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1. Introduction/motivation : Why quantize?

e Quantum IMD = conformal field theory. This relation has been known
for a long time.

e The Schlesinger system

n x n Lax form: Y =Y (z,t) € C™.

N
3Y=AY, A= 3 Aa(t)’
0z a—=1%—ta
—a Y = BQY, Ba — —Aa(t) .
8ta, 2 ta

0 0
Compatibility: | — — A, — — By] =0
p y [82: o1, al

— Schlesinger system [Schiesinger (1912)]



e Schlesinger system is a Hamiltonian system

0 N tl’(A Ab)
aTAb ={Ha, Ap}, Ha= ) . at :
a b(#a)=1 ‘a1

{(Aa)ij (A} = Sap( (Adirdij — (Aadijon).

e Quantization : {x,*} — [*, =],
H, — Gaudin Hamiltonian
Schlesinger system — KZ equation

0 N Q
—w(t)= Y W ().
ata b(#a):1 ta — tb
[Knizhnik (89)][Reshetkhin (92)] [Harnad (96)] ... [Nekrasov-Tsymbaliuk, 2103.1261] [Saebyeok-Lee-

Nekrasov, 2103.17186].



e Garnier system
Scalar Lax form for ) = ¢ (z,t):

Vzz + u(z, ) =0,

e = A(z, )P, — 3A.(2, ).
Their compatibility is given by

ur ={u, H}, H= /uAdz,

(u(2), u(w)} = (503 + 20(2)0: + u2(2) )3 (= — w),

e This Poisson structure is the classical Virasoro algebra.



e Fuchsian eq: P\ {(N + 3)pts}

o N+3 Ca H, | N _3/4 | 2
u(z) = azl [(z —t4)2 2 — ta] | igl [(Z —¢)? " =z i i

The compatibility — N-Garnier system [Garnier (1912)] (Py1 for N = 1)

Ote  Op;  Otg oq;

e Hamiltonians H, = Hy(q,p,t) are determined by the conditions (i)
z = q; are apparent singularity and (ii) - = oo is non-singular.

e The quantization of the Lax pair for N-Garnier system is given by Vira-
soro CFT with N 4 3 primaries + (N + 1) level 2 degenerate fields.



a Relation to Gauge theory (AGT or BPS/CFT correspondence).
IMD + CFT <« gauge theory

e Example. N x N Schlesinger system on P! with k regular singular
points with the spectral type (=multiplicity of eigenvalues)

1™y, 1, N-1),...,(1, N—-1),(1V).
k—2

— FST system [Fuji-Suzuki (2010)](k = 4), [Tsuda (2010)] (k > 4)
(N=2,k=4— Pyj,and N = 2,k > 5 — Garnier system.)

e FST system corresponds to 4d gauge theory, G = SU(N)®k—3, N; =
2N, Nbf =k — 4. [Gavrylenko, lorgov, Lisovyy, 1806.08650].



Motivation for the quantization of IMD

e Since IMD equations are Hamiltonian system, it is natural to consider
their quantization.

e They are related to CFT.

e The recent developments in gauge/string theories offer further motiva-
tion to quantize the IMD.

The aim of this talk

e To consider the quantization of discrete Painlevé equations.



2. Geometry of the classical (cont/disc) Painleve equa-
tions

a The original six (or eight) Painleve equations

Pnp — Py — P, = (FPi,) — (Pig)

N\ N\

PIV — PII — PI
are non-autonomous Hamiltonian systems

, OH , 0H

¢=—- pP=—F t'=c
Op’

e In the autonomous limt (e — 0), H(q, p, t) is conserved.



s Hamiltonian H for P; (e = 1)

_ql@—=1)(@—1t), 5 a | b ey, dlg—t)
V=" ) & _<q—t Tg—1 q)p} "t — 1)

Hy =t"Hq(g— Dplp+1t) — (a1 + az)gp + a1p + astq},

Hyy, =t Hp(p — 1)¢® + (a1 + a2)gp + tp — ag},

-1/ 2 2
Hyp, =t~ (p“¢” + ¢ + pt + c1pg),

—1/.2 2 t
Hyp, =t (p“q --pq-l-q-l-a),

Hpyny = gp(p—q—1t) — a1p — ang,

p2

¢
H11=5—(2-I-§)p—aq, Hy="—-2¢>—tq.

