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Introduction
Painlevé equations and parameters

The six Painlevé equations:

PI: u′′ = 6u2 + x. PII: u′′ = 2u3 + xu + α.

PIII: u′′ =
(u′)2

u
− u′

x
+

αu2 + β

x
+ γu3 +

δ

u
.

PIV: u′′ =
(u′)2

2u
+

3u3

2
+ 4xu2 + 2(x2 − α)u +

β

u
.

PV: u′′ =
(

1
2u

+
1

u− 1

)
(u′)2− u′

x
+

(u− 1)2

x2

(
αu +

β

u

)
+

γu
x

+
δu(u + 1)

u− 1
.

PVI: u′′ =
1
2

(
1
u
+

1
u− 1

+
1

u− x

)
(u′)2 −

(
1
x
+

1
x− 1

+
1

u− x

)
u′

+
u(u− 1)(u− 2)

x2(x− 1)2

[
α +

βx
u2 +

γ(x− 1)
(u− 1)2 +

δx(x− 1)
(u− x)2

]
.

All but PI contain one or more free parameters.



Introduction
Special solutions and symmetries

Although typical solutions are highly transcendental, PII-PVI admit,
for special values of the parameters, solutions expressible explicitly in
terms of elementary functions or classical linear special functions (e.g.,
Airy, Bessel, etc.)

The parameter values for which the special solutions exist are related
by a finitely-generated group action.

The group acts on the solutions via Bäcklund transformations that
preserve the functional character of the solution (rational, algebraic,
etc.)



Introduction
Isomonodromic deformations, Riemann-Hilbert problem and Schlesinger
transformations

R. Fuchs and Garnier: every Painlevé equation defines an
isomonodromic deformation of a certain second-order linear ODE.

Working with first-order systems instead, every Painlevé equation is
the compatibility condition for a certain Lax pair of linear equations for
an auxiliary unknown Ψ.

The inverse problem of constructing Ψ from its monodromy data can
be formulated as a Riemann-Hilbert problem.

The Bäcklund symmetry group acts on Ψ as linear gauge
transformations called Schlesinger transformations. These leave the
monodromy data invariant but change formal exponents at singular
points encoding the special parameter values.



Introduction
Monodromy data for special solutions

Therefore, the Riemann-Hilbert representation of the whole family of
special solutions related by a particular group action can be found
explicitly once it is known for just one solution in the family — the seed
solution.

While in general the monodromy data for a given solution cannot be
obtained explicitly, for elementary function seed solutions the direct
problem for the Lax pair can frequently be solved in terms of classical
special functions.

The monodromy data can then be obtained with the use of classical
connection formulæ.

Then one can use the Riemann-Hilbert representation to deduce useful
information about the special solutions, especially in the case of
extreme parameter values, in which case asymptotic methods like the
steepest descent method apply.



Introduction
Rational solutions of PII, PIII and PIV

This is the isomonodromy method. It has been successfully applied to
rational solutions of

The PII equation. There is a Z-parametrized family of rational
solutions with a single seed. The Jimbo-Miwa Lax pair evaluated
on the seed solution is solved explicitly in terms of Airy functions.
The PIII equation. The generic (D6 type) form admits rational
solutions parametrized by Z×C, and for the seed (independent
of the C parameter) the Jimbo-Miwa Lax pair is solved using
confluent hypergeometric (Whittaker) functions.
The PIV equation. There are two distinct families of rational
solutions, each parametrized by pairs of integers in Z×Z:

For the seed of the family of generalized Hermite rational solutions,
the Lax pair is solved in terms of elementary functions.
For the seed of the family of generalized Okamoto rational solutions,
the Lax pair is solved in terms of Airy functions.



Introduction
Algebraic solutions of PIII (D7)

The (D7) degeneration of the PIII equation occurs for γ = 0 and
αδ 6= 0:

u′′ =
(u′)2

u
− u′

x
+

αu2 + β

x
+

δ

u
, αδ 6= 0.

Unlike the (D6) form with γδ 6= 0, it does not have rational solutions.
However, for α > 0, β = 2n ∈ 2Z, and δ = −1, it has a unique
algebraic solution u = un(x) that is a rational function of x

1
3 .

Scaling by (x, u) 7→ (cx, cu) leaves β and δ invariant, but scales α;
WLOG we then take α = 8 and then the seed solution is u0(x) := 1

2 x
1
3 .

