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Overview

e Delay (or differential-delay) equations arise in many important applications.

e Several differential-delay equations have been obtained as similarity reductions of

integrable equations.

e In 1992, Quispel, Capel and Sahadevan obtained the equation
w(2)w(z+1) —w(z —1)] = aw(z) + bw'(2).
e Delay equations from Backlund transformations of Painlevé equations.

e How can we find more examples of such equations?

e [s there an analogue of the QRT system?



Some delay Painlevé equations in the literature

e Quispel, Capel and Sahadevan (1992) obtained the equation
au(z) +bu'(z) = u(z) [u(z + 1) — u(z — 1)]
as a symmetry reduction of the Manakov/Kac-van Moebeke equation.

e Grammaticos, Ramani and Moreira (1993) studied singularity confinement for delay

equations of bi- Riccati-type.
e Levi and Winternitz (2007) considered symmetry reductions of Toda.

e Joshi (2009) used a direct method to find the following reduction of Toda:
au(z) +u'(z) = u(2) [v(z + 1) — v(2)],
av(z) +v'(z) =2 [u(z)® —v(z — 1)%] +¢,

e Fedorov, Gordoa and Pickering (2014) considered hierarchies of delay equations.



Two types of delay equations

e Fquations for which we can solve for the highest /lowest shift, e.g.,
Alu, v u(z + Du(z — 1) + B(u, u)u(z + 1) + Clu, v )u(z — 1) + D(u,u’) = 0,
where u = u(z).
e Standard confinement-type arguments can be applied to these equations.

e Bi-Riccati:
U(2)'AU(z + 1) =0,

where U = (u/ u* u 1)" and A is a constant 4 x 4 matrix.



Analogues of constants and periodic functions

Consider the constant coefficient homogeneous differential-delay equation
u(z+1) —u(z) + ku'(z) = 0. (1)

We see that u(z) = ¢* is a solution if and only if e* — 1 + kXA = 0. This characteristic
equation has a countable infinity of solutions A,,, n € Z. So for suitable constants c,,

equation (1) has the solution

0.@)

u(z) = Z Cpn exp(An2). (2)

n=—00
Note that when k& = 0, we can index the A,’s such that A, = 2min and the expansion

(2) becomes the Fourier series of the period one function w.



Discrete Painlevé equations as Backlund transformations

e This example is from Fokas, Grammaticos and Ramani.
e The third Painlevé equation with v =0,0 = —a =1 is

,  woooow 1, 1

w' = S - ) - (3)

w X X w

where [ is a parameter.

o If w = w(x, B) is a solution of equation (3) then
r(l+w'(x; )  B+]1

( w(:lf;f)2 | w(w; B)’
| ozl —w'(xp)  B-1
w(z: f—2) = eI Tk (5)

are also solutions with 3 replaced by 8 + 2 and 5 — 2 respectively.

w(x; f+2) = and (4)

e Adding equations (4) and (5) gives
2T 23

wie S+ 2) +wlef=2) = w(z; B2 wlz; B)




Delay Painlevé equations from Backlund transformations

e Two BTs for Py (with v =0, = —a = 1) are

2(1+we(x;8))  B+1
wiwif—2) = ’w(xsﬁ)é w(w; B) )

w(x; f+2) = and (6)

e Taking the difference (6)—(7) gives
20w, (T 2
w(z; f+2) —w(x; f—2) = fulgx(Z)? " o B
e The reduction w(x; 8) = u(z), where z = (8/2) + Inz gives
2{u'(2) — u(z)}

u(z)? ’

u(z+1) —u(z—1) =

which has a continuum limit to Pj.



Bi-Riccati delay Painlevé equations from BT's

e Shifting 5 +— 8 + 2 in the second BT's gives the pair

wi Pl +2) = T (g md ()
. o (L= we(w; B+ 2))
w(e: 6+ Du(e: p) = LLABIED (544 ©

e Taking the difference (8)—(9) gives
w(z; B)w(z; B+ 2)]e + wlz; f+2) —w(z; f) = 0.

__ ph
<=5

e The reduction w(z; 8) = Lru(z), where + 2 Inz gives

2

alu(z)u(z + )"+ bu(2)u(z + h) +u(z + h) —u(z) = 0.

o Writing u(z) = g—zv(z) — 2 and b/a = 3h* + O(R®), then in the limit A — 0 we

recover P.



