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1.INTRODUCTION
The general nonrelativistic scalar Schrodinger operator in an

external time-independent electromagnetic field Fij has the form

- n R n
H =§ ~-ieA + s =X, .eny ,
o a=1(aa ie a) u(x) x =(x X ) .
i’j=091’ ceeyn, o=1, ..., n, 8a=3/3x.

By definition, we have electric and magnetic fields:

F, = ~F , F =E = , F =H =93A-3A
@ ij ji on o aau aB aB aa g aB [+3

"Gauge" transformations (3) preserve the equation Hy = ey
3 A > A + s exp(-ie , , .
(3) g T A, T 0P U bexp(cieg) , uswu, ese

~

Using (3), we may reduce the operator H for n = 1,2 to the

canonical form:

(4) n=1: H=23" +ulx), 3=23/x,
(5) n=2: H=233+A43 + V(z,z) ,
z = x+iy , z =x-iy , 3 =1203/3z , 9d = 3/dz

It is well known that remarkable one-parametric families of the linear

operators (4) are very important in the soliton theory ([1]):

(6) 4 = [HB ] ("Higher KdV's")

operator, that the equation (6) is equivalent to nonlinear P.D.E.
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u, = Qm(u,ux, U )
3
(7) B1 =3 + v (uaxraxu) *—*@1 = u + 6uu
B =38 — ¢ =u
o X o X

Direct generalization of (6) to n = 2 1is possible only in parabolic
case (8)

(8) ﬁ:f’:oa +32+u,oen3
y X

For example, the well-known KP-equation

X
9 .
30W = u_-6uu - u , O ==*1
y t X XXX

is equivalent to "Lax-like" equation:

N

» 3 3
— = = W
it [P,B] , B BX + 5 uax +

(V.S. Driuma, A.B. Shabat, V.E. Zakharov 1974)

There is an elementary theorem: any Lax-like deformation (6) of
the class of all smooth two-dimensional Schrbdingcr operators (1) is
trivial for nz 2.

Nontrivial two-dimensional generalization of the equation (6) was
found by S.V. Manakov in [2]:

aii

T [H,b] + CH

(10)

The deformation (10) for a certain linear P.D.0.'s B,C and Schrodinger
operator (5) is equivalent to the system of nontrivial, nonlinear
P.D.E.'s

v

t

A
t

d (V, A, V., A,V ,A, ...)
1 X X y y

S (V, A, V., A,V ,A, ...)
2 X X y y

for all smooth (complex) coefficients V(x,y,t) , A(x,y,t)
The equation (10) looks 1like Lax equation on the set of all

solutions of (12):

a

dft

dt - [HyB])W =0

(12) HY = 0« (

The periodic inverse spectral problem for two-dimensional Schrodinger
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o
w

operator (1) based on the spectrazl data corresponding to one fixed
energy level € = 80 , was posed and considered by B.A. Dubrovin, I.M.
Krichver and S.P. Novikov in [3}, [4]. It was solved in [3] for a
certain class of "algebraic" operators the two-dimensional analog of
the well known '"finite-zone" operators on the given level ¢ = e, ~ see
§1. Some nontrivial sufficient 'reality" conditions (such that i is
self-adjoint but A #0) were noneffectively found by I.V. Cherednic in

[51.

Problem. Which spectral data in [3] provide the real '"purely
potential" operators (13)? The class (13) is most important (see the
end of §1):

(13) Az0, H=033+V(x,y), VER

This problem was partialy solved in the recent papers of S.P. Novikov
and A.P. Veselov ([6], [7], [8]) in terms of the Riemann surfaces with
some group of involutions and corresponding Prim's O-functions —
see §2.

P.G. Grinevitch and R.G. Novikov have recently found the analog

of these results for some class of decreasing potentials V-0 ,
2 2

x~ + y =+ , using the technique of S.V. Manakov ("nonlocal Riemann
problem" -~ see [9]). But the conjecture of S.P. Novikov (below) is

probably untrue for this class; it is probably not dense in the class
of all smooth rapidly decreasing potentials.