[Ohyama-Kawamuko-Sakai-Okamoto (2006)]
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s Correspondence to gauge theory
a The Painlevé equations

P — By — P, — Hi, — Hi,

N\ N\

PIV — PII — PI

correspond to the 4d, N' = 2, SU(2) gauge theory

SW4 — SW3 — SW2 — SWl — SWO

pY N\ .
ADQ — ADl — ADO

° SWNf: [Seiberg-Witten (1995)]. A Dy, [Argyres-Douglas (1995)].

a An easy way to see the correspondence is to compare the geometry.
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Example. P, <+ SW, case: In variables (x,y) = (g, pq), the equation
for the level set Hy; = u is written as

o(y = b1)(y —b2) — (1 + D + bsy + be) + - (y — b3)(y — ba) = .

This is a family of elliptic curves known as the Seiberg-Witten curve for
SW4Z

r=20 Tr = o

e For all the equations P;, similar geometry is Known [Okamoto (70’s)|[Sakai

(2001)][Kajiwara et al, nlin/0403009]. They are 8-points blow up of P1 x P1.
12



a The geometric structures in discrete cases.

e Example. Discrete Painlevé equation with Agl)-symmetry

r+y x+ayl
Y, _)

T : (a;x, b—><a;a
(a;x,y) — (p ctar” sty z

e For an initial data (a,z,y) € Rio, the orbits in (log z,logy) coordi-
nates are

o ris SSONS e i N
i e %
» . . N :;:e' Ei‘
'..- .:'* ;.: :”_‘ o
) o R " =
Ao % S%e et oq oo ® o> 000 o000
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e In the autonomous limit (p — 1), the system admits an algebraic
integral:

1
H(x,y) .= x - 4 y+ — = u (constant).
L Y

e For complex initial values =,y € C, the level set H(x,y) = u is a
Riemann surface of g = 1: amoeba

The previous real orbit is the inside boundary of this amoeba.
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e Example. Dgl) case: q-B\/1 [Jimbo-Sakai (1996)]

. a an, a a,q . a a a aq . _ __ aijansarag
T( 1, @2, 3,4,$,y)H( 1, 2’p3’p4,x,y),p: ,
as, ag, a7, ag as, ag, par, pag a3aqas5aeq

g= w6 tae)@tar) _ ara2(y+per)(y+ pag)

y @+a)(@+ay) =z (G+as)@+ag)

e The orbit for autonomous case: p =1
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e Conserved curve H(x,y) = u for autonomous ¢-P,1 (p = 1):

alaz(a7+a8)} n (x+a3)(r+a4)asae

=R g tag)et
x x x Yy
_ (y+a5)y<y+a6)a?—l—{(a1—I—az)y—l—a5a6(ay3+a4)} n (y-l-a?)y(y-l-&ea) alxaz.

< 5d SU(2) Seiberg-Witten curve e.g. [Bao,Mitev,Pomoni, Taki, Yagi (1310.3841)]

e The parameters a1,ao,...,ag
+— Positions of the “tentacles” of the amoeba.
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a Sakai’s classification [sakai (2001)]

4 N
ell Esg

SATN

q Eg—FE7—FEg—Ds—Ag —Apoy1—A141—A1 Ag

add FEg— FE7— FEg — Dy — As —>A1_|_1—>A1—>AO

N\ N\

AQ —>A1 —)AO
- J/

e The (additive, g, elliptic)-difference cases correspond to (4d, 5d, 6d)
gauge theories on (R*, R* x S1, R% x T2).

e Only the cases in red admit continuous (differential) deformation.

e The equations in the list are of genus 1 which correspond to rank 1
gauge theory.
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3. Quantization through Affine Weyl group

e To quantize the (cont/disc) Painlevé equations, we will use the affine
Weyl group approach.