Another bi-Riccati delay Painlevé equation from BTs

e For Pyp with v = —0 = 1, we have the BT's

UJ(ZC, —Q, _6> — —’UJ(CE', O‘aﬁ)a
1

w('rv _67 —Oé> — ’lU<CE';Oé,B>_ )

w(r;,—p —2,—a—2) = w(x;a, 5)

1+

24+ a+
(% +w+)—1-6|
e Using these transformations we obtain the equation
we@;a+2,6+2)  wilz;a,p)
w(r,a+2,0+2) w(z;a,p)
1 1
= ' 2 2 — ' :
(war 242+ o) = (vl )+ o)

e The reduction w(x; 8) = u(z), where z = 0t B _ kr gives

Klu(z)u(z + h)]" + [u(z + h)u(z) — 1][u(z + h) —u(z)] = 0.




Addition laws for elliptic functions

Recall that the Weierstrass ¢ function satisfies

O (2 99, g3) = 49(2; 92, 33)° — 290(2; G2, 93) — g3,

(where “'” denotes the derivative with respect to the first argument) and the addition

law

1

1. '
p(z £ h; g2, g3) = —{mz’gz’%) T ©'(hi 92, 93)

(2 92, 93) — p(h: g2, g3)
[t is straightforward to verify that

u(z) = \/ p(h;ig’ ) {p(hz + ¢ 92, 93) — 9(h; 92, 93)}

2
4 } _p(z,gg,gg)_@(h,QQ,QQ,)

satisfies
w(z)* {u(z +1) —u(z — 1)} = u/(2) (10)
for arbitrary ¢, h, g» and gs.



The symmetric QRT map

The symmetric Quispel-Roberts-Thompson map is

o= J1(@n) — Tp—1 fo(n)
n+1 f2<$n) _ -’L'n_lfS(iEn),

where
I z, ajs B
fo | = (AXo) x (AX), Xo= o | Aj=| 5 6 ¢, i=01
Js ! Vi G
XTApX,
This system has the conserved quantity K = —n—""*

X£A1Xn+1 .



Analogues of QRT mappings (with Bjorn Berntson)
An analogue of symmetric QRT mappings are those differential-delay equations of the
form

A(u, v u(z + Du(z — 1) + Blu, u')u(z + 1) + C(u, v )u(z — 1) + D(u,u’) = 0,

where u = u(z), that possess at least a two-parameter solution given in terms of elliptic

functions. For example
(L= u(2)) {u(z + 1) — u(z = 1)} = bu'(2),

where b is a constant. This has a two-parameter family of solutions in terms of the
Jacobi sn function because of the identity
sn (z;k)sn'(h; k) £sn’(z; k)sn (h; k)

1 — k2%sn (z; k)?sn (h; k)? ’

where “’” denotes the derivative with respect to the first argument.

sn(z+ h k) =



Bi-Riccati analogues of QRT mappings

e We wish to identity equations of the form

w?(z)
Kw’ (2) )
admitting a two-parameter (e and zg) family of solutions of the form
a(e)sn(€2e)[z — 2o); k(e)) + Ble)
v(€)sn(Q(e)[z — zo]; k(e)) + d(e)

e [gnoring the zy dependence, we look for solutions of the form
~asn(Qz k) + 8
~ ysn(Qzi k) + 6

W'z +h) KW(2) =0, where W(z)=

w(z) =

w(z)



A simpler problem

The vector
[ 3)\
e = ||
Ku’(z))
where

solves the equation
U(z+ h)'XU(2) =0
if and only if X has the form

7
X =) NX;,
j=0

where A, ..., A7 are constants and the X ;s have specific forms.



[—0s? 0 Q0)

0 0 00

0 0
0 92(02 + d2)
—O%cd 0

0 0
>Qs2 0 00)
0 Qcd 00
—Q 0 00

\ 0 s 00

—O%cd O\
0 0
0 0

0 32)

where s = sn (Qh; k), ¢ =cn (Qh; k) ete.

