ooguri-Vafa, Bouchard-Klemm-Marifio-Pasquetti, Kontsevich,
Pandharipande-Thomas, ... ]

X



The (formal) partition function Z is obtained by summing over all genera

F=logZ = 2 8782 (1) (1)
>0

O+ e+

Problem: F, ~(29—2)! g>1 —> zero radius of convergence

[Gross- Periwal, Shenker]

—> We are missing some interesting (non-perturbative) phenomena



Question: is there a well-defined function ' = log Z such that (1) is its series expansion?

Our answer : / = spectral traces of suitably constructed quantum

mechanical operators on the real line
AG, Hatsuda, Marino

This gives a new and exact relation between the spectral theory of certain quantum
mechanical operators and enumerative geometry/topological string

—>» Topological String / Spectral Theory duality



Example:

Consider the target geometry X to be the
canonical bundle over CP{ X C[P; also
known as local [P X [P,

Using the mirror symmetry we can relate such geometry to [Batyrev, Hori-Vafa, Katz-Klemm-
Vafa, Dijkgraaf et al, . . . ].

me'+el+eP+e+x=0 (mirror curve to
T local P, X P))
This is the classical version of the operator

OR,p)=me* +e*+el+e? [ pl=in

Terminology: O is the quantum mirror curve to local P{ X P,



Theorem: The operator p = 0~! has a discrete spectrum {E;'},50 and it is of trace class on L*(IR)

[AG-Hatsuda-Marino
Kashaev-Marino

Y
Laptev-Schwimmer-Takhtajan
ptev wi jan] TrpN=ZEn_N<oo

n>0

e—u(x,m,h)—u(y,m,h)

47 cosh (x;y>

The kernel of the operator p is p(x,y) =

where u(x, m, ) is determined by the Faddeev quantum dilogarithm ¢,

[Kashaev-Marino-Zakany]

Pp(x — 4_119 logm +ib/4) 1
u(x, m, h) = nxb/2 + log jlt +—logm h = ab?
Pp(x + yerS logm — ib/4)




Some definitions:

K
Fredholm determinant: det (1 + Kp) — H <1 + E)

n>0 n

1 N
Fermionic spectral traces: Z(N, h) = I 2 (—I)Sgn(“)J Ndxl---deH P (X X))

Sy : permutation of N elements

1
Example: Z(1,h) = Trp or Z(2,h) = 5 ((Trp)* — Trp?)

We have: det (1 + Kp) = Z Z(N, h)xN
N>0



= ' uantization _
%= canonical bundle - > quantum mechanical operator p
over CP, x CP, of mirror curve

1 N
ZN, 1) = — D (—1yen )JRN dxl'"degp(xi’ Xo(i)

" 0ESy
Claim: [AG-Hatsuda-Marifio]

log Z(N, h) = 2 hz_ngg(t) + O(e™™) when A, N = oo with ¢ = % fixed
>0

v
Enumerative geometry / Topological string

amplitudes on the target geometry X =
canonical bundle over CP; X CP;

Note: 2 = g



Topological string/
Enumerative geometry

¢
= T T e

Es

string perturbation theory

g, small

non-pert effects

= g, large

D ———— Spectral theory of a class of

guantum mechanical operators
[AG-Hatsuda-Marino] called quantum mirror curves

[AG-Codesido-Marino]

non-pert effects in quantum

mechanics = 7 large

WKB method in guantum

mechanics = 7% small

—p Exact analytic solution for spectral theory of
difference equations (relativistic integrale systems)



To make contact with Painlevé equations and Kyiv construction it is useful to formulate our

duality at the level of the Fredholm determinant.

Claim: [AG-Hatsuda-Marifio]

We can compute the Fredholm determinant of p using topological string/enumerative geometry

o=t m ) =u(y,m,h)

) and set i = 2%, m = 1. Then we have

Example: consider o@.y) =

X —

47 cosh < >

1
det (1+xp) ~ 0, (5—E,T>

1 21
where § = 53 (tatQFo - 0, Fy) and 1 = —1(‘9752}7’0 with ¢ = t(k) = (quantum) mirror map
7
Fy : genus zero GW "

invariants on local P; X [P,



More generically the expression has the following form

det (1+xp) = ) exp [J(u + 2min, h,m)|,  x=e¥

neN

J : topological string grand potential
This is a particular combination of
topological string free energy and
“refined” topological string free energy
in the Nekrasov-Shatashvili limit

Next: it exists a particular limit where our duality makes contact with well known
statements in theory of Painlevé equations —> proof in this particular limit.