Construct a birational representation of an affine Weyl group,

and study a translation 1" as a discrete flow.

e Standard methods to find suitable birational representation are
(1) Lie theory: classical [Noumi-Y. (2000)]. quantum [G.Kuroki 1206.3419].

(i) Rational surface: [Coble (1929)] [Sakai (2001)].

(iif) Cluster algebra: [Berstein-Gavrylenko-Marshakov, 1711.02063] [Masuda-Okubo-Tsuda, (2021)],..

e The quantization of the method (ii) is the main subject of this talk.
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e Example.

Let X be a blow up of P! x P1
at the 8 points. Picard group
Pic(X) is generated by Hy, Ho,
FE4q, ..., Eg. (— associated pa-
rameters: hi1,ho,e1,...,€eg)

e The affine Weyl group W(Dgl)).

S0 S4
.

§1 — 82 — 83 — S§

—Ee —e
NS y = 00
—1 e
e €5 ‘_h_g
—1
0_66 o_%
=0
o /
€7 €8
L — L — OO
S,L-Q = 1,

8i8; = 8;8;, (8; 85),

Sf,;SjSi — SjSiSj, (Si — S])

W(Dél)) acts on X (birationally on P1 x P1).
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e The explicit actions s; on K = C(h1,ho,e1,...,e8,2,Yy):

so = {e7 <> eg}, s1={e3 > es},
er
h1 h1 hihs ol
S — {63 — —— €7 — —, h2 ? , Y — ;11; y}v
e7 e3 e3er 1 s
ho ho h1ho 1+ @y
e
83:{61%—7 65_>—7 h’l > y L r L : }7
es e1 ejes 1 +esy
sq = {e1 <> ex}, s5={e5 <> eg}.

e Actions on {h;, e;} are the standard ‘linear’ reflections on Pic(X) (writ-

Hia €; eEi)'

ten in multiplicative variables: h; ~ e
— The actions on x,y are their natural birational lift to Pl x Pl
e The Weyl group relations hold true also when x, y are non-commutative:
Yr =— qxy [Hasegawa(2007)]
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a A standard realization for Efr(Ll):

¢-Dg” ] ¢-Eg"

q-Egl) q_Eél)ﬁ

o For DLV we have w = daAdy

> Poisson bracket {log z,logy} = 1.

But for Ele) — quantization is not so easy.

e.g. {z,y} = xy(xy — 1), (for Eél)).
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a We will take another realization.

=0 T = 00
*—+o Yy — O —] e —9o—0o | ——
1 1 ®
NOR ! ON
*—+o y:O ——e e — ——
1) ® ® 1) ® @
GBSV ¢-EGD

e These curves for q-Eﬁl) are of high degree but still g = 1 due to the
multiple singularities.

e We will consider the case q-Eél). [Moriyama-Y. (arXiv:2104.06661)]
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"o Thm. Let k = C(h1,ho,e1,...,e11). On a skew field K = k(x

with yx = qxy, we have the following representation of W(Eél)).

§
,Y)

ho
ho ho hiho 1+ yg
so ={e1g > —, e11 &> —, h1 — , T — T 01
€11 €10 €10€11 1+ ye1q
s1 = {eg <> eg}, so={e7 <> eg},
h1 hq hiho 14 23l
53:{61%—7 67_>— h2 7 y Y 7 1y}
e7 e1 e1e7 14+ -+ ot

s ={e1 <> ex}, ss={ex<re3}, sg={e3 <> eq},
s7 = {eq <> e5}, sg = {es <> eq}.

S0
|

§1 — 82 — 83 — S84 — S5 — Sg — S7 — S8-
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e To apply the representation to Painlevé equation, we want to compute
the action of translations.

For Eél) case, we have (2x)120 directions. Each of them is given by 58
simple reflections — too big! - How can we understand them?

e In commutative case, we have the following factorization

A C1Co - Cg

w@) =7, wly) ="} 5 0

, W E W(Eél)).

Here A, B, C;, D; are some polynomials in x,y. They are complicated
for general w, but have a simple geometric characterization. [Kajiwara et.al
(2003)]

e To understand these polynomials, a lift of the rep. including tau-
variables is essential. Its quantization is our main problem.