0




Bi-Riccati QRT-type equations

e Consider the equation U(z + h)' XU(z) = 0 with u(z) = sn(Qz; k) and

7

X => NX;.
=0
e The transformation
au(z)+ 3
w(z) = 7“2234‘57 ad — By # 0
induces the transformation

X=M"XM,

where

(52 270 A 0 \
Bo ad + By ay 0

B? 2aB o 0

\ 0 0 0 ad— B )

e In this way we obtain a number of delay-differential equations with multi-parameter

families of elliptic function solutions. No geometric picture yet like QRT.



First-Order Difference Equations

e Consider the difference equation
y(z +1) = R(y(z)). (11)
e If R is rational then equation (11) admits a non-constant meromorphic solution.
e If R is polynomial then equation (11) admits a non-constant entire solution.
e An immediate consequence of this theorem is that the Logistic map,
y(z +1) = ay(z)(1 — y(2)),

has a non-constant entire solution, y(z) = w(z).

e The logistic map has a family of entire solutions:
y(z) = w(z — p(z)), where p is periodic.

e Nevanlinna theory provides a concept of “nice” meromorphic functions: functions
of finite order.



Nevanlinna Theory

e Nevanlinna characteristic 1'(r, f).

e For an entire function f,

T(r, f) ~log M(r, f), M(r, f) = max|f(z)].

|2|=r

e More generally, for a meromorphic function f,

T(r, f) =m(r, f)+ N(r, f),

where m(r, f) is a measure of how large f is on |z| = r and N(r, f) is a measure
of how many poles f hasin D, :={z:|z] <r}.
log(T’
e The order of fis p(f) = limsup o(T(r, /) .

o0 log r

log log (T
e The hyper-order of f is po(f) = limsup 0g log(T'(r f)) .
r—00 logr

e Examples of finite-order meromorphic functions: e”, cos z, tan z, o(z).

e [nfinite-order: exp(exp z), exp(cos(y/z ).



Difference equations of Painlevé type

e (Ablowitz, H, Herbst) An analogue of the Painlevé property for difference equations

is the existence of sufficiently many finite-order meromorphic solutions.

e Theorem (Yanagihara) If the difference equation

y(z +1) = R(z,y(2)),

where
_ap(z) +ai(2)y + -+ ap(2)y”
R(z,y) = bo(2) + b1(2)y + -+ + by(2)ye’

admits a finite-order non-rational meromorphic solution, then max(p, ¢) < 1.

e This gives the difference Riccati equation

y(z +1) =

which is linearized by




Theorem (H. and Korhonen, 2007)

If the equation W+ w= R(z,w), (1)

has an admissible meromorphic solution of finite order, then either w satisfies the
discrete Riccati eqn w = (pw + q)/(w + p), or () can be transformed by a linear

change of variables to one of the following equations:
T2 + 79

wHwtw = + R1
w
Tz + T
T—w+w=——"2 4 (=1)k
w
L 7T12’—|—7T3
w+w = + 79
w
T2+ K T
wew= T T
w w
T2+ RKR1)w + 7
@+w=<1 ﬂ 2
(1) —w?
T2+ RK1)w+ 7
@+w=<1 D 2
1 — w?

ww +ww =p
wW+w=pw-+q

where ., ki are “small” functions and 7. and kj are periodic with period k.
P,q, Tk, Rk p p



Delay equations admitting meromorphic solutions with py(w) < 1
(with Risto Korhonen 2017)

e Let w be a non-rational meromorphic solution of

w(z+1) —w(z—1)+ a(z)wl(z)

— R(Z,ZU(Z)),

w(z)
where R is rational in both its arguments and a is a rational function of z, such
that po(w) < 1.

Then Deg, R(z,w) < 4.

e Suppose furthermore that R(z, w) = P(z,w)/Q(z,w), where Q(z,0) Z 0.
Then either

1. Deg,P(z,w) =1+ Deg,Q(z,w) <3

or

P(z,w) alz)w(z)+ B(2)
Qlz,w)  y(z)w+d(z)




Delay equations with meromorphic solutions with hyper-order < 1:
deg,R(z,w) =0

e Let w(z) be a non-rational meromorphic solution of

w'(2)

w(z+1)—w(z—1)+a(z) = b(2),

w(z)
where a(z) # 0 and b(z) are rational. If the hyper-order of w(z) is less than one and

w has “a lot of simple zeros” then the coefficients a(z) and b(z) are both constants.
e Note that for any rational a(z), if b(z) = pmia(z), where p € N, then
w(z) = Cexp(pmiz), C #0,
is a zero-free entire transcendental finite-order solution.