More generally, un(x) = 1
2 x

1
3 (1 +O(x− 1

3 )) as x→ ∞ for each n ∈ Z.
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Algebraic solutions of PIII (D7)

Since un(x) is a rational function of Z = x
1
3 , it can be represented in

terms of polynomials. The relevant polynomials are called the Ohyama
polynomials P0(Z), P1(Z), P2(Z),. . . . They are defined by the recurrence
relation

2
√

3ZPn+1(Z)Pn−1(Z) = −
1
3

Pn(Z)P′′n(Z)+
1
3

P′n(Z)
2− 1

3Z
Pn(Z)P′n(Z)

+ 2(3Z2 − n)Pn(Z)2

with initial conditions P0(Z) := 1 and P1(Z) := 3Z2. Then

un(x) =
Pn+1(x

1
3 )Pn−1(x

1
3 )

2
√

3Pn(x
1
3 )2

, n ∈ Z, n > 0.
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Algebraic solutions of PIII (D7)

The zeros of the Ohyama polynomials form a “bow-tie” shape in the
Z-plane:

Roots of P5(Z) Roots of P10(Z) Roots of P20(Z)

This is a phenomenon that should be explained. . . . It has something to
do with the limit n→ ∞.
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Algebraic solutions of PIII (D7)

When n is large in

u′′ =
(u′)2

u
− u′

x
+

8u2 + 2n
x

− 1
u

,

a natural balance is achieved by the scaling u = n
1
2 U and the change of

independent variable x 7→ z given by x = n
3
2 (y + n−1z) where y 6= 0 is

a fixed parameter. Then one gets

U′′(z) =
U′(z)2

U(z)
+

8
y

U(z)2 +
2
y
− 1

U(z)
+O(n−1).

Dropping the formally-small error term gives the approximating
equation for U = U(z), which is autonomous, but parametrized by y.
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Algebraic solutions of PIII (D7)

There are two types of solutions of the approximating equation

U′′(z) =
U′(z)2

U(z)
+

8
y

U(z)2 +
2
y
− 1

U(z)
.

Equilibrium solutions (U independent of z). These are roots of the cubic

equation 8U3 + 2U− y = 0. As y→ ∞, U ∼ 1
2 y

1
3 or rotations by 2

3 π. In
the original variables we have u ∼ 1

2 x
1
3 as x→ ∞ (matches un(x) in

that limit for each n);
Non-equilibrium solutions. Multiplying through by U′(z)/U(z)2 and
integrating gives

U′(z)2 =
16
y

U(z)3 + 2EU(z)2 − 4
y

U(z) + 1, E = constant,

i.e., the Weierstraß equation ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 with

U(z) =
1
4

y℘(z)− 1
24

yE, g2 =
16
y2 +

E2

3
, g3 = −16

y2 −
8E
3y2 −

E3

27
.
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Algebraic solutions of PIII (D7)

So, it is reasonable to expect that un(x) might be modeled by an
equilibrium solution for large x and by a modulated Weierstraß
function for smaller x. However:

The formal scaling arguments are not rigorous, so some proofs are
required;
It is not at all clear where/why one type of approximation should
give way to the other in the complex x-plane.

To deal with both of these issues, we can
Apply the isomonodromy method to obtain a Riemann-Hilbert
representation of un(x).
Apply the Deift-Zhou steepest descent method to the resulting
problem to rigorously address the limit n→ ∞.



Rational Solutions of PIII (D6)
Basic definitions

But first, for context, we briefly describe how the method handles the
rational solutions of PIII (D6). WLOG we take γ = −δ = 4 and write
α = 4(n + m) and β = 4(n−m), to get

u′′ =
(u′)2

u
− u′

x
+

4(n + m)u2 + 4(n−m)

x
+ 4u3 − 4

u

which has a rational solution iff m ∈ Z or n ∈ Z:
Two rational solutions if m ∈ Z and n ∈ C \Z or vice-versa;
Four rational solutions if both m ∈ Z and n ∈ Z.

All of them can be obtained by assuming that n ∈ Z, in which case
there is a unique rational solution u = un(x; m) with un(∞; m) = 1.

When n = 0 we have u0(x; m) ≡ 1. This is the seed solution.



Rational Solutions of PIII (D6)
Lax pair

The Jimbo-Miwa Lax pair for PIII (D6) involves four potentials v(x),
y(x), s(x), and t(x) and a parameter Θ∞ := m− n + 1:

∂Ψ

∂λ
=

(
ix
2

σ3 +
1
λ

[
− 1

2 Θ∞ y
v 1

2 Θ∞

]
+

1
λ2

[ 1
2 ix− ist is
−it(st− x) − 1

2 ix + ist

])
Ψ;

∂Ψ

∂x
=

(
iλ
2

σ3 +
1
x

[
0 y
v 0

]
− 1

λx

[ 1
2 ix− ist is
−it(st− x) − 1

2 ix + ist

])
Ψ.

The complicated-looking matrix coefficient is simply the most general
parametrization of a matrix having eigenvalues ± 1

2 ix. So the Lax pair
presented here is diagonalized at λ = ∞, but could be conjugated into
a gauge-equivalent one diagonalized at λ = 0 instead.

Compatibility yields a first-order system on v, y, s, t that admits a first
integral Θ0 = n + m and that implies the PIII (D6) equation for
u(x) = −y(x)/s(x).



Rational Solutions of PIII (D6)
Lax pair for the seed. M, T. Bothner and Y. Sheng, Stud. Appl. Math. 141, 626–679, 2018.

When n = 0 and hence u0(x; m) ≡ 1, the potentials v(x), y(x), s(x), and
t(x) are determined up to inessential constants, and they are simple
functions of x:

v(x) = −1
4
(1− 2Θ∞)(4x + 1 + 2Θ∞)K−1e−2xx−Θ∞ , y(x) = −1

4
Ke2xxΘ∞ ,

s(x) =
1
4

Ke2xxΘ∞ , t(x) = (1− 2Θ∞)K−1e−2xx−Θ∞ .

