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FINITE ZONE SOLUTIONS OF RANK 2

I. M. KRIČEVER AND S. P. NOVIKOV

I. The theory of finite zone solutions of the Korteweg–de Vries (K.d.V.) equation
in one space variable (see the survey [1]) is well known, as well as its analogs such
as the sine-Gordon equation, the Toda lattice equation, and so on. These solutions
are naturally connected with the theory of holomorphic line bundles (with fibre
C1). Therefore, in the sequel we shall call them finite zone solutions of rank 1.
The family of finite zone solutions of rank 1 for the K.d.V. equation in two space
variables (the Kadomcev–Petviašvili (K.P.) equation) was obtained in [2].

In their recent papers [3] and [4] the authors discuss new perspectives on the
inverse problem method, that are connected with the application of holomorphic
vector bundles (with fibre C1) over Riemann surfaces (algebraic curves). These
papers are devoted to the following problems:

a) The problem, formulated in the twenties, of the effective classification and
calculation of the coefficients of commuting linear ordinary differential operators
whose orders are divisible by l [5]. The connection between this problem and l-
dimensional bundles is very simple and follows naturally from the results in [2]
and [6]. On the inefficient abstract-algebraic level some classification language was
discussed in [7] and [8], while analytic constructions are given in [3]. In this paper
explicit formulas are for the first time obtained for the coefficients of commuting
operators of orders 4 and 6, which do not reduce to the rank 1 case (see Theorem 3).

b) The problem of constructing new large classes (depending on l − 1 arbitrary
functions of one variable) of exact solutions for the two-dimensional K.d.V. (K.P.)
equation, and subsequently for other equations of mathematical physics in two
space variables, admitting a commutative representation. A “latent”, but appar-
ently fundamental, connection between this problem and holomorphic fiberings was
discovered by the authors in [4].

II. We recall the results obtained in [3] and [4]. A holomorphic fibering η of rank l,
that is, a fibering with fibre Cl whose base is an algebraic curve Γ of genus g, where
the determinant det η has the degree lg, is an algebraic-geometric object. The l-
tuple (ξ1, . . . , ξl) of holomorphic sections, which in general depend on a collection
of distinct points γ1, . . . , γlg ∈ Γ is called “equipment”. We assume that this linear
dependence has the form

(1) ξl(γj) =
l−1∑
i=1

αijξi(γj), j = 1, . . . , lg.
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The collection (γj , αij) is called the Tjurin parameters, defining a holomorphic
vector bundle which is stable in the sense of Mumford [9].

These same parameters appear in the “clothes” of classical analysis. Following
[4], we introduce the Baker–Ahiezer multiparameter vector ψ = {ψs(x1, . . . , xq;P ;
x10, . . . , xq0)}, 1 ≤ s ≤ l, where P ∈ Γ and xi and xi0 are numerical parameters.
This vector-valued function is given by means of the following requirements:

1) all the coordinates ψs are meromorphic on Γ less P0;
2) the poles of all the ψs do not depend on (x1, . . . , xq), are located at the points

γ1(x0), . . . , γlg(x0), and are of order one;
3) the residues φsj of the components ψs(x, P, x0) of the Baker–Ahiezer function

at the poles γj are all proportional to the residue φij with the coefficients αsj(x0)
independent of x = (x1, . . . , xq):

(2) φsj(x, x0) = αsj(x0)φlg(x, x0);

4) as P → P0 the vector-valued function ψ = {ψs} is representable in the form

(3) ψ =

(
ξ0 +

∞∑
s=1

ξsk
−s

)
Ψ0(x, k;x0),

where ξ0 = (1, 0, . . . , 0) and ξs = ξs(x, x0) are row vectors, and z = k−1(P ) is a
local parameter in the neighborhood of P0. The l × l matrix Ψ0 is given by means
of the following requirements: the matrices

(4) Ai(x, k) =
∂Ψ0

∂xi
Ψ−1

0 , i = 1, . . . , q,

are polynomial in k; they satisfy the compatibility equations

(5)
∂Ai

∂xj
− ∂Aj

∂xi
= [Aj , Ai];

moreover, Ψ0(x0, k;x0) = 1.
The above analytic properties uniquely define the vector-valued function

ψ(x, P, x0), which by the same token is uniquely given by the quantities Ai, Γ,
P0, γj and αij .

