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1. Consider the two-dimensional Schrödinger equation Ĥψ = Eψ or Ĥψ = i∂ψ/∂t,
where Ĥ = (i∂/∂x−A1)2 +(i∂/∂y−A2)2 +u(x, y), the potential u(x, y) and vector
potential (A1, A2) being periodic in (x, y) with periods T1, T2. In the nonstationary
case u,A1, A2 also depend on the time. The magnetic field is directed along the
z-axis and has zero flux:

∫ T1

0

∫ T2

0
H(x, y) dx dy = 0. We wish to find the widest

possible class of “integrable” cases of the direct and inverse problems where the
eigenfunction ψ and the coefficients of Ĥ can be exactly determined simultane-
ously. In the one-dimensional problem, where Ĥ = −d2/dx + u(x), the integrable
class of “finite-zoned” potentials was discovered and studied in connection with
the theory of the Kortweg–de Vries (K.-dV.) equation (see the survey [2]). In the
one-dimensional nonstationary problem Ĥψ−i∂ψ/∂t = 0, the integrable class of po-
tentials u(x, t) was found in [3]. The present work was stimulated, on the one hand,
by the method of [3] and, on the other hand, by analogous higher K.-dV. equations,
which were discovered by Manakov [4] and preserve the equation Ĥψ = E0ψ with
magnetic field for one level E0.

2. In the two-dimensional stationary problem Ĥψ = Eψ it is natural to distinguish
the Bloch eigenfunctions ψ(x, y, p1, p2), where ψ(x + T1, y) = eip1T1ψ(x, y) and
ψ(x, y + T2) = eip2T2ψ(x, y). Suppose also ψ(0, 0, p1, p2) = 1. The numbers p1, p2

are called quasi-momenta. The discrete energy spectrum En(p1, p2) is defined for
given real p1, p2. Clearly ψ = ψ(x, y, p1, p2, n).

Definition 1. We say that the Hamiltonian Ĥ has good analytic properties if: a) all
of the branches of En(p1, p2) extend to all complex values of the quasi-momenta,
b) a Bloch function ψ(x, y, p1, p2, n) exists for all complex (p1, p2) as a meromorphic
function of (p1, p2) on all n sheets, and c) the complete graph of the multivalent
functions En(p1, p2) forms a complex manifold M̂2 on which the group G = Z×Z of
translations G = Z × Z, p1 → p1 + 2πn/T1, p2 → p2 + 2πm/T2 acts. The quotient
manifold M2 = M̂2/Z × Z is called the manifold of quasi-momenta. A Bloch
function ψ = ψ(x, y, P ) is defined for the points P ∈ M2. A function E : M2 → C

(dispersion law), where Ĥψ = E(P )ψ and C is the complex energy plane, is also
defined.

Definition 2. A Hamiltonian Ĥ with good analytic properties is said to be alge-
braic if there exists a compact complex manifold W and a meromorphic mapping
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E : W → P 1 = (C ∪ ∞) into the extended energy plane, on which an open (ev-
erywhere dense) domain is isomorphic to the manifold of quasi-momenta M2 with
dispersion law E : M2 → C. The complement W \M2 = X∞ is called the part at
infinity. We require that X∞ be the union of a finite number of Riemann surfaces
(algebraic curves). The fibers of E : M2 → C, after going over to the completion
W E → (C ∪∞), have the form E−1(E0) ⊂W ; they are compact Riemann surfaces
X = E−1(E0). For all E0 6= ∞ the intersection X ∩X∞ consists of a finite number
of points. The Bloch function ψ(x, y, P ) has an essential singularity at the infinite
points P ∈ X∞.

We enumerate the properties of algebraic Hamiltonians.
1. For an algebraic Hamiltonian Ĥ on a fiber X = E−1(E0), E0 6= ∞, there are

precisely two infinite points P1 ∪ P2 = X ∪X∞; if w1, w2 are local parameters in
the vicinity of the points P1, P2 on X, then the Bloch function has the asymptotic
behavior

ψ ∼ ek1(x+iy)[c1(x, y) + c1(x, y)µ(x,y)/k1 +O(1/k2
1)],

ψ ∼ ek2(x−iy)[c1(x, y) + c1(x, y)ν(x,y)/k2 +O(1/k2
2)],

where k1 = 1/w1, k2 = 1/w2, k1 →∞, k2 →∞.
2. The divisor D of the poles of ψ on X = E−1(E0) has degree n(D) = g,

D = D1 + · · ·+Dg, where g is the genus of the curve X if X is the general fiber of
E. The divisor D does not depend on x or y.