The deformations (10) preserving a class of the purely potential
self-adjoint operators (13) were found and studied in.

The simplest and important example is

aH R R

o= [A,B) 4 £

i =33 +V, B=9+9, @=83+u8 ,
(14)

v - B>+ 3V + V) + 3@V

du = 33V , f =3u + ou .

It is possible to exploit (14) for the effectivization of O-functional
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A

formulas for H (and also for the recognition of Prym's ©O-functions,
like in [9] for the Jacobian varieties. This program was developed
recently by I.A. Taimanov. Some results see in §3).

The last §4 contains a difference analog of the previous theory.
There is a special class of the difference operators, whose spectral
properties are in some natural sense analogous to the properties of
continuous purely potential operators (13). The results of 8§4 were
obtained recently by I.M. Krichever. They may be very useful for the

proving of the following conjecture 1.

Conjectures. (S.P. Novikov) 1) The algebraic (rank £=1) operators
ﬁ corresponding to one energy level generate a dense family among all
the smooth real, purely potential periodic operators for n=2 .

2) All such algebraic operators have the spectral data described
in [7] (the analogous problem is not solved for KP either).

3) Formula (37) determines the solutions of the equation (36),

j=1 , iff B N is the Riemann's matrix of some admissible Prym's
variety and ﬁl s 32 , W are the periods of corresponding differ-

ential forms. (The constant ¢ and components W_ are the functions
J

of Buv , U 62 —-see the end of §3).

1 ,
§1. TWO-DIMENSIONAL ALGEBRAIC OPERATORS.
SPECTRAL DATA AND INVERSE PROBLEM.

First recall some definitions.
DEFINITION 1. Two-dimensional P.D.O. L1 is algebraic iff there

are nontrivial P.D.0O.'s L2 s L3 s Bij such that (15) is true

L = s i,j =1,2,
(15) [Li s j] Bile i,j=1,2,3

General properties of algebraic operators:

1. There is a polynomial P(),y) such that

(16) ley =0 = P(L2 , L3)\P =0
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2. Common eigenfunction ¥(x,y,A,u)

(17) LIW o, L2 AY L3W u

is meromorphic on the Riemann surface [ ; see its analytical properties
below:
P(A,u) =0, (A,n) =QeT

U8 ey ) = ¥y,
Definition 2. Rank of an algebraic operator L1 is the dimension
of the space ¥(x,y,Q) in a "general" point Q€T

We shall discuss in this work only the algebraic operator of
rank &=1 . See the general theory £ >1 in [10].

Suppose that I is nonsingular and rank £=1 . The analytical

properties of algebraic Schrodinger operator (1), were described in [7]1:

1. The common normalized eigenfunction V¥ (x,y,Q) , HY = O,
¥(0,0,Q) =1, Q€T is meromorphic on F\(PlL)PZ); the points PIZPZEI'
-1 -1

are some "infinite" points with local parameters k1 =V k2 =V,

K(Q >, Q>P , i=1,2.
i i

2. In general ¥ has g different poles Q1 yeees Qg , whose po-

sition is independent of (x,y) ; g = g(I') is the genus of T .

3. ¥ has the asymptotic (19):

k. z
1 i
Q> P, ¥oy,Q) = l(x,ymk 5“*2121”1"1) ,
(19) QP Poy@ = Lok DY )
2’ 27 iz174 2
z = x+iy , z = x-iy .
Definition 3. The set of quantities (I', P., P, k., k_, Q ,...,Q)
E— 17271 27 1 g
with the properties 1.-3., mentioned above are 'spectral data" for
generic algebraic Schrodinger operator L1 = H of the general form (1)

for n=2 and rank £=1.