This dramatically simplifies the x-equation in the Lax pair; in fact it
reduces to a confluent hypergeometric equation: taking

Ψ = exσ3x(m+1)σ3/2x−
1
2 WC(λ)

the x-equation implies that with µ = 1
4 and κ = 1

2 m, the first row
W = W1j satisfies

d2W
dζ2 +

[
−1

4
+

κ

ζ
+

1− 4µ2

4ζ2

]
W = 0, ζ := ix(λ + 2i− λ−1).



Rational Solutions of PIII (D6)
Lax pair for the seed. M, T. Bothner and Y. Sheng, Stud. Appl. Math. 141, 626–679, 2018.

The λ-equation then implies that C(λ) = (λ + i)−
1
2 C for any constant

matrix C. For a fundamental pair of solutions W we choose the
Whittaker functions W±κ,µ(±ζ) which have branch cuts where ζ ∈ R:
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1

2
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- 2

- 1

0

1

2

Red contours: ζ < 0. Blue contours: ζ > 0.

We choose C for each domain Ω0
+, Ω∞

+ , Ω0
−, and Ω∞

− to obtain suitably
normalized solutions Ψ = Ψ(λ; x) as λ→ 0, ∞. We find no jump across
the unit circle, so Ψ has jumps only across ζ ∈ R, explicitly computed
(for n = 0 but arbitrary m ∈ C) from known connection formulæ.



Rational Solutions of PIII (D6)
Riemann-Hilbert problem. M, T. Bothner and Y. Sheng, Stud. Appl. Math. 141, 626–679,
2018.

When n = 0, the matrix Y = Ψλ
1
2 (m−n+1)σ3e−

1
2 ix(λ−λ−1)σ3 satisfies the

Riemann-Hilbert problem:
Analyticity: Y is analytic in C \ (ζ ∈ R) with continuous
boundary values.
Jump conditions: Y+ = Y−V for ζ ∈ R where

V∞
red =

1
√

2πλ−(m+1)

Γ( 1
2 −m)

λneix(λ−λ−1)

0 1

 , V0
red =

1 −
√

2πλ−(m+1)

Γ( 1
2 −m)

λneix(λ−λ−1)

0 1

 ,

V∞
blue =

 1 0√
2π〈λm+1〉
Γ( 1

2 +m)
λ−ne−ix(λ−λ−1) 1

 , V0
blue =

 −e2πim 0√
2π〈λm+1〉
Γ( 1

2 +m)
λ−ne−ix(λ−λ−1) −e−2πim

 .

Normalization: Y→ I as λ→ ∞; Yλ−(m+ 1
2 )σ3 bounded as λ→ 0.

Care must be taken in the choice of branch for λp, cut on the blue
contours. Notice what happens when m ∈ Z + 1

2 !



Rational Solutions of PIII (D6)
Schlesinger transformations. M, T. Bothner and Y. Sheng, Stud. Appl. Math. 141,
626–679, 2018.

We work out how to generalize from n = 0 by applying Schlesinger
transformations. If (as is true for n = 0 when Θ∞ = m + 1 and Θ0 = m)

Ψ(λ; x)λ
1
2 Θ∞σ3e−

1
2 ixλσ3 = I + Ψ∞

1 (x)λ−1 + · · · , λ→ ∞,

Ψ(λ, x)λ−
1
2 Θ0σ3e

1
2 ixλ−1σ3 = Ψ0

0(x) + Ψ0
1(x)λ + · · · , λ→ 0,

then, for instance, one can simultaneously increment Θ0 and
decrement Θ∞ by 1 (same as replacing n with n + 1) without
(essentially) changing the jump matrices by a (Schlesinger) gauge
transformation:

Ψ̂(λ; x) :=
([

1 0
0 0

]
λ

1
2 + B̂(x)λ−

1
2

)
Ψ(λ; x), where

B̂(x) :=
[

Ψ0
0,21(x)Ψ

∞
1,12(x)/Ψ0

0,11(x) −Ψ∞
1,12(x)

−Ψ0
0,21(x)/Ψ0

0,11(x) 1

]
.

There is a similar (in fact, inverse) Schlesinger transformation that
decrements Θ0 and increments Θ∞ by 1.



Rational Solutions of PIII (D6)
Large-n asymptotics. M, T. Bothner, Constr. Approx. 51, 123–224, 2020.

The Riemann-Hilbert representation of un(x; m) can be analyzed by the
Deift-Zhou steepest descent method. Some results:

When n ∈ Z is large and m ∈ C \ (Z + 1
2 ) is fixed, there is a

specific eye-shaped domain E such that:
When x ∈ nE, un(x; m) is approximated by a specific
elliptic function of x with phase shift and elliptic
parameter that depend (nonanalytically) on the slow
variable x/n.