We usually introduce a more general class of complex quasi-periodic weakly
algebraic Hamiltonians Ĥ. It is required that there exist a “Bloch” eigenfunction
ψ(x, y, P ) such that: a) the differential dψ/ψ = (ψx dx+ψy dy)/ψ is quasi-periodic
with the same group of periods as Ĥ, b) ψ is meromorphic on a complex manifold
M2 and, as in Definition 1, Ĥψ = E(P )ψ, E : M2 → C, c) an energy level E = E0

in M2 can be completed to a complex algebraic curve X, and d) properties 1 and 2
(see above) are valid.

3. We now turn to the solution of the inverse problem.

Lemma 1. If a pair of points P1, P2 and a divisor D = D1+· · ·+Dg are given on an
arbitrary Riemann surface X of genus g, then there exists a function ψ(x, y, P ) with
pole divisor D and the asymptotic behavior indicated in property 1. This function
is uniquely determined to within a common factor c1(x, y) → c1(x, y)f(x, y), c2 →
c2f .

The construction of this function is carried out according to the scheme of [1],
which has already been repeatedly used in the works of the authors, Matveev and
Its (see the survey [2] and the paper [3]).

Lemma 2. The function ψ(x, y, P ) constructed in Lemma 1 satisfies the equation
Ĥψ = 0, where

Ĥ = −∂2/∂z ∂z̄ +Az̄∂/∂z̄ + v(x, y) = (i∂/∂x−A1)2 + (i∂/∂y −A2)2 + u(x, y),

c1 = 1, c2 = c(x, y),

A1 + iA2 = Az̄ = ∂ ln c(x, y)/∂z, Az = A1 − iA2 = 0,

v(x, y) = −2∂µ/∂z̄.
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The functions A1, A2, u(x, y) and the differential d lnψ = (ψx dx+ ψy dy)/ψ are
almost periodic with a common group of periods depending only on the curve X and
the pair of points P1, P2 ∈ X.

For any anti-involution T : X → X the group H1(X) has a basis of cycles ai, bi ∈
H1(X) such that ai ·bi = δij , T∗ai = ai, T∗bj = −bj . We choose a basis (ω1, . . . , ωg)
of differentials of the first kind such that

∮
ai
ωj = 2πiδij . The matrix Bkj =

∮
bk
ωj

is real and T ∗(ωk) = −ω̄k. We choose two differentials Ωα of the second kind
having the form Ωα ∼ (dwα/w

2
α + a regular differential) near the points Pα and

such that
∮

ak
Ωα = 0. Let Ujα =

∮
bj

Ωα. If T (P1) = P2, then one of the relations
Uj1 = ±Uj2 is valid if T ∗w1

= ±w̄2. Let D(x, y) =
∑g

j=1Dj(x, y) be the divisor of
zeros of ψ(x, y, P ). By the scheme of [1], in every case we get

(zUk1 + z̄Uk2) =
g∑

j=1

∫ D(x,y)

Dj

ωk, z = x+ iy

(to within a lattice in Cn). Suppose the anti-involution T has at least g real (fixed)
ovals that are independent in H1(X). These ovals provide a semibasis of cycles
a1, . . . , ag. We take a divisor of poles of the form D =

∑g
j=1Dj , where the point

Dj lies on the oval aj . Suppose T (P1) = P2 and T ∗(w1) = w̄2.

Lemma 3. If the points P1, P2 lie outside the ovals (a1, . . . , ag) and the poles Dj

lie on the different ovals aj, then the functions iA1, iA2, u are smooth and real.

This yields a sufficient (but not necessary) condition for the boundedness of the
coefficients iA1, iA2, u(x, y).

Let θ(η1, . . . , ηn) be the Riemann θ-function constructed from the matrix Bkj =∮
bj
ωk. The above lemmas imply

Theorem 1. Suppose ψ(x, y, P ) has the asymptotic behavior

ψ ∼ ek1z(1 + µ(x, y)/k1 + · · · ) and ψ ∼ c(x, y)k2z̄(1 + ν(x, y)/k2 + · · · ),
near arbitrary points P1 and P2 on X, where w1 = 1/k1 and w2 = 1/k2 are local
parameters on X in the vicinity of P1 and P2.