Theorem 1. Any spectral data (T, P., P, k., k., Q ,...,Q ) for
—eer|m o 1ot (1 K Ny
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nonsingular surface [ with the genus g(I') = g , generic divisor
D = Q1+...+Qo , any two points Plz P2 and k1 , k2 local parameters

o -~
determine the unique function V¥ (x,y,Q) and Schrodinger operator H

such that

i
ot
=
1

c1: 93 + A3 + V ,

Hy

an

,V=—'_

=—8,an azl

n
o
=

2

A

The coefficients of H are complex, periodic or quasi-periodic (with

2g quasi-periods) functions on (x,y):

V =39 4n 0O Uz + UE+C,O+A(P1)) ,

2
0) s oo o( Uz + Uyz + g+ A(Pz))
o ( Ujz + Uyz + g+ A(Pl))
O (A(P)+z U +2 U+ JO(A(P )+ ) P P
¥ o= A0 o (u(f 2,042 2)
O (A(P)+g JOCA(P )42 U +2 U+ ) P 1 P, 2
Changes of local parameters w, o= awi toey Wy = bwé +... leads

only to the linear transformation
B> o=a 'b70(a'5" + A3 + V'(2,2)
z=az' , z=5bz", A' =aA(az', bz') , V' = abV(az', bz').

For the self-adjoint operators H with periodic coefficients A, V

a function ¥ is a Bloch's function corresponding to the zero-energy

level.
Here (a., b.) 1is canonic basis of H (I, Z) , ® N o -
i3 1 1 8
the basis of the holomorphic forms on [ and Ql, Qz are the mero-
morphic forms with the poles only in Pl, P2 respectively such that
aca,=bob =0, a,ob,. =6 _;
1] i E N 1]
®. = 2mi o =B = =0,
ﬁ uﬁ 2n16jk R ﬁ w, ™ BVU , ¢ Qa
K . " e
Q =-w "dw (l4reg.) , a=1,2, U . $ Q
a o a o % o
" ~0
o, ...,ng) =00, ey ng) )
~ 0 1 IS .
) N = exp { =< B(N+q),N+o > + <n +27iB,N+a>},
Olgltnyseeeon) =} p {5 <B(N+a) n +27mi 8, Mo}

Nez®
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A:T - J) is the "Abel map":
Pyt - Po. =1, ...
A(P) 4)wi (i=1, -5
o

0 is constant, which determines from the property

P -1
(fP Q - a) = Wt 0Gv))
o
The important problem is: for which spectral data the corresponding

operators have A = 0 and V real and smooth.
It will be discussed in §2.

There is an important class of two-dimensional operators in the
external periodic (or constant) magnetic field H(a,y) and the

electric lattice potential V(x,y)

H=233 +A4A3 +V , V(X+T1,y) V(x,T2+y) = V(x,y) ,

(22)

1}

H(x,y) = 3A(x,y) = H(x+T|,y) = Hx,y+T)

For the operators (22) we have periodic fields, but nonperiodic
operators. This class is not contained in our theory. Its mathematical
theory is quite different - see [11]. Our theory considers only the case
in which the average magnetic field H (or the magnetic "flux") is
trivial - "topologically trivial" magnetic fields as the cohomology
classes on the torus T2 . In this case "physical" magnetic fields are
usually identically zero in the real crystals. So the most important

case in our theory is A = 0 (8§2).

§2. SCHRODINGER OPERATORS WITH THE ZERO MAGNETIC FIELD.
PRYM's ©- FUNCTIONS.

Simplest examples of the algebraic purely potential operators
are (23)
(23) =03 + V(x,y) o V(x,y) = V() + Vo(y)

(here the operators H, = 82 + V. (x) and H_ = 82 + V_(y) are "finite-
1 X 1 2 v 2
zoned" or "finite-gap" l-dimensional operators). The operators (23) are

algebraic, corresponding to any level the last property of (23) makes
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an exception - see §3.