[Bonelli-AG-Tanzini]



I, :

I, :

11, :

II:

Painlevé equations
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Painlevé equations can be organised into a confluence diagram

VI — v — III » [1I, — 1115
| l
IV — 11 > 1

Example:

a=—4/¢
d>¢ 1 [(dg\*> 1dg 2¢*> 2
I, - —q=—<—q> B e S €=




Recently there has been an important progress in constructing generic solutions to such
equations in an explicit form by using the Nekrasov partition function of a corresponding

Seiberg-Witten theory [Gamayun-lorgov-Lisovyy]

Painleve equations four dimensional Seiberg-Witten theory
VI —> v — 11, — 1, — 1II; Ny=4 —» N;j=3—p Nj=2 —» Nj=1—p N;=0
IV —5 ] —— T Hy — H, — Ho
Painlevé free parameters ~ masses of hypermultiplets/mass deformations
time ~ i —1/81%1\/1
gauge coupling e

See Y. Yamada’s talk



Kyiv Formula: an example Plll;

Theorem: [Gamayun,lorgov,Lisovyy - Its, Lisovyy, Tykhyy- lorgov, Lisovyy, Teschner- Bershtein,Shchechkin -
Gavrylenko,Lisovyy]

\ 2
(¢, 0,1)

OIL(r, 6 + =,
A 21

q(t, 0,n) = /te= 27

solves Painleveé 111,

dt

111, :
t dt 12 t

g 1 (dg\° 1ldq 2¢* 2
dr? ¢

with initial conditions specified by ¢ and 7.



where

with

Kyiv Formula: an example Plll;

9t 0,m) = Z e’™"7Z(¢ + n, 1)

neN

A(o,1)

Z(c.1) = t°
G(1 + 20)G(1 — 20)

HB(o,t) = Nekrasov instanton function for the pure 4 dim SU(2) /= 2 SYM theory
(in the self-dual phase €; = — €, = €)— also called N; = 0 theory

N 86 + 1 e
2062  406%(40%-1)

B(o. ) =1+ ) c,o)"=1+

n>1

gauge theory language: o = a/e€ : vev of scalars in vector multiplet

t = A*/e* - instanton counting parameter



What does this have to do with topological string and spectral theory?

Reminder:
enumerative
geometry / € - > spectral theory of quantum
GW invariants mechanical operators on
L*(R)
/_(b\ e—u(x,b,m)—u(y,b,m)
px,y) =

47 cosh (x;y>

J : topological string grand
potential (GW invariants)

|l
@
=

Z exp [J(,u + 27in, b, m)] = det (1 + Kp), K

neN



Bonelli-AG-Tanzini

On the speciral theory side:

—u(x,b,m)—u(y,b,m) oy, <£ L logm + ib/4>

c sz 2 47b
px,y) = u(x,b,m):—T—log‘ — ‘ + —logm
47tCOSh<x;y> ¢b<2—ﬂ+4—7wlogm—ib/4>
10 2 2 b’ 2 o
Set logm = > + b~ log(b-/t) , logk = 710g(b /t) + log(1 + e?r) # = b2
T

Take b — o

det (1 + xp) = det (1 + cos(o)pp)



On the speciral theory side:

e—u(x,b,m)—u(y,b,m)

px,y) =

47 cosh (x;y>

We have:  det (1 + Kp)

Bonelli-AG-Tanzini

b2
M(X, b, I’I’l) = — T — lOg

bx 1 .
¢b<2—ﬂ—wlogm+lb/4> ‘ . 1 1
— logm

e (% + L logm - ib/4)

b— 00

— det (1 + cos(a)pm)

/4
e 4

47 cosh <x;y>

1/4

cosh x—t""" cosh y

where  pp(x,y) =

It was proven by [McCoy et al, Widom, ...] that det (1 + cos(e)py;) solves Painlevé 111; with a particular

choice of initial conditions.



What does this have to do with topological string and spectral theory?