e Here “a lot of simple zeros” means that for any € > 0,

N (r, l) > G + e) T(r,w)+ S(r,w).

w



A non-autonomous equation

Theorem

e Let w(z) be a non-rational meromorphic solution of
a(z)w'(z) + b(z)w(z)
w(2)

wiz+1)—w(z—1) = + ¢(2),

where a(z) #Z 0, b(z) and c¢(z) are rational.

e If the hyper-order of w(z) is less than one and “w(z) has a lot of zeros” then the

equation takes the form

(A + p2)w'(z) + (WA + p(vz — 1))11)(2)7

w(z+1)—w(z—1) = e

where A\, © and v are constants.



Singularity confinement
Grammaticos, Ramani and Papageorgiou (1991);

Ramani, Grammaticos and Hietarinta (1991)

N ~ ap+ by
Yn+1 Yn—1 — 1 — y%

Yn—1 = k)

Yn = (9 -+ €, 8 = :|:1

w1 =~ 0(1),

2 n+l — n — Qn 2

n+2 — —0 @ )

Yn+2 + T e+ O(€”)

~a, +0b, (ant2 — an) — O(bygo — 2by 1 + b
s T oy (261 — bn) — an

Confinement:

Yn+1 + Yn—1 — 5



Example of Hietarinta and Viallet

a
Ynt1l + Yn—1 = Yp T 5

n

Yn—1 = k + O(l),

Yn = €,



Exact calculations of degree growth

There are two equivalent definitions of the degree of a rational function.
P(z)
Q(z)
1. deg(2) = max{deg(P(z)), deg(Q(2))}.

2. Let @ be any number in the extended complex plane CP' = C U {oo}. Then the

deg(R) is the number of pre-images of a in CP' counting multiplicities.

Let R(z) = . where P and @) are polynomials with no common factors. Then

For example, the degree of the rational function
20° —4at + 228+ +1  z+1

972
r(r — 1) xr(r — 1) e

1S .



Singularity confinement revisited

N Gyt byYn
Yn+1 T Yn—-1 = 1 _ y%
Yn—1 = k+ 0<1>7
Yn = 0 + €, 0==41, e=(z—2)"f(2), [ analyticat zy, f(20)#0
a, + 0b, 4

_— 1

. 2 n+1 — n — Qn 2
yn+2 - 9 + an + an € + O<€ )7

p + ebn (an—i—Q — an) — (9<bn—i—2 — 2bn+1 + bn) —1
Ints = o { (261 — by) — an ¢ +0l)

Also, if y,_1 ~ az and y,, ~ Bz as z — o0, then y,,.1 ~ —az.
Take yp = Az+ Band y; = Cz+ D, AC # 0.
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1
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'<—1 X Ny, 00
< M *
Yn—1 Yn Yn+1
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S
|
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|

(dn—l o 1) dn—|—1 - 2Nn +1



Exact formula for degrees

We have .
dpt1 =2N,+1 and d, =N, + 5 (dp1—1).

Eliminating N,, gives
dn_|_1 - Zdn ‘|_ dn_l — 2

We also have the initial conditions dy = d; = 1. Hence

d,=n(n—1)+1.



Example of Hietarinta and Viallet revisited

a
Ynt1l + Yn—1 = Yp T 5

n

Yn—1 = k + O(l),

Yn = €,

We will choose yg ~ az+  and y; ~ vz + 6 as z — oo, where ary(ar — ) # 0. Then

Y, has a simple pole at z = oo for all n.