For one variable, q = 1, such a function is constructed in [3], where it was
established that for a specific choice of A1(x, k) the components of ψ(x, P, x0) are
eigenfunctions of linear ordinary differential operators. Moreover, they correspond
to the same eigenvalues, which by the same token turn out to be degenerate with
multiplicity l; the orders of the operators are multiples of l.

The authors have shown ([4], §3) that a Baker–Ahiezer function ψ can be con-
structed which depends on q = l(g + 1)− 1 parameters x1, . . . , xq. It is likely that
this number q is the maximum possible. The dimension of the moduli space of
the equipped fiberings is equal to l2g, where g is the genus of Γ. For l > 1 we al-
ways have q < l2g. It follows from this that it is possible to construct q-parameter
commutative groups of transformations of the moduli space whose orbits are not
tori for l > 1. Consequently, the problem does not reduce to θ-functions. Thus,
according to [3], for l > 1 the calculation of ψ requires the solution of a system of
singular integral equations on a circle.

In [4] the authors have shown that in the important case q = 3, x1 = x, x2 = y,
x3 = t the quantities A1, A2 and A3 can be chosen so that the row vector ψ is
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annihilated by scalar operators whose form does not depend on l:

(6)

(
∂

∂t
−A

)
ψ = 0,

(
∂

∂y
− L

)
ψ = 0;

L =
∂2

∂x2
+ u, A =

∂3

∂x3
+

3
2
u
∂

∂x
+ w.

Consequently, the following compatibility equation is satisfied:

(7)
[
∂

∂t
−A,

∂

∂y
− L

]
= 0.

By the same token the coefficients u(x, y, t) and w(x, y, t) satisfy the K.P. equation

0 =
3
4
∂2u

∂y2
+

∂

∂x

(
∂u

∂t
+

1
4

(
∂3u

∂x3
+ 6u

∂u

∂x

))
;

3
4
∂u

∂y
=

3
4
∂2u

∂x2
− ∂w

∂x
.

Definition. The solutions u and w constructed above are called finite zone solu-
tions of genus g and rank l.

III. In view of the fact that it is impossible to simplify the calculation of ψ for
nonsingular curves of genus g ≥ 1, we develop methods of computing the solutions
which do not require the preliminary calculation of the Baker–Ahiezer vector.

Lemma 1. The Tjurin parameters (γj , αij), regarded as functions of x0 =
(x10, . . . , xq0), satisfy a compatible collection of differential equations with respect
to the variables xi0, whose right-hand sides can be algebraically defined in terms of
γj , αij, the curve Γ, the point P0, and the coefficients of the expansion in k−1 = z

of the matrices Bi(x, P ) at the point P0, where Bi = Ψ̂xiΨ̂
−1, Ψ̂ being the matrix

of the Wronskian for ψ.

The computational algorithm for the right-hand sides can be obtained from [3],
§3 and [4], §3. In the latter for g = 1 and l = 2 these right-hand sides are written
in an unnecessarily complicated form and with some sign mistakes. The following
proposition holds.

Lemma 2. Let g = 1, l = 2 and suppose that the matrices A1, A2 and A3 are
chosen in the form given in [4], §1, Example 1. Then the quantities γ(x0) and
α(x0) satisfy the system of equations

(8)

γix = (−1)i(α2 − α1)−1, αix = α2
i + u+ (−1)iΨ(γ1, γ2, P0),

γiy = 1, αiy = −v(x, y, t),
γit = (−1)i+1(α1α2 + u/2)(α2 − α1)−1,

where we have performed the substitution x10 = x0 → x, x20 = y0 → y, x30 = t0 →
t, α11 → α1, α21 → α2. The quantity u(x, y, t) satisfies the Kadomcev–Petviašvili
equation by virtue of (7) and 2vx = uy. The function Φ(γ1, γ2, P0) has the form

(9)
Φ(γ1, γ2, P0) = ζ(γ2 − γ1) + ζ(P0 − γ2)− ζ(P0 − γ1),

dζ(z)
dz

= −℘(z), ζ(−z) = −ζ(z), (℘′(z))2 = 4℘3 + g2℘+ g3,

where ℘(z) is Weierstrass’ ℘-function [10].
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We introduce the notation γ1 = y = c(x, t), γ2 = y − c(x, t) + c0, c0 = const,
α1 − α2 = z(x, t), α1 + α2 = w(x, y, t), Φ = Φ(y, c, c0).