Theorem 2. 1) Any spectral data of the theorem 1, satisfying the
following conditions a), b), give purely potential Schrodinger operators
H=23 + V(x,y):

a) the nonsingular surface [ has an involution

o :T'~>T, 02=1

such that
(24) O(Pl) = P1 , O(PZ) = P2 , O(Ra) = - ka(a=1,2)
b) the divisor of poles 2 = Q1+...+Qg satisfices the relation-
ship
(25) D +0(2)=2K+P, +P

1 2 "
Here K is the canonical divisor (a divisor of differential forms) and

z means the so-called "linear equivalence" of the divisors.

2). The potential V is real if specral data have the following

properties:

c¢) There is an anti-involution T

T:T~>T
such that the pair (0,T) generates the group 22 x 22
2 ~
(26) =1, 10=o01, T(Pl) =P, T(kl) =k,

and the divisor % is Tt-invariant:

(27) (D) =9

Remark. I. Shafarevitch and V. Shockurov explained to us that (25)

is solvable iff the involution ¢ has exactly 2 fixed points Pl’ P2 -
see .

Choose the canonical basis (21) aj, bjGPH(F) , J=l,...,8 = ng
the basis of holomorphic differential 1-forms uﬁ and the meromorphic

differentials Qa , o =1,2 with the properties (23), (28):

(28) o(ai) =a, , o(bi) = bi+g

[o] ]

2 , 1= 1,...,g0
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Definition 4. The Prym differentials « are meromorphic
differentials on I' such that
oF w=-w.
We can construct the basis of the holomorphic Prym differentials

from (28)
Cee,W W, =w, -
1’ ’ | i itg
gO g0

(29)

ﬁw'.-—é., B.= W,
a J kj kj ng

= BJk
The lattice (29) determines some abelian variety P(T',0) ("Prym variety")

and the O-functions (30), which depend on go variables:

o(n.,...yn )=0[°](n yeeesN ),
1 go o 1 go

(30) O[ZJ(nl,...,n ) =§:: exp { %<B(N+a), N+a>+<n+2miB, N+a>}
8 Nez8o
Both the meromorphic differentials Qa (see theorem 2) are the Prym
differentials
0*Q =-Q
o o

(k)

Any meromorphic differential form Qa which has only one pole ﬁl

and property (31) is the Prym differential:

ﬁQ(k) =0 3 = 19‘ '23 3
aj [¢3
GD o 24y (eregy , o = - o)
o o ¢4 Q [¢3
Q(l) =Q , 0fw =-w .
¢} ¢4 o ¢}
>(k)

We have a collection of go—vectors Ua

U;§)=£Qék), =1,2; k=1,2,...
(1) g = 1,2,...,gO

U =

o ¢}

Theorem 3. Coefficients and eigenfunctions of the Schrodinger
operators from theorem 2 may be written by the following formulas in

Prym's O-functions:

— > > >
V(x,y) = 2302n0( Ulz + UZZ + ;O) + c(I',0)
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o(n(P)+z Ul+2 U+ ) 9(E )

o P - P
YOGy B) = o (Pyeg ) 0(z U amU_vg ) P [z({> Ql_a)né 2,
o 1 2 7o ° 1
. P N
(33) NP = S sl,...g ), HY=0.
Pl
The constant go—vector g, depends only on the divisor £ . For the

real potentials V(x,y) we have a factor-surface r, with the anti-

involution 7 induced by ¢
o

r =r/c, © : T »>T , 12=1.T(P)=P
o o o o o o 1

2
The genus g(FO) is equal to go=g/2 . In the general case the anti-
involution T, has q smooth fixed ovals Si:
,...,S s = ) j=1,...,q9¢ 3 . .= .
S1 qc r, TISj 1 j=1 q Sgo+1 81F\SJ @

By definition, the so-called "M-curves" ( FO, TO) have exact]y the

maximal possible number of ovals, q = go+1 .

Conjecture. Formula (33) gives the real smooth algebraic potential
V(x,y) only if O - is the O-function of some Prym variety P(T,0) ;

>
u, , ﬁ - the vectors of the b-periods of the corresponding meromorphic

1 2
Prym differentials (31) and ;O -~ some admissible constant vector; the
set of all admissible constant vectors P;;(]",O)CP(F ,0) is always
connected and non-empty iff (FO,TO) is the M-curve . The corresponding
operators are positive only if the conditions of theorem 4, pt. 2, are

satisfied.