Takenawa’s sequence of blow-ups for the Hietarinta-Viallet equation

E13-E14
ES

E9-E10
H1-ES-E6-E9 \

y=inf

E11-E12
x=inf | HO-E1-E2-E9
e
i HO+H1-E9-E10-E11
E3-E4 E4
H1-E1 E2-E3
_ 7/
V=0 % E1-E2

He provided a rigorous proof that the algebraic entropy is
34+v5
7
This value had been calculated using more heuristic methods by Hietarinta and Viallet




00 o0 00 00
o ® O ®
<O X Np_1 X0 | x 2N,,_1 oo| x 2N,,_1 O] x D
QXNn ool x 2N, ool X 2Ny
O X Nn_|_1 ool X 2Np41
<O X Npy2
Yn—1 Yn Yn+1 Yn+2

dn—|—2 — Nn—|—2 + Np—1
dpi1 = Q(Nn -+ Nn—l) +1



Substituting
Nn -+ Nn—l — (dn—l—l — 1)/2 and Nn—|—2 - Nn—l — dn—|—2
n
(Nn + Nn—l) — (Nn + Nn—3> + (Nn—Z + Nn—3> — (Nn—l + Nn—2> =0

gives
dn—l—l — Sdn -+ dn—l = 1.

Together with the initial conditions dy = d; = 1, this gives

S Vo1 (345 n+\/5+1 3—5 n_l
BEVE 2 V5 2 |
It follows that the algebraic entropy is

3+5
-



Singularity confinement, discrete integrability and delay-differential

equations

e Some form of singularity confinement underlies most “detectors” of integrability for
discrete systems (rational surfaces approach, algebraic entropy, Nevanlinna theory,

Diophantine integrability)

e Singularity (non-)confinement-type calculations underlie the more precise results

from Nevanlinna theory for delay differential equations.

e Alex Stokes studied the way that singularity patterns vary with the multiplicity

with which a solution hits singular values.
e In particular he observed that if a solution u of
au(z) +bu'(z) = u(z) [u(z + 1) —u(z — 1)]

is regular at z = 2y — 1 and vanishes at z = 2y with multiplicity m, then u has
simple poles at zg+ 1, ... 2o + 2m, vanishes again at zp + 2m + 1 with multiplicity

m and is neither 0 nor oo at z = z5 + 2m + 2.



Delay equations with meromorphic solutions with hyper-order < 1
(with Risto Korhonen and Jun Wang — 2022)

Theorem Let w be a transcendental meromorphic solution of
w'(2) _ P(z,w) ()
w(z)  Qz,w)

where a is a rational function of z, P(z,w) and Q(z,w) are co-prime polynomials in w

with rational coefficients in z. If po(w) < 1, then R(z,w) = P(z,w)/Q(z,w) satisfies

w(z+1) —w(z—1)+a(z)

one of the following conditions

1. deg,(R) < 1;
2. deg,,(P) = deg,(Q)+1 < 3and w =0 is at most a simple root of Q;

3. Q(z,w) = wQ(z,w), where Q(z,0) # 0 and either deg, (P) = deg,(Q)+2 =4 or
deg,,(P) < 2 and deg,(Q) < 1.



Delay equations with meromorphic solutions with hyper-order < 1:
deg, R(z,w) =1

e Let w(z) be a non-rational meromorphic solution of

w'(z) _ alz)w(z) + 6(2)

w(z) w(z) = b(z)

where a # 0, b # 0, o and § are rational functions of z and o« # —/b. If the hyper-

order of w(z) is less than one then “w has very few zeros, ignoring multiplicities”:

N (7“, l) — S(rw)

w

w(z+1)—w(z—1)+a(z)

and
a(z+1)[a(z+2)+b(z+3) —alz+2)]+alz+2)[d'(z+ 1)+ b(z) —alz+1)] = 0.

e In particular, if the equation is autonomous or if N(r,1/w) = S(r,w), then
pa(w) = 1.



Delay equations with meromorphic solutions with hyper-order < 1:
deg,P(z,w) =deg,Q(z,w)+1<3

Let w(z) be a non-rational meromorphic solution of

w'(z)  as(z)w(2)? + as(2)w(z)? + ai(z)w(z) + ()
w(z) w(z)? + by (z)w(z) + bo(2) ’
where a #Z 0, b # 0, « and 8 are rational functions of z and w? + bjw + by = 0 has

w(z+1)—w(z—1)+a(z)

distinct non-zero roots. If the hyper-order of w(z) is less than one then w satisfies the

Riccati equation




Delay equations with meromorphic solutions with hyper-order < 1:

~

deg, P(z,w) = deg,Q(z,w) +2 < 3

e Let w(z) be a non-rational meromorphic solution of

w'(z)  as(z)w(z)* + au(2)w(z) + ap(z)

w(z) w(z)w(z) = b(2)] |

where a #Z 0, b # 0, o and «; are rational functions of z and apb® + a1b + o Z 0. If

w(z+1)—w(z—1)+a(z)

the hyper-order of w(z) is less than one, then w has “a lot of simple zeros”:

N (r, l) — T(r,w) + S(r, w)

w

and
alz+1)[d(z4+2)+as(z+2) —b(z+3)]=alz+2)[a'(z+1) + as(z+ 1) + bz + 1)].

e In particular, if the equation is autonomous, then py(w) > 1.