From the addition theorem for elliptic functions [10] it follows that the quantity
Q = ∂Φ/∂c+ Φ2 does not depend on y. The equations (8) take the form

(10)
u(x, y, t) = −α2

1 − α2
2 + φ(x, t) = −z

2 − w2

2
+ φ(x, t);

wx = −z
2 + w2

2
+ 2φ(x, t).

Substituting the expression w = (log z)x + 2Φz−1 in the equation for wx, we
obtain

(11)

φ(x, t) =
1 + 3c2xx

4c2x
+Qc2x −

1
2
cxxx

cx
,

u(x, y, t) = − 1
4c2x

+
1
4
c2xx

c2x
+ 2Φcxx + c2x(Φc − Φ2)− 1

2
cxxx

cx
.

ct =
3

8cx
(1− c2xx)− 1

2
Qc3x +

1
2
cxxx.

It follows from [4] that the equation in t for c(x, t) is “latently” isomorphic to the
K.d.V. equation, but an explicit construction of this isomorphism has not been
obtained.

Theorem 1. The nonsingular solutions of the equation (11), bounded and smooth
with respect to x and such that cx = z−1 6= 0 and z 6= 0, generate nonsingular
solutions u(x, y, t) of the K.P. equation which are periodic in y and bounded with
respect to x. If the function c(x, t) depends only on x+at, then the solution u(x, y, t)
of the K.P. equation depends on (x + at, y). For g = 1 and l = 2 all the solutions
of the K.P. equation depend nontrivially on x and y.

We consider the question of nonsingular periodic solutions of the form u(x+at, y)
for g = 1 and l = 2. It follows from the foregoing arguments that to this end it is
necessary to find a periodic solution of the equation (11), where c = c(x+at), with
cx 6= 0 and z = c−1

x 6= 0 for all x. We choose c as independent variable and make
the susbtitution z = h−2(c). Then the equations (11) take the form

(12)
h′′ =

d2h

dc2
= −∂W (h, c)

∂h
,

W = −1
2
Q(c, c0)h2 + ah−2 − 1

8
h−6,

where Q(c, c0) = Φc + Φ2 is an elliptic function. A qualitative analysis leads to the
following conclusions.

Theorem 2. a) The K.P. equation has a nonsingular periodic solution of genus
g = 1 and rank l = 2, of the form u(x+ at, y) for a ≤ 0, if and only if the equation
h′′ = Qh has a solution without zeros.

b) For sufficiently large a > 0 the K.P. equation always has a nonsingular peri-
odic solution of genus g = 1 and rank l = 2 which is of the cnoidal wave type and
periodic in x, y, t. The calculation of these solutions reduces to finding the periodic
nonvanishing positive solutions h 6= 0 of the equations (12).
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IV. For one variable, q = 1, in the case of genus g = 1 and rank l = 2 the
solution of the equations (8) in x leads, using results obtained in [3], to the explicit
calculation of nontrivial ordinary commuting operators L4 and L6 of orders 4 and
6, respectively.

Theorem 3. The operator L4 of rank 1 has the form (see the formulas (11))

L4 = L2 − cx[℘(c+ c0)− ℘(c+ c1)]
d

dx
− ℘(c+ c0)− ℘(c+ c1),

where L = d2/dx2 + u(x). The operator L6 is connected with L4 by the algebraic
relation

L6 = 4L3
4 + g2L4 + g3, L6 = 2L3 +D.

where D is a third order operator.

The analysis for g = 1 and l = 3 is more complicated. The corresponding results
will be published later.
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