Theorem 4. 1). If Qe&T is such that ot (Q)=Q theBloch's

function Y¥(x,y,Q) is bounded for all real x,ye]R2
(34) |¥(x,y,Q)| <const < » , o1(Q) =Q

(The fixed ovals of anti-involution ot give a "real Fermi-curve" on

the level e=0)

2) Suppose that the pair (TO,TO) is M-curve, OT has exactly

2g +1 ovals (a;,...,a , 4d',...,a" ,b) such that for D= Q +...+Q ,
(o] 1 go 1 go 1 Qg
g = 230 , we have



ot(a’') =a" , ot(b) =b, Q.ea', Q €a" ,
h] i3 8

CONN
J = ,...,go

~

In this case the operator H = 334V is positive H>O0 .

Conjecture. Suppose, that ¢t has no fixed points and 1T has

exactly d+2¢0 ovals (bl,...,bd , ai,aq,...,aé ,ag) such that

OT(bj) = bj , OT(aé) = ag . The number of different dispersion

relations ej(pl,pz) (less than zero) is at least S:

d

i

1(mod 2) , ej(pl,pz) <0
Sz2(@d-1)/2, j=1,...,8

Of special interest is the degenerate case in theorem 4, pt.2.

Suppose that we have a family of data (T'(A),...) such that:

(A >T(A) =T, A2
] (o]

b -+ point Qoef’

In this case we obtain so-called "ground state" € = 0
~ 2 A~
(HQ9Q)>O 3 9’632@ ) > HW(X,Y9QO) =0

The Prym's variety of limiting singular curve T with an involution
is nonsingular; the corresponding Prym's O-functions are also non-
singular. Adequate formulas for the ground-state eigenfunction ¥ may

be found in [6].

§3. NONLINEAR EQUATIONS AS THE DEFORMATIONS OF
TWO-DIMENSIONAL SCHRODINGER OPERATOR.

General Schrodinger operator (1) for n=2 has a number of
deformations (10). The first examples were found in [6], [8]. The
"hierarchy" of all such deformations with multiparametric y - function
may be easily deduced from:

The function vy = w(x,y,t',t",...ti,t;)

2
has the analytical properties like in §1, but the pt.l is replaced by 1:
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1'. ¥ has the asymptotic (14')

i
k z+§:: k.t'
1 iz2 11 i
Q+P , ¥=Clxy 14y e
(14") i,
P woc £k2z+§:i 22525 i
Q 2 y = Z(ny) (1+Zl > 1€1w2)

General formulas for A(x,y,t',t") and V(x,y,t',t") may be obtained
trivially from (20) by putting additional terms in the argument of (20);
these terms are linearly dependent on all ti,t;

The deformations of purely potential operators were first

considered in

Theorem 5. Any deformation (14') such that téi = t;i = 0 preserves
the class of purely potential operators (Cl = 1,02 constant). The
f : " 0 " 0 1 = ”"
deformation preserves the "reality” property if t2j t2j+le:R
The latter deformations have the form
__Qﬂ__ = [ﬁ a. D+a. 9.1 +C fi at =t! ="
ot . B R B R i Ti2i 23+1 2j+1 7
2j+1
f=0+v, 2, - 23+l | uiJ)azJ‘1 boer 3 EC
(36) 9 - 3 B - =
1= 37 + ula s C1 = alau1 + alau1 s
9 =93, C =0
o s}

According to the natural variant of the so-called "Novikov conjecture"
formula (37) satisfies (36) for j=1 iff it corresponds to some pair
(I'yo) (it corresponds to some triple (TI,0,T) in the real case - see

also §2):

V(x,y,t) = 23§QnO(Ulz+U25+Wt+€O) +c ,

_ (2 (2)
W= U1 + U2

(37)

c = const , a1 =1, t1 =t ,

Definition 5. We call 8, %8, matrix %ﬂ) "generic" if the rank

of the matrix

Gyln) By 0.3y o (0] . Bl



%)
NeJ
w

' g, (g tD
is equal to _2— +1 .
~ - 8 -
Here O, [n] = 3.3,@[“](\4). , neZ ° and 0 is O-function
ij i j lo 1 w=0 2

corresponding to the Riemann matrix 2B .