24



4. ~ variables

e In addition to {h;, ¢;, x,y}, we introduce variables (7-variables)

01,02,7T1y.--,7T11-

e We put the following g-commutation relations:

Yyr — qxy
oih; = ¢ hjoy,  mie; = "l e,
H1.Ho = Hy.H1 = 1, E;.E; = —¢;;. Other cases are commutative.

e The variables ¢;, 7; and the parameters h;, e; are non-commutative.
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-

-

e Thm. One can extend the representation of W(Eél)) on variables
h;,ej,x,y inCIuding O, T; AS

ho 0109

so = {710 — (14ye11)—2, 111 — —(1+y—) o1 — (14yeq1) I3
T11 T10 e10 T107T11
s1 = {18 <> 19}, sop = {17 <> 18},
(o) O10 €T
s3 = {r] — (14+2-)71 7—>—(1+ ) o5 — —122(14-)Y,
h1” 17 T1T7 e1

sq4 = {711 < 2}, 85={72<—>73}, S6={T3<—>T4}a
s7 = {14 < 75}, sg= {15 <> T6}.

(The actions on {h;, e;, z,y} are the same as before.)

~
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e Reduced actions r;

ri(u) = s;(u), u = hj,e;
ri(u) = u, u=zx,v,
ri(u) = 8;(u)|p=y=0, U =0},T;

The actions r; on {0, 7;} are just a copy of the "linear’ actions on {h;, e; }.

g2 g2 0102

ro — {7'10 — sy T11 — y 01 — }7
711 710 710711
r1 = {18 <+ 19}, 12 = {17 <> T8},
01 01 0102
r3 — {Tl — —— Ty —7 —— 02 — }7
T7 71 T177

rg = {11 < T}, 15 ={m0 < 13}, 716 ={73 < T4},

r7 = {14 <> 15}, 718 = {15 > T6}.
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e The actions s; can be realized as the adjoint actions.

a ] N
e Thm. On variables e;, h;, 7;, 0;, x, y, we have

s; = Ad(G;) oy,

(r2y: )&  Gaok
(e11¥; @)oo (h7:v q) oo

where (2; Q)& = 112 5(1 + ¢'2) is the g-factorial.

%

e The braid relations for s; follow from the quantum dilogarithm identity for
the g-factorial.
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e The representation has a remarkable regularity.

4 ™

e Thm. Forany w € W(Eél)), we have
w(T;) = Fj(x,y) x (monomial of {o;,7;}),

where F; ,(z,y) is a non-commutative polynomial in z,y (cf. “Laurent

phenomena”, “singularity confinement”).
N y

e When ¢ = 1, the polynomial F; ,, can be determined by its bidegree
(d1, d>) and multiplicity m,, at ps.

e We will formulate the analog of such characterization for quantum case

(g = 1).
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Example. For w = sgps3saspsns3snsisgsnsass, wWe have

h?h3
_ 115
w(eyr) = R
ejeseregeipell
2 2
o710
_ 105
w(T11) = F(x,y) ,
7_17_27_77_87_107_11

and

Fz,y) = (1+ )1+ ) + G+ +xx + x2°) y
+ (14 7Lo)(1 + f22) y°
= (14 e11m) (1 +wle11)y) + 2 (1 + 224) (x + *y)

€10
| 2 L B2 L qh2

Note that (dq,d>) = (2,2), (m;) = (1,1,...,0,2,1).
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e Def. Foradata A = (d;, m;), we define a g-difference operator F\(z, y)
by the following two expressions:

m11—1 i—1
P\ = Z H (1+d'e11y) ] (1+q y) U;(y),
1=0 t=di1—m1g
9 tdotmp—1

—Z H H (144" w)H H (144" 1>v<a:>y,

1=0 k=1t=1t-my

Here U;, V; are polynomials with suitable degrees specified by the condi-
tion: deg, F' = dy and deg,F' = d».

e The 1st [or 2nd] expression for Fy, shows the non-logarithmic singu-
larities around z = 0,00 [or y = 0,00], as the g-difference operator:

y(x) = (gx) [or z¢(y) = (g ty)].
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a I
o Thm. For A = (d,m) st w(e;) = hithR2/(eM ... M™1), the

gquantum polynomial F is unique (under the normalization F,(0,0) = 1).