When x ∈ C \ nE, un(x; m) is approximated by an
analytic function of the slow variable x/n.
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The approximations are non-equilibrium and equilibrium
solutions, respectively, of an approximating equation.
When n ∈ Z is large and m ∈ Z+ 1

2 is fixed, the equi-
librium approximation extends to the complement
of one or the other “eyebrows”. Near the eyebrow,
un(x; m) is approximated by a trigonometric function
that slowly varies along the eyebrow. 0.1 0.2 0.3 0.4 0.5
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Algebraic solutions of Painlevé-III (D7)
Basic definitions

Recall that starting from the nondegenerate (D6) version of PIII

u′′ =
(u′)2

u
− u′

x
+

αu2 + β

x
+ γu3 +

δ

u
, γδ 6= 0,

the (D7) degeneration arises by taking γ = 0:

u′′ =
(u′)2

u
− u′

x
+

αu2 + β

x
+

δ

u
, αδ 6= 0.

We take α = 8 and δ = −1. Then there is a unique algebraic solution

u = un(x) = 1
2 x

1
3 (1 +O(x− 1

3 )), x→ ∞

if and only if β = 2n ∈ 2Z. It is a rational function of Z = x
1
3

expressible in terms of Ohyama polynomials.
We follow the steps of the isomonodromy method to characterize these
solutions and study them for large n.



Algebraic solutions of Painlevé-III (D7)
Lax pair

In Jimbo-Miwa (1981 — Part II) a Lax pair for PIII (D6) is given with
γ = −δ = 4. Arbitrary values of γ, δ with γδ 6= 0 can be restored by
scaling, but one cannot just set γ = 0 to get a Lax pair for PIII (D7).

That is because the required modification to obtain PIII (D7) is to
admit a coefficient matrix of the most singular terms at λ = 0 that is
not diagonalizable. The following Lax pair was given by
Kitaev-Vartanian (2004):

∂Ψ

∂λ
=

(
−ixσ3 +

1
λ

[
− 1

2 ia x2p
4u

x2q
4u

1
2 ia

]
+

1
λ2

[
− 1

2 iu 1
2 iueiϕ

− 1
2 iue−iϕ 1

2 iu

])
Ψ;

∂Ψ

∂x
=

(
−iλσ3 +

1
x

[
1
2 ia x2p

4u
x2q
4u − 1

2 ia

]
− 1

λx

[
− 1

2 iu 1
2 iueiϕ

− 1
2 iue−iϕ 1

2 iu

])
Ψ.

It involves a constant parameter a and unknown functions p(x), q(x),
ϕ(x), and u(x).



Algebraic solutions of Painlevé-III (D7)
Compatibility conditions

The conditions for compatibility of the Kitaev-Vartanian Lax pair are:

p(x) =
d

dx

(
u(x)eiϕ(x)

x

)
, q(x) =

d
dx

(
u(x)e−iϕ(x)

x

)
,

8u(x)3 − u(x)u′(x) + xu′(x)2 − 2au(x)2ϕ′(x) + xu(x)2ϕ′(x)2

− xu(x)u′′(x) = 0,
d

dx

(
u(x)ϕ′(x)− 2au(x)

x

)
= 0.

Integrating the last equation with a concrete choice of integration
constant gives

u(x)ϕ′(x) =
2au(x)

x
+ i.

Explicitly eliminating ϕ′(x) then gives PIII (D7) for u(x) in the form

u′′ =
(u′)2

u
− u′

x
+

8u2 + β

x
− 1

u
, β = 2ia.



Algebraic solutions of Painlevé-III (D7)
Lax pair for the seed. Buckingham and M., arXiv:2202.04217

For the seed, we take β = 2n = 0 and u(x) = u0(x) = 1
2 x

1
3 . Using the

nonlinear differential equations from compatibility, we first get
ϕ(x) = 3ix

2
3 + ϕ0 (take ϕ0 = 0 WLOG) so e±iϕ(x) = e∓3x2/3

, and then

p(x) = −
(

1
x
+

1
3

x−
5
3

)
e−3x2/3

q(x) = −
(
−1

x
+

1
3

x−
5
3

)
e3x2/3

.

The exponential factors e±3x2/3
can be easily eliminated from the

coefficients by the gauge transformation Ψ = e−
3
2 x2/3σ3 Φ, after which

the Lax system reads

∂Φ

∂λ
=

(
−ixσ3 −

x
λ

[
0 1

6 x−1 + 1
2 x−

1
3

1
6 x−1 − 1

2 x−
1
3 0

]
+

ix
1
3

4λ2

[
−1 1
−1 1

])
Φ;

∂Φ

∂x
=

(
−iλσ3 −

[
−x−

1
3 1

6 x−1 + 1
2 x−

1
3

1
6 x−1 − 1

2 x−
1
3 x−

1
3

]
− ix−

2
3

4λ

[
−1 1
−1 1

])
Φ.



Algebraic solutions of Painlevé-III (D7)
Lax pair for the seed. Buckingham and M., arXiv:2202.04217

We want to solve the x-equation explicitly. It is useful to first simplify
it by scaling the spectral parameter: λ = Λ/X and x = X so that

∂

∂Λ
=

1
X

∂

∂λ
and

∂

∂X
=

∂

∂x
− Λ

X2
∂

∂λ
.