Theorem 6. (I.A.Taimanov) Suppose that matrix Buv is generic
and the go-vectors U1,02 are linearly independent. If formula (37)
satisfies the equation (36) for j=1 , then vector W and constant

c may by calculated as the functions of U,, U, B . For go=2 any

17 727 Twy

generic matrix Buv and independent vectors Ul' U2 give the algebraic
purely potential Schrodinger operator and the solution of (36) for j=1 ,
a_ =] , wusing the formulas for c,W.

J

The structure of exact formulas for c(Ul,U ) contains very

,B
27 uv
interesting information on some identifies between the @-constants.

§4. TWO-DIMENSTIONAL PERIODIC DIFFERENCE OPERATORS

In this paragraph we shall consider the difference analog of the

two-dimensional Schrodinger operator

(38) Lwn,m = anmwn+1,m * an-l,mwn-l,m * bnmwn,m+l * bn,m—lwn,m—l

In one-dimensional case such "symmetric"” version of the difference
Schrodinger operator has been used in [ ] for the integration of the
difference KdV equation.

Consideration of the difference operators allows us to obtain not
only the difference analog of the results presented in the previous
paragraphs of this work, but, which is still more important, to
construct for these operators the direct algebraic transformation which
is connected to one energy level. This means the construction of the
Riemann surface and the other data on it, which are the starting point
for the solution of the inverse problem.

These investigations have been for the first time made in for the

non-selfadjoint operator
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(39) Lan = wn+1,m+1+anm\yn+l,m+bnmwn,m+l+cnmwnm
It has been shown, that the operators, which may be naturaly called
"finite-gap on the one energy level"”, have non-zero co-dimension
(growing with the periods of the operators) in the space of all periodic
operators. It was shown, that eigenfunction of the generic operators
has some unexpected analytical properties. The continual 1limit of such
operators has not been yet clarified.

These results do not contradict, of course, the conjecture, which
was formulated in [6] and contained in §1, because the continual limit
of (39) includes the operators ﬁ (1) with non-zero magnetic field.

Operator (38) seem to reflect adequately the principal properties
of the purely potential Schrodinger operators. It will be shown below,

"

that all the periodic operators of the form (38) are in some sense "the
finite~gap" on the zero energy level.
Let's define, as usual, the variety of the Bloch's functions for

the operator L  of the form (38) with the periodic coefficients

40 = = H = =

(40 an+2N,m an,m+2M an,m bnm bn+2N,m bn,m+2M

Consider the finite-dimensional linear operator L(wl,wz) , which
is the restriction of the operator L on the space of the eigenfunctions

of the monodromy operators:

4 = ¥ y = Y .
4D n+2N,m "1 n,m ’ n,m+2M hD) n,m
Bloch's eigenfunctions of the operator ¥ are the meromorphic
functions on the variety M2 , which is determined in by the
equation
Ey ’ = ) - =
(42) Q( Wy w2) det(L(w1 w2) E 1)=0

Below weshall consider on this variety only the complex algebraic curve
corresponding to the zero energy level (furthermore, for our construction
we need only "half" of this curve).