Reminder:
enumerative
geometry / € - > spectral theory of quantum
GW invariants mechanical operators on
L*(R)
/_(b\ e—u(x,b,m)—u(y,b,m)
px,y) =

47 cosh (x;y>

J : topological string grand
potential (GW invariants)

|l
@
=

Z exp [J(,u + 27in, b, m)] = det (1 + Kp), K

neN



Bonelli-AG-Tanzini

On the enumerative geometry side:

Y exp [J(u+2zin,b.m)] - (0,0 =0)

neN

By using recent results of [Lisovyy et al, Its
et al, Bershtein et al] it follows that 7
solves Painlevé 111; with same initial
conditions.



topological string on target
POIed J 9 spectral theory of

geometry X= canonical <> G b))
bundle over CP X CP; plx,y) = —
47 cosh < 4 )
2
¢ .
e :
E,
— El
Eo

2 Z(c + n,t) = det (1 + COS(G)pm) Painlevé 111, equation
neN

This is a small piece of a bigger picture....



g- difference Painlevé equations Topological string on toric geometries

/V

-« qPvi5 qPv qPrr, —» qP1112—>qP1113 s —> §§| —> % — é;_’é>

Painlevé equations 4d SU(2) Seiberg-Witten-Nekrasov theory

VI —> v —>IHl—>IH2—® Nf:4_.Nf—3_.Nf:2_.Nf=1

V —» [ — 1 Kyiv formula Hy — H; — Ho

Today’s talk



Today’s Plan

String Model: Topological String Theory on Toric CY 5 fold

Duality: Topological String / Spectral Theory Duality

We will see: (1) Kyiv formula can be used to prove some aspects of this duality

(2) This interplays lead to new (conjectural but well tested) results in
the context of g-difference Painlevé equations



—
o o —> qu1—> qPV —> qul —> qPHI2—> qP1113 c e —p §§ — % é;—bé

Claim: Fredholm determinant of quantum mirror curves to such geometries
solves a corresponding g-Painlevé equation

[Bonelli, AG, Tanzini]



Example:

.»quI»qPV_,qpml_.quQ ce e BN % —> é;—>é>

local P X P,

In the example of local P1xP1 the relevant operator p is

e uCxm ) —u(ym.h) NE o, (% - ﬁ log m + ib/4> i
px,y) = —y u(x,b,m) = ——— —log ‘ + —logm
4z cosh ( > ) ; by <12’—ﬂ +——logm — ib/4>
h = nb>

Its Fredholm determinant

det (1 + Kp)

solves g-Painlevé 111,



Example:

/ e o o /V
.—quVI—p qPV—quHIl—bClPIIIQ I G N —_— % > é;qé>

local CP; X CP,

The Fredholm determinant 7, (x, &) ~ det(l +« p)

7[2
where g = 647, ¢ =logm, solves g-Painlevé 111,

2: 9.
’ <_K’ - 4]7; 1 ) K <_K, o 47/’2 1> (1+e77) = 7,6 + ™ (=x. &)

—> det (1 + Kp) provides a generalisation of the PIII; McCoy et at solution for g-Painleve 1113



-9 Using the interplay between the topological string/spectral theory
duality and Kyiv formula we can construct geometrically new
Fredholm determinant solutions to g-difference Painlevé

equations



Another problem in which this connection is useful is in the study of long-
distance expansion of g-Painlevé equations

WIP with P.Gavrylenko and Q. Hao

.. . let us make one step back to Painlevé equation . . .



PIII3 tau function at short-distance (small 1)

TGIL(t, 0,1) = Z 62”1”’72(0 +n,t)

neN

Gamayun,lorgov,Lisovyy
AB(o,1)

G(1 +20)G(1 - 20)

Z(6.f) = t°

H(o,t) = Nekrasov instanton function for the pure 4 dim SU(2) A = 2 SYM theory
(in the self-dual phase €; = — €, = €)— also called N, = 0 theory

t 862 + 1
B, =1+ Y (" =1 +——+—

+ t?
202  406%(40%2-1)

n>1

This construction was generalised to g-Painleve first by Bershtein and Shchechkin



What about expansion around 1 = c0?

2 . . .
t®(p,v,1) = Ty 2 C(v + in)e*ine g WwHinrz(v+in)® ggoo(y, 4 jp 1)

nez

2 izwz

C) = G(1 + i)Y e T (2n)"7, t=2"1%%

U2+ 1 240% — 1602 — 11
o, =14 XD el 21D
87 12872

Its, Lisovyy, Tykhyy- Bonelli, Lisovyy, Maruyoshi, Sciarappa, Tanzini -

Gavrylenko, Marshakov,Stoyan - ...

Can we generalise this to g-Painleve? Yes, on the topological string this is related to the
expansion around the conifold point

WIP with P.Gavrylenko and Q. Hao



Summary & Conclusions

We have three main players

Topological String Spectral Theory of
Theory guantum mirror curves
(g-) Painlevé eque@

... and many connections among them leading to new and interesting results




Thank you!