In the new variables we then have

∂Φ

∂Λ
=

(
−iσ3 −

X
Λ

[
0 1

6 X−1 + 1
2 X−

1
3

1
6 X−1 − 1

2 X−
1
3 0

]
+

iX
4
3

4Λ2

[
−1 1
−1 1

])
Φ;

∂Φ

∂X
=

(
X−

1
3 σ3 −

iX
1
3

2Λ

[
−1 1
−1 1

])
Φ.

Now make the substitution Z = X
1
3 = x

1
3 and the constant gauge

transformation Ω =
1√
2

[
1 −1
1 1

]
Φ in the X-equation:



Algebraic solutions of Painlevé-III (D7)
Lax pair for the seed. Buckingham and M., arXiv:2202.04217

We get the off-diagonal system

∂Ω

∂Z
=

[
0 3Z

3Z + 3iΛ−1Z3 0

]
Ω.

A few more manipulations reduce this system to the Airy equation. A
fundamental solution matrix is Ω = Ω0(Z, Λ) := ∆(Λ)F(ξ), where

∆(Λ) :=
1√
2

[
1 0
0 −( 2

3 )
1
3 (iΛ)−

1
3

]
, F(ξ) :=

[
f1(ξ) f2(ξ)
f ′1(ξ) f ′2(ξ)

]
,

where fj(ξ) are a fundamental pair for f ′′(ξ)− ξf (ξ) = 0 and

ξ :=
(

3
2

) 2
3

(iΛ)
2
3

(
1− Z2

iΛ

)
.

The general solution is therefore Ω(Z, Λ) = Ω0(Z, Λ)H(Λ).



Algebraic solutions of Painlevé-III (D7)
Lax pair for the seed. Buckingham and M., arXiv:2202.04217

Now use the Λ-equation to find H(Λ) using compatibility. Get
H(Λ) = Λ

1
6 H0 where H0 is an arbitrary absolute constant matrix,

which can be absorbed in the choice of basis (f1(ξ), f2(ξ)).

Restoring the original variables, the general simultaneous solution of
the PIII (D7) Lax pair for the seed algebraic solution u = u0(x) = 1

2 x
1
3

with β = 2n and n = 0 is

Ψ(λ, x) = e−
3
2 x2/3σ3

1
2

[
1 −( 2

3 )
1
3

−1 −( 2
3 )

1
3

]
(ixλ)

1
6 σ3F(ξ),

where with f1(ξ) and f2(ξ) a fundamental pair for f ′′(ξ)− ξf (ξ) = 0,

F(ξ) =
[

f1(ξ) f2(ξ)
f ′1(ξ) f ′2(ξ)

]
, ξ =

(
3
2

) 2
3

(ixλ)
2
3

(
1− x

2
3

ixλ

)
.



Algebraic solutions of Painlevé-III (D7)
Normalized solutions, Stokes phenomenon, and asymptotics. Buckingham and M.,
arXiv:2202.04217

The general solution is branched at λ = 0, ∞ and also exhibits Stokes
phenomenon in both limits because F(ξ) does as ξ → ∞, which
happens both for λ→ 0 and λ→ ∞.

It is easiest to specify solutions with simple asymp-
totics as λ → 0, ∞ by assuming first that x > 0. Then
we can define three domains with oriented boundary
curves as shown:

Then for λ ∈ D±∞ we use the basis f1(ξ) := c±1 Ai(ξ),
f2(ξ) := c±2 Ai(e∓

2
3 πiξ) with c±1 := 2

√
π( 3

2 )
1
6 , c±2 := −e∓

1
6 iπ2
√

π( 3
2 )

1
6 .

Similarly, for λ ∈ D0 we use the basis f1(ξ) := c+Ai(e
2
3 πiξ),

f2(ξ) := c−Ai(e−
2
3 πiξ) with c+ := 2i

√
π( 3

2 )
1
6 , c− := 2

√
π( 3

2 )
1
6 .



Algebraic solutions of Painlevé-III (D7)
Normalized solutions, Stokes phenomenon, and asymptotics. Buckingham and M.,
arXiv:2202.04217

These choices yield three simultaneous solutions of
the Lax pair for the seed, denoted Ψ±∞(λ, x) for λ ∈
D±∞ and Ψ0(λ, x) for λ ∈ D0. They are analytic func-
tions of λ in their domains of definition.

The solutions are normalized in the sense that as λ→ ∞ from within
D±∞,

Ψ±∞(λ, x)eixλσ3 ∼ I +
∞

∑
p=1

(
iλ
x

)−p

Ap(x).

It holds also that in the limit λ→ 0,

Ψ0(λ, x)e−ix(ixλ)−1/2σ3
1√
2

[
1 e

1
3 iπ

e
2
3 iπ 1

](
iλ
x

)− 1
4 σ3

∼
∞

∑
p=0

(
iλ
x

)p

Bp(x).
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Normalized solutions, Stokes phenomenon, and asymptotics. Buckingham and M.,
arXiv:2202.04217

Because Ai(ξ) + e
2
3 iπAi(e

2
3 iπξ) + e−

2
3 iπAi(e−

2
3 iπξ) =

0, we can relate the three solutions to each other, i.e.,
compute jumps across the contours in the diagram.
We also have to take into account that λ 7→ ξ has a
branch cut on the positive imaginary axis.