The zero energy level of the operator L is fixed by the following

*
property. Let's denote by ¢ the subspace of such functions, that
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Wn n = 0 if the difference n-m is odd (even). The operator L maps

these subspaces such that

* +
(43) L:9o >0
That's why the curve Fo<:M2 of the Bloch's solutions of the
(44) Lwn,m =0

.
is the union of two curves Pg corresponding to the decomposition of

the polynomial
D(w , wy) = det L(w,, w,) = Q+(w1, wz)Q_(wl, W) =0 .
To each point of the curves Fz correspond the Bloch's solutions of
the (44) which belong to the ¢t . The function erm(P) , P erz
will be meromorphic on Fz for all n,m if we ;ormalize these
solutions by the conditions gtz 1 and W;l =1.
Let's set for eagh opera;or L  of the form (38) with periodic

coefficients, the following "algebro-geometric" data:

+ +
45 L-(T, 2 =1{q,..., .
45) at Q.-
Here @' is the divisor of the poles Qs of the functions Wg+m on
+ £1€ ’
I' , which differ from the "infinite" points P 172 € F+ , £.= %1,
° €4€ g © B
The points P are the poles of the functions W, .

There exist two types of transformations of the operator which
preserve the data (45). They are defined by functions gj n® HY . The
first transformation corresponds to the multiplication of each equation
(44) (i.e. for each pair n,m with odd difference) by the g; n

if n-m =1(mod 2) , then

an,m > an,mgn,m ? bn,m > bn,mgn,m
(46) if  n-m = O(mod 2) , then
an,m - an,mgn-l-l,m ! bn,m > bn,mgn,m-l-l
The second transformation corresponds to the multiplication
gt g+ yt .
n,m n,m n,m

if n-m is even, then
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+ +
a +~a g , b > g
n,m n,m-n,m n,m n,m-n,m
(47) if n-m 1is odd, then
+ +
a > a g , b + b g
n,m n,m n,m+l n,m n,m n+l,m

Consider the inverse transformation, which reconstructs the
operator from the data (45). The operator L corresponding to these
data is unique up to the accuracy of transformations (46), (47). As

usual, this construction gives exact formulae for Bloch's functions
4

wn,m .

., éet [ be the algebraic curve of the genus g with fixed points
P 1. zci =+1 , i = 1,2 . Consider the function Wn m(P) ¢ EWhiCh is
meromorphic on T . The poles of this functi%? ’gn ’F <P 12 are
Ql,...,Qg . In the neighbourhood of the point P 12 the function

- g ne,m
(48) wn,m(P)k 2
is regular, where k_l(P) = k;l . (P) is the local parameter in this
neighbourhood. 12

According to the Riemann-Roch theorem the dimension of the linear
space of such functions for arbitrary set Ql,...,Qg in general

position equals one.

Lemma 1. Any function with analytical properties outlined above
has the following representation ¥ (P) = g+ i (P) , where @ (P)
n,m n,n n,m n,m
is given by the formula:
P P O(A(P)+U_n+U_m+2Z)
~ n+m n-m 1 2
(49) Wn,m = exp ( 5 gﬂl + 2 £ Qz) 0(A(P)+2) .
o o
Here @ is the normolized differential on [ of the third kind with

1
the simple poles in the points Pl’1 and P—l’_l . The residues in

this points are equal to +1 or -1 respectively. The differential

1,-1
Qz is of the same type but has the poles in the points pt and
P—l’+1 The components of the vectors U and U are equal to

1 2
1
@40 , Uy =76 (@-2) .
by

1
U =739
by
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The vector Z equals (after the shift on the vector of the Riemann
constants) the image of the divisor 9t - [Ql,...,Qg} under the

Abel's transformation.

Theorem 7. Let be wn,m(P) be the same as in the previous lemma.
Then there exists such an operator L , that the equation (44) is valid.
This operator is unique up to accuracy of transformations of the (46)
type and its coefficients are produced by the transformation (47) from
the coefficients of the operator (which corresponds to the @n’m(P))

a

-1 1,1
0 (AP )+U. (n+1)+U_(m)+z )
Nnm ! 2 ° n-m = 1(mod2)

b - o et 04U, (m1)4¢ )
(50) N O(A(P_l’1)+U (n+1)+U (m+1)+; )
a =
B oa(p )+U (nl)+g yocaP 1y (U )
N O(A(P )+U (n+l)+U (m+1)+; )
b= -
nm

. ,1 1,-1
O(A(P )+U1(n+1)+U2(m+1)+§o)O(A(P )+Uln+Uzm+;O)
n-m = 0(mod2)
If there exists such an anti-involution T of T, that the points

€1 €
P L, =2 are stationary and T(2) =2 , then the coefficients of L

are real. If I is the M-curve with fixed ovals a_,...,a and the
El El 1 g+1
int bel t d P77 bel t , then the
points QS elong to as an ong to ag+1
coefficients of the L have no singularities.
In the general case the coefficients of L are quasiperiodic

functions as it follows from (50).