Then the coefficients of Ĥ have the form

u(x, y) = −2
∂2

∂z ∂z̄
ln θ(~U1z + ~U2z̄ + ~W (D)),

Az̄ = A1 + iA2 =
∂

∂z
ln

[
θ(~U1z + ~U2z̄ + ~V1 + ~W (D))

θ(~U1z + ~U2z̄ + ~V2 + ~W (D))

]
,

Az = A1 − iA2 = 0, D = D1 + · · ·+Dg is a divisor of poles,

Wj(D) =
∑

k

∫ Dk

Q

ωj+
1
2
−1

2
Bjj+

∑
s 6=j

∮
aj

(∫ t

Q

ωs

)
ωj(t), t ∈ aj , Vαj =

∫ Pα

Q

ωj ;

Q is a fixed point. The function ψ(x, y, P ) satisfies the equation given by the formula
Ĥψ = E0ψ and is given by the formula

ψ(x, y, P ) = exp

{
z

∫ P

Q

Ω1 + z̄

∫ P

Q

Ω2

}
θ(~U1z + ~U2z̄ + ~W (D) + ~f(P )) θ( ~W (D))

θ(~f(P ) + ~W (D)) θ(~U1z + ~U2z̄ + ~W (D))
,

where ~f(P ) = (fj(P )), fj(P ) =
∫ P

Q
ωj.
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The magnetic field is directed along the third axis and has the form

H(x, y) =
∂2

∂x ∂y
ln
θ(~U1z + ~U2z̄ + ~W (D) + ~V1)

θ(~U1z + ~U2z̄ + ~W (D) + ~V2)

4. The coefficients of the linear operators

Ĥ =
∂2

∂z ∂z̄
− ∂ ln c

∂z

∂

∂z̄
− u,

found in this note from a curve X, a pair of points P1, P2 and a divisor D, satisfy
certain nonlinear equations. Any algebraic function f on X with poles of orders
m1,m2 only at the points P1, P2 induces, by the scheme of [3], an operator Ĥf such
that Ĥfψ = fψ, where

Ĥf =
(
∂

∂z

)m1

+
(
∂

∂z̄

)m2

+
m1∑
i=1

ai(x, y)
(
∂

∂z

)m1−i

+
m2∑
j=1

bj(x, y)
(
∂

∂z̄

)m2−j

.

The following relations hold:

[Ĥf , Ĥ] = D(f)Ĥ, [Ĥf , Ĥg] = D(f,g)Ĥ,

where Df , D(f,g) are differential operators, and f and g are functions on X with
poles only at the points P1, P2. These relations are equivalent to equations on the
coefficients c(x, y), u(x, y).

We consider an example that arose in the course of a discussion between the
authors and A. R. Its on the relationship of the results of the present note with the
Sin-Gordon equation. Suppose two functions f and g on X have a pole of second
order only at the points P1, P2 respectively, with k2 ∼ f , k′2 ∼ g. Then

Ĥf =
∂2

∂z2
− 2

∂µ

∂z
, Ĥg =

∂2

∂z̄2
− 2

∂ ln c
∂z̄

∂

∂z̄
.

From the relations [Ĥf , Ĥ] = D(f)Ĥ, [Ĥg, Ĥ] = D(g)Ĥ, [Ĥf , Ĥg] = D(f,g)Ĥ we
obtain the collection of nonlinear equations

vzz − v(czz/c) = 0, 2uzz = (czz/c)z̄z,

vz̄z̄ − v(cz̄z̄/c) = 0, 2uz̄z̄ = (cz̄z̄/c)zz̄, v = u/c.

Nontrivial solutions of these equations are obtained from the compatibility con-
ditions αzz̄ = φ(α), where α = ln c, φ(α) = ae2α + be−2α, u = κc2 = κe2α,
κ = const = 2a, b = const.

For Liouville’s equation ∆α = e−2α we have u ≡ 0. The relation u = κc2 is
not obvious from the formulas of Theorem 1. After making the change of variables
z → x′ + t = ξ, z̄ → x′ − t = η, we get

Ĥ → Ĥ =
∂2

∂η ∂ξ
− ∂α

∂ξ

∂

∂η
− u.

The equation Ĥψ = 0 takes the form

i
∂ψ1

∂t
= i

∂ψ1

∂x′
+ c1ψ2, ψ = ψ1,

i
∂ψ2

∂t
= −i∂ψ2

∂x′
+ c2ψ1, ψ2 =

i

c2

∂ψ1

∂ξ
, u = −c1c2, α = − ln c1.

When u = κc2 we will have c1 = −c, c2 = κc (the inverse problem for this
equation, when c1 and c2 decreases as |x| → ∞, was first considered in [5]).
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Finally, we note that solutions of the equation(
i
∂

∂t
−∆− a(x, y, t)

∂

∂y
− u

)
ψ = 0

can be obtained in an analogous manner under the assumption that ψ has the
asymptotic behavior (ψ ∼ ekx+ik2t, ψ ∼ cek′y+ik2t).

The methods of this note can be generalized to dimensions n > 2, it being always
necessary that the spectral data uniquely determining the operator Ĥ be given on
a Riemann surface X.
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