We set Ψ(λ, x) := Ψ±∞(λ, x) for λ ∈ D±∞ and Ψ(λ, x) := Ψ0(λ, x) for
λ ∈ D0. Then, Ψ+(λ, x) = Ψ−(λ, x)V, where V is the
piecewise-constant matrix[

1 −i
0 1

]
for λ ∈ Σ−∞;

[
1 e−

1
6 iπ

e−
5
6 iπ 0

]
for λ ∈ Σ+

0 ;
[

1 0
i 1

]
for λ ∈ Σ+

∞;[
0 e−

1
3 iπ

e−
2
3 iπ e−

5
6 iπ

]
for λ ∈ C−;

[
e−

5
6 iπ 0

e
1
3 iπ e

5
6 iπ

]
for λ ∈ C+.
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Schlesinger transformations. Buckingham and M., arXiv:2202.04217

The matrix Ψ(λ, x) therefore satisfies the conditions of a
Riemann-Hilbert problem. We can replace the index n = 0 by an
arbitrary integer in the conditions by working out the effect of iterated
Schlesinger transformations. This effect is somewhat unusual for the PIII
(D7) problem.

The relevant gauge transformations are described in Kitaev-Vartanian.
For instance, a transformation to map n = 0 to n = 1 is to replace
Ψ(0)(λ, x) := Ψ(λ, x) with Ψ(1)(λ, x) := G(0)↑(λ, x)Ψ(0)(λ, x) where

G(0)↑(λ, x) :=([
1 0

−A1,21(x) 1

]
+

x
iλ

[
0 −B0,12(x)/B0,22(x)
0 A1,21(x)B0,12(x)/B0,22(x)

])(
iλ
x

)− 1
2 σ3

.

This preserves analyticity in the three domains D±∞ and D0, and it
leaves V invariant except on Σ+

0 ∪ Σ+
∞ where it induces V 7→ −V.
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Schlesinger transformations. Buckingham and M., arXiv:2202.04217

However, it modifies the asymptotic behavior as λ→ ∞:

Ψ(1)(λ, x)eiλσ3 ∼
(

I +
∞

∑
p=1

(
iλ
x

)−p

A(1)
p (x)

)(
iλ
x

)σ3

and as λ→ 0:

Ψ(1)(λ, x)e−ix(ixλ)−1/2σ3
1√
2

[
1 e

1
3 iπ

e
2
3 iπ 1

](
iλ
x

)− 1
4 σ3

∼
(

∞

∑
p=0

(
iλ
x

)p

B(1)
p (x)

)(
iλ
x

)− 1
2 σ3

So, the power of (iλ/x)σ3 has increased by 1 at λ = ∞ and has
decreased by 1

2 at λ = 0 (and the coefficients have been modified).
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Schlesinger transformations. Buckingham and M., arXiv:2202.04217

Now we apply the “increment-n” transformation again, getting
Ψ(2)(λ, x) := G(1)↑(λ, x)Ψ(1)(λ, x) where

G(1)↑(λ, x) :=([
1 0

−A(1)
1,21(x) 1

]
+

x
iλ

[
0 −B(1)

0,11(x)/B(1)
0,21(x)

0 A(1)
1,21(x)B

(1)
0,11(x)/B(1)

0,21(x)

])(
iλ
x

)− 1
2 σ3

.

To get the necessary potentials out of Ψ(1)(λ, x) instead of out of
Ψ(0)(λ, x) it is necessary to replace the ratio of second-column entries
of B(x) = B(0)(x) with the ratio of first-column entries of B(1)(x).

Again, analyticity in the three domains D±∞ and D0 is preserved, and it
leaves V invariant except on Σ+

0 ∪ Σ+
∞ where it induces V 7→ −V (and

hence flips the sign back to the original).
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Schlesinger transformations. Buckingham and M., arXiv:2202.04217

Then, one checks that as λ→ ∞,

Ψ(2)(λ, x)eiλσ3 ∼
(

I +
∞

∑
p=1

(
iλ
x

)−p

A(2)
p (x)

)(
iλ
x

)2σ3

,

so the power of (iλ/x)σ3 at λ = ∞ has increased again by 1. However,
as λ→ 0,

Ψ(2)(λ, x)e−ix(ixλ)−1/2σ3
1√
2

[
1 e

1
3 iπ

e
2
3 iπ 1

](
iλ
x

)− 1
4 σ3

∼
∞

∑
p=0

(
iλ
x

)p

B(2)
p (x),

which means that the power of (iλ/x)σ3 at λ = 0 has increased by 1
2 and

hence reverted back to that for n = 0.
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Riemann-Hilbert problem for n ∈ Z. Buckingham and M., arXiv:2202.04217

Thus W(n)(λ, x) := Ψ(n)(λ, x)ei(xλ−x(ixλ)−1/2)σ3 solves the following.