Moreover, we have

w(;) = F; 4, (z,y) x (monomial of {c;,7;}).
N J

This shows the regularity of F; ,, and its geometric characterization.

e From this, the birational action on x, y can also be computed as

T11 TITRT3T4T5T6
w(z) =w(—), w(y)=w( )-

710 773879

o A key fact for the proof: The non-logarithmic property of F; ,, is pre-
served under the Weyl group actions.

This fact follows from a realization of the Weyl group actions as the adjoint
actions. [Moriyama-Y, 2104.06661]
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¢ Bilinear equations. Consider the 4 4 5 + 2 “seed” equations

r(e10)7(2) = 2T () (ei) + T(E)(e),

r(g2)7(e11) = en1r()r(eq) + (E)r(ey),

r(e)T() = Er(I)m(e11) + m(21)7(e10),

r(D7(e) = r(ghm(ern) + 7(GE)T(e10).
r(2)7(e1) = ... = 7(2)7(es),

T(2)7(e7) = ... = 7(2)7(e9).

By taking copies of these relations by the action w & W(Eél)) such as
w(T(N\)) := 7(w - \), we obtain infinite system of bilinear equations
for the T-variables on Eg lattice.

e Thm. The overdetermined system defined above is consistent and

has a solution given by 7(\) = Fy(z, y) 7.
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4 Quantum mirror curve.
e For generic parameters (h;,e;), the curve
C of bi-degree (6,3) with multiplicities m; =

®
®
®

. . @ ®
(162332) = (1,...,1,2,2,2,3,3) is unique
(multiple lines: g(z,y) = mgm:{’ygyl = 0). o -
e [For special parameters:
67,3
p = hihz 1

(e1---eg)(eregeg)?(e1pe11)’

— the curve C form a pencil A\ f(x,vy) + png(x,y) = O.
— The quantum discrete Eél) Painleve equation reduces to an autonomous
integrable system where the pencil gives the algebraic integral.
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e From W(E(l)) symmetry, one can determine the curve explicitly.

3 :
AL Gy’

) + pz3y =0,

C3(x) = ¢ e3y H7(1-|- ) (1

1=

Co(x) = gety H (1+ ){[3:

+q

g+aqrA_1 —|—qu1:132—|— [3]q/<;a:3},

Ci1(x) = e11{[3]q+ [Q]qA—lm-

|[2]Q’€2A1x5 | [3]9’{233 1
| 2 | 3 ’
q q

(kA1 +A_o >x2+f(mA2+A_1>x4

Co(x) = H (1-|-—€L’)

=1 q€;

1—qk 2
k‘ = , A s
M= An=Y

g =€ (1<i<6), a=

+1 - E +1
a, , A:f:Q — (aiaj) )
1<i<5<9
€7€8€9€10€11

h2hs

M(7T<i<9) k=
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e The curve C' was first obtained by S.Moriyama [arXix:2007.05148] aS a quan-
tization of the classical 5d F'g SW curve [Kim-Yagi (2015)].

e As a g-difference operator, the curve should be related to the trigono-
metric Ruijsenaars van-Diejen operator of type Eg [Takemura (2018)] [Noumi-
Ruijsenaars-Y (2020)][Chen-Haghighat-Kim-Sperling-Wang (2021)].

e There appear a good application of IMD to quantum spectral problems
[Berstein-Gavrylenko-Grassi, (2105.00985)]. |t will be useful also for the discrete cases.
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a Summary

e Geometry of classical and quantum Painlevé equations are reviewed in
relation with the gauge theory.

e We constructed a quantum birational rep. of affine Weyl group W(Eél)).
e A lift of the rep. including the tau variables is also obtained.

e Regularity and the geometric characterization of the polynomial F
(quantum 7 quotient) is proved.

e Bilinear form of the qp-Eél) (g-quantum p-difference) Painlevé equa-
tion is given.

e The quantum mirror curve of type q—Eél) is derived from its symmetry.
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Thank you!
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