Theorem 8. The operator L , which is given by the theorem 7,

is periodic iff the curve T is determined by the following equation:

N
(51) Q(w vy ) = wT + c1w1M+ cowy + c3w +§:ale1wg =0,
Njif+M]j]<MN
81,82
and the points P are those four points, which comactify affine

curve (51). This construction provides all generic operators of the form
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(38) with the periods 2N,2M if N and M are relatively prime.

The proof of the latter statement follows from the comparision of
the number of parameters of this construction and the number of the
periodic operators (38). As it was mentioned above we consider those
operators up to the accuracy of transformations (46), (47). Recall that
17 Sy c3 in the
equation (51) and the points QS . The number of those points equals

parameters of construction are coefficients aij’ c c
the genus of the curve T which in its turn in the general position
equals MN .

In conclusion we must mention that the variety of the Bloch's functions
of L is invariant under the involution

-1

2 ’ E)

o : (wl, w., E) > (wIl, %

2
This involution may be naturaly constrained on each curve FE
corresponding to the fixed energy level E =¢ . (In the continual
limit in which the points Pl’1 s Pnl’“1 and also Pl’_1 s P»l’1
coincide, this involution ¢ will evolve into the involution with the
properties, which were described in §2).

The involution o© at the =zero energy level transforms the
components of [ into one another

g :T
(o] o]

> r:
o
Unfortunately, we have not yet obtained any effective construction
which would allow us to reconstruct Wﬁ:m(P) from the data (45) (the
existence of such construction follows from the previous results).
The operators for which the corresponding curve F+ is invariant
for the involution ¢ (i.e. the polynomial (51) is invariant under the
transformation (wl,wz) > (wil,wgz)) and the divisor £2+ satisfies

the condition

1,1 1,-1

2 40( D%y = kPP
have very interesting properties. In the next paper we shall consider

this class of the operators in detail.



10.

11.

12.

301

BIBLIOGRAPHY

V.E. ZAKHAROV et al. (S.P. XNovikov, editor), Theory of solitons.
The method of the invers problem, 'Nauka', Moscow, 1980 (Russian).

S.V. MANAKOV, Uspehi Mat. Nauk, 1976, 31, n°5, 245.

B.A. DUBROVIN, I.M. KRICHEVER, S.P. NOVIKOV, DAN SSSR, 1976, 229:1,
15 (Russian).

I.M.KRICHEVER, Uspehi Mat. Nauk, 1977, 32, n°6, 198; English transl.
in Russian Math. Surveys 32 (1977).

I1.V. CHEREDNIC, DAN SSSR, 1980, 252:5, 1104 (Russian).

A.P. VESELOV, S.P. NOVIKOV, DAN SSSR, 1984, 279:1 (Russian).
A.P. VESELOV, S.P. NOVIKOV, DAN SSSR, 1984, 279:3 (Russian).
S.P. NOVIKOV, Uspehi Mat. Nauk, 1984, 39, n°4 (Russian).

B.A. DUBROVIN, Uspehi Mat. Nauk, 1981, 36, n°2, 11 (Russian).

1.M. KRICHEVER, S.P. NOVIKOV, Uspehi Mat. Nauk, 1980, 35, n°6, 47
(Russian).

B.A. DUBROVIN, S.P. NOVIKOV, DAN SSSR, 1980, 253:6, 1293 ( Russian).

I.M. KRICHEVER, DAN SSSR, 1985, 282:3 (Russian).