RH Problem (Algebraic solutions of PIII (D7) for x > 0)

Given x > 0 and n ∈ Z, seek a 2× 2 matrix function λ 7→W(n)(λ, x) such that:

Analyticity: W(n)(λ, x) is analytic for λ ∈ C \ (Σ−∞ ∪ Σ+
∞ ∪ Σ+

0 ∪ C+ ∪ C−).

Jump conditions: with Ṽ = V on Σ−∞ ∪ C+ ∪ C− and Ṽ := (−1)nV on
Σ+

0 ∪ Σ+
∞,

W(n)
+ (λ, x) = W(n)

− (λ, x)e−i(xλ−x(ixλ−)−1/2)σ3Ṽei(xλ−x(ixλ+)−1/2)σ3 .

Normalization: W(n)(λ, x)( iλ
x )

1
2 nσ3 → I as λ→ ∞.

Behavior at the origin: the following limit exists:

B(n)
0 (x) := lim

λ→0
W(n)(λ, x)

1√
2

[
1 e

1
3 iπ

e
2
3 iπ 1

](
iλ
x

)− 1
4 (−1)nσ3

.
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Riemann-Hilbert problem for n ∈ Z. Buckingham and M., arXiv:2202.04217

The Riemann-Hilbert problem therefore takes a different form for even and
odd n. A function un(x) is extracted from W(n)(λ, x) as follows:

un(x) =

{
e−

5
6 iπxB(n)

0,12B(n)
0,22(x), n even,

e
5
6 iπxB(n)

0,11(x)B
(n)
0,21(x), n odd.

A dressing argument shows that un(x) is a solution of PIII (D7) with
β = 2n.

The Bäcklund transformation that can be derived directly from the
Schlesinger gauge matrix G(n)↑(λ, x) preserves the algebraic character
of un under n 7→ n + 1.

Hence un(x) is the unique solution of PIII (D7) that is a rational
function of Z = x

1
3 .



Algebraic solutions of Painlevé-III (D7)
Rotating the branch cut. Buckingham and M., arXiv:2202.04217

An explicitly-related matrix Y(n)(λ, x) is easier to work with. In terms of
Ỹ(n)(λ, x) := Y(n)(λ, x)e−(ixλ−x(−ixλ)−1/2)σ3 (note that the exponential has a
downward branch cut instead of upward), its jump conditions are

Ỹ(n)
+ (λ, x) = Ỹ(n)

− (λ, x)
[

1 0
i 1

]
, λ ∈ Σ+

∞ ∪ Σ+
0 ,

Ỹ(n)
+ (λ, x) = Ỹ(n)

− (λ, x)(−1)n
[

1 −i
0 1

]
, λ ∈ Σ−∞,

Ỹ(n)
+ (λ, x) = Ỹ(n)

− (λ, x)
[

1 0
−i 1

]
, λ ∈ C+ ∪ C−,

and a new jump appears on Σ−0 , the oriented segment joining λ = 0 to
λ = −i:

Ỹ(n)
+ (λ, x) = Ỹ(n)

− (λ, x)e−ixλσ3(−1)niσ1eixλσ3 , λ ∈ Σ−0 .

Its asymptotic behavior as λ→ ∞, 0 is implied by its relation to W(n)(λ, x).
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Application: the limit n→ ∞. Buckingham and M., arXiv:2202.04217

Recalling the basic scaling x = n
3
2 y, we also scale the spectral

parameter by λ = n−
1
2 y−1η so the fundamental exponent becomes

ixλ− x(−ixλ)−
1
2 = nΦ(η, y), Φ(η, y) := iη − y(−iη)−

1
2 .

Then we set Z(n)(η, y) := (ny)−nσ3Y(n)(x, λ). We also rescale the jump
contour by n−

1
2 y−1 so it becomes fixed in the η-plane.

The key to analyze Z(n)(η, y) for large n > 0 is to introduce a scalar
function η 7→ g(η, y) independent of n and analytic in the complement
of the jump contour such that:

η 7→ F(η, y) :=
(

∂g
∂η

(η, y)− ∂Φ
∂η

(η, y)
)2

is continuous except at η = 0, and there is some g0(y) so that as
η → ∞, g(η, y) = − 1

2 log(−iη) + g0(y) + o(1) as η → ∞.
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Application: the limit n→ ∞. Buckingham and M., arXiv:2202.04217

We use such a g(η, y) to obtain a new unknown by
M(n)(η, y) := eng0(y)σ3Z(n)(η, y)e−ng(η,y)σ3 . The normalization condition
at η = ∞ is simplified so that M(n)(η, y)→ I as η → ∞. There are also
constant unit-determinant matrices Ẽ± such that

lim
η→0

±Re(η)>0

M(n)(η, y)Ẽ±(−iη)−
1
4 (−1)nσ3

exists unambiguously.
To determine g, we consider the function F(η, y) that is analytic except
at η = 0 and that necessarily satisfies

F(η, y) =

{
−1 + iη−1 +O(η−2), η → ∞
− 1

4 y2(−iη)−3 +O(η−2), η → 0.

Therefore, F(η, y) = P(−iη, y)(−iη)−3 where P(µ, y) is a polynomial of
the form

P(µ, y) := −µ3 + µ2 + cµ− 1
4 y2, c = const.
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Application: the limit n→ ∞. Buckingham and M., arXiv:2202.04217

The polynomial P(µ, y) is related to the formal approximating equation

U′(z)2 =
16
y

U(z)3 + 2EU(z)2 − 4
y

U(z) + 1, E = constant.