Delay equations with meromorphic solutions with hyper-order < 1:

~

deg,P(z,w) = deg,Q(z,w) + 2 =4

e Here we just give an example.

e The function
w(z) = tan(mz/4)
satisfies the equation

—w(z — éw/<2’> _ 1+ 4w<z>2 — w(z)4
wlz+1) —wlz = D+ o = e =1




Lemma

Let w be a non-rational meromorphic solution of
Plz,w] =0,

where P|z,w] is a differential-difference polynomial in w with rational coefficients and
let a1(2),...,ar(z) be rational functions, satistying P|z,a;] # 0 for j =1,... k. If
there exist s > 0 and 7 € (0, 1) such that

k
1
E n (r, ) < krn(r + s,w) + O(logr),
o1 w — a;

then w has infinite order (in fact, the hyper-order of w is at least one).



Fast-growing solutions and singularity confinement

e Let w(z) be a non-rational meromorphic solution of

a(z)w'(z) + b(z)w(z) o
w(z)2 ( >7

wiz+1)—w(z—1) =

where a(z) #Z 0, b(z) and c¢(z) are rational.

e Suppose that w has a simple zero at z = 2,

w(z—1)= K+ 0O(z — 2), K e C,
w(z) = alz — 2)+0((z — 2)%), a e C\{0}
w(z+1) = @(;L(_Z)gy + &<Z<i) ) +c(2) + K+ 0(z — 2),
w(z+2)=clz+1)+0(z — 2),

~a(2) b(z)
w(z +3) = &(2_2>2+&<2_2> + O(1),

where there can be at most finitely many 2 such that ¢(z + 1) = 0.



e Assume now that ¢(z) = 0:

a(2)w'(z) + b(z)w(z)

wiz+1) —w(z—1) = . + c(2),

w(z)
e Suppose again that w(z) has a pole at z = 2 + 1, and that w(z — 1) is finite.
w(z—1)=K+0(z — 2), K e C,
w(z) = alz — 2)+O((z — 2)%), a e C\{0}

__al(z) b(z)
w(z+1) = PP + o= ) +0(1),
w(z+2) = a (1 - Qai; ”) (2= 2) 4+ O((z — 5)%),
a(z)(a(z+2) —2a(z+ 1)+ a(z)) v(2)
Wzt = —2az etz =22 T ate—3 W
where
() :a(z)b(z +2) — (2a(z+ 1) — a(2))b(2)

a(z) —2a(z + 1)
2a(z 4+ 2)[a(z)a’(z + 1) —a(z + 1)a’(2)]
(a(z) — 2a(z + 1))? '




Delay alternating QRT

e Differential-difference mKdV (Ablowitz and Ladik):
dw, 1
—* = S+ w){(wnso + wo) (14wl )

—(wp + wy—2)(1 + w?z—l) — 2(wp 11 — wn—l)}-

e Travelling wave reduction: w,(t) = u(z), where z = n — ct:
cu/(z) + %(1 +u(2)){ (u(z +2) +u(2))(1 + u(z + 1)°)
—(u(z) +u(z —2)) (1 +ul(z —1)*) = 2(u(z + 1) —u(z — 1))} = 0.

e When ¢ = 0, this equation integrates to give
2u(z) + p(z)

uw(z+1)+ulz—1)= MO

)

where p is an arbitrary period two function.



Summary

e Several delay Painlevé equations have been found.

e Such equations arise as symmetry reductions of integrable differential-difference

equations.
e Others appear to arise as reductions of BT's for the Painlevé equations.

e The existence of finite order meromorphic solutions seems to be a reasonable char-

acterisation of such equations.

e Some Lax pairs are known.
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