Indeed, if we match the integration constant E to c by y2E = −8c, then

−64U3

y3 P
( y

2U
; y
)
=

16
y

U3 + 2EU2 − 4
y

U + 1.

The correct assumption to make for large y is that c is chosen such that
P(µ, y) has a double root µ = d and a simple root µ = s. This implies:

s(s− 1)2 = −y2 (cubic equation for s).

For y > 0 large enough, we select the unique negative real root which
has asymptotic behavior s = −y

2
3 (1 + o(1)) as y→ +∞. Then, we

have found g(η, y) explicitly.
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Application: the limit n→ ∞. Buckingham and M., arXiv:2202.04217

We get, for y > 0 sufficiently large:

g(η, y) = (−iη − s + 1)(−iη − s)
1
2 (−iη)−

1
2

+
1
2

log

(
(−iη − s)

1
2 − (−iη)

1
2

(−iη − s)
1
2 + (−iη)

1
2

)
+ iη − y(−iη)−

1
2 .

This has the desired asymptotic behavior as η → ∞ with constant term

g0(y) := 1− 3
2

s +
1
2

ln
(
−1

4
s
)

, s = s(y) < 0.

The effect on the jump conditions is that the exponent Φ(η, y) is
replaced with −h(η, y), where h(η, y) := g(η, y)−Φ(η, y). One can
easily plot sign charts of Re(h(η, y)) in the η-plane to assess where
jump matrices will decay to the identity as n→ ∞.
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Application: the limit n→ ∞. Buckingham and M., arXiv:2202.04217

Here are some sign charts for Re(h(η, y)) for positive real y:

y = 0.4 y = 0.292 y = −0.291

We can lay the jump contour over the landscapes shown in the left two
figures so that all jump matrices decay rapidly to I except on Σ−0 (the
orange segment). Here, the jump reads, exactly

M(n)
+ (η, y) = M(n)

− (η, y)
[

0 (−1)ni
(−1)ni 0

]
, η ∈ Σ−0 .



Algebraic solutions of Painlevé-III (D7)
Application: the limit n→ ∞. Buckingham and M., arXiv:2202.04217

This jump condition is solved exactly by the outer parametrix
M̆(n),out(η, y), which also tends to I as η → ∞:

M̆(n),out(η, y) :=

e(
1
4+

1
2 n)πiσ3

1√
2

[
1 i
i 1

] (
η − is

η

) 1
4 σ3 1√

2

[
1 −i
−i 1

]
e−(

1
4+

1
2 n)πiσ3 .

A local parametrix built from Airy functions is needed to resolve
nonuniformity of the jump matrices near the point η = is. Then
comparing the parametrix to M(n)(η, y) leads to the conditions of a
small-norm Riemann-Hilbert problem, and hence to an accurate
approximation for un(x).
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Application: the limit n→ ∞. Buckingham and M., arXiv:2202.04217

Theorem

There exists yc > 0 such that un(n
3
2 y) = n

1
2 U +O(n− 1

2 ) as n→ ∞ for
y > yc, where U = U(y) is the positive real solution of the equilibrium cubic
8U3 + 2U− y = 0. The error estimate is valid uniformly for y ≥ yc + δ for
any δ > 0.

The graph of U(Y3)
(red) and the graphs of
n−

1
2 un(n

3
2 Y3) for n = 2, 5, 10

(pink, purple, and blue

dotted lines) for Y > y
1
3
c .
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The analysis can also be carried out for complex y with |y| large
enough. The lower bound for |y| depends on arg(y):

Theorem

un(n
3
2 Y3) = n

1
2 U +O(n− 1

2 ) holds uniformly for Y in compact subsets of a
certain unbounded domain E , where U satisfies 8U3 + 2U− Y3 = 0 and is
analytic for Y ∈ E with U = 1

2 Y as Y→ ∞. In particular, un(n
3
2 Y3) is pole-

and zero-free on E for n large. The complement C \ E has a “bow-tie” shape
with boundary consisting of two line segments joining the pairs ±2

1
3 3−

1
2 e

1
6 iπ

and their conjugates, and two curved arcs described by Re(h(id, Y3)) = 0.

The boundary curves can be easily plotted.
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Here is the boundary curve in the Y-plane shown with the zeros of the
Ohyama polynomials Pn(n

1
2 Y).

n = 5 n = 10 n = 20

Dropping the assumption that P(µ, y) have a double root, the cubic
now has simple roots and can be mapped onto the Weierstraß cubic.
The integration constant E now would have to be determined as a
function of y = Y3 by a suitable Boutroux condition to allow the analysis
to proceed. The details are for the future. . .



Thank you!



Why straight lines?
The condition Re(h(id, Y3)) = 0 can be written explicitly in terms of
the simple root s satisfying the cubic equation

s(s− 1)2 = −Y6

and −Y6 > 0 holds on the imaginary Y-axis and the rays through the
“bow-tie” corner points.


