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Since the middle of the seventies algebraic geometry has become a very 
powerful tool in various problems of mathematical and theoretical physics. In 
the theory of integrable equations algebraic geometrical methods provide a 
construction of the periodic and quasi-periodic solutions which can be written 
exactly in terms of the theta-functions of the auxiliary Riemann surfaces. This 
construction works for the two-dimensional case the same as for one-
dimensional integrable equations such as the KdV and sine-gordon equation. 

All integrable equations which are considered in soliton theory can be 
represented as compatibility conditions of the auxiliary linear problems. One of 
the most general types of such representations has the form 

[d y -L,d f A]=0 (0.1) 
where L,A are the differetial operators of the form 

�  m 

(0.2) 
i=o i=0 

with scalar or matrix coefficients. 
The most important example of such equations is the Kadomtsev-

Petviashvilii (KP) equation 
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The algebraic-geometrical solutions of this equation have the form [1] 

where uo(zi,...zg I I j) is the periodic function of the variable Zj, depending on 
the set of the parameters Ij. the vectors U,V,W are determined by the same set 
of data 

- the algebraic curve �  of the genus g with the fixed point PQ on it and the 
equivalence class [k" 1 ^ of the local parameter k"](P) in the neighbourhood of 
the fixed point PQ. (Two local parameters k' and k are m-equivalent if 
k '=k+0(k" m ) ; the corresponding equivalent class is denoted by [ k _ 1 ] m ) . The 
number of such parameters equals N=3g+1. 

The integrable equations and the set of their exact solutions are the starting 
point for many problems "around them". Usually the next step is the 
perturbation theory. 

For example, it is well-known that for the description of the analogous of 
shock-waves for the KdV-equation it is not enough to have the finite-gap 
solutions like (0.3) 

u(x,y,t)= u 0 ( U x + V y + W t + O I I r . . J N ) (0.3) 

U=U(I), V=V(i), W = W ( I ) . 

the vector �  is arbitrary. 

The set of parameters I ] , . . . J N for KP-equation is 

� ^ � , � ^ � �  (0.4) 

u(x,t)=u( )(Ux+Wt+OI E r . . , E , 
'2n+l ) (0.5) 

Here U,W, UQ are determined by hyperelliptic curve � : 
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2n+l 

y2=f|(E-E.): 
i=l 

It is necessary to extend the set of the solutions and this can be done in the 

framework of so-called nonlinear WKB ( or Whitham) -method. The general 

ideas of this method are not specially connected with the KdV-equation or 

some other integrable equation. 

Roughly speaking, if some equation has the set of the exact solutions of the 

form (0.5), the asymptotic solutions of this ( or perturbative) equation can be 

constructed in the form: 

u(x,t)=u( )(e-,S(X,T) I E.(X,T))+eUj+e2u2+... (0.6) 

Here X=ex,T=et are the "slow-variables". The main term of this series 

satisfies the equation up to the order �  if the vector S(X,T) is defined from the 

relations 

dxS=U(E(X,T))=U(X,T) ,dTS=W(X,T) (0.7) 

It turns out that the first order term in (0.6) has the same structure as the 

leading term if the parameters Ej depend on slow variables X,T in a way 

which is described by some special equations, generally called Whithem 

equations. 

For the l^x-type equations the latter can be obtained from arguments which 

are the generalization of the averaging procedure used for finite-dimensional 

hamiltonian systems. It should be mentioned that in the case of a multiphase 

solutions we don't lose too much if we confine ourselves to the analysis of the 

Lax-type equations only. One-periodic solutions exist for many nonlinear 

equations. But the integrable equations are the only ones for which there exist 

wide sets of multiphase solutions. 

The Lax-type equations have an infinite number of local integrals, the 

densities of which are differential polynomials on the unknown functions 

Uj.The Whithem equations for the finite-gap solutions of the KdV-equation 
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were proposed in [3] and have the form: 

Vn=axQn' (0.8) 

where 

(0.9) 

and Pn(u,u',...), Qn(u,u',...) are local densities of integrals and currents, 

respectively. The equations (0.9) are the averaged relations of 

In [4] the same equations were obtained using the different approach. It 
was shown that they are necessary for the existence of the first order term in 
(0.6) which has the form similar to (0.5). 

There are two main purposes of this paper. First of all, we shall present 
here the general averaging procedure for integrable systems and demonstrate 
that it can be applied even to the more general situation, than that in which it 
was deduced in the previous work of the author [5]. 

As a new example we shall consider Benjamin-Ono equation 

which formally doesn't belong to the Lax-type equations. This equation is a 
non-local analogue of the KdV-eqiation. It can be represented as the 
compatibility conditions of another type of the auxiliary system of lenear 
problems. The direct and inverse scattering problems for the corresponding 
linear equation solve the Caushy problem in the case of rapidly decreasing 
initial data. In the framework of this approach the exact solutions can be 
constructed and they are the rational "multisoliton" solutions of the Benjamin-
Ono equation (see, for example, [6,7]). 

c) t P n (u,u ' . . . )=d x Q n (u,u\ . . . ) (0.10) 

o o 

(0.11) 
- o o 
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The algebraic geometrical construction of the quasi-periodic solutions of the 
Benjamin-Ono equation and their averaging procedure are presented in the 
second and the third paragraphs of this paper (see [8]). 

The corresponding solutions are not absolutely new. But they give us the 
possibility to demonstrate that the ideas of the algebraic-geometrical (or finite-
gap) scheme can be applied to the construction of a soliton-like solution even 
more effectively than in the generic case. Of course, all these solutions are the 
degeneral case of the solutions corresponding to the smooth auxiliary curves of 
the higher genus g>0. But their "algebraic-geometrical" construction can be 
presented in a closed form without using the results of algebraic geometry. 

The representation of the main ideas of the algebraic-geometrical methods 
in the theory of intgrable systems without using algebraic geometry is the 
second goal of this paper. 

The last section contains the results of the averaging procedure for the 
intermediate long-wave equations (TLW): 

When � ->0 or <» the equation (0.12) transforms into KdV or Benjamin-Ono 

equations respectively. 

1. The general scheme 

Let's consider the general Lax-type equations 

They are the equations on the coefficients of the operator L, because the 
coefficients of the operator A (as it follows from (1.1)) are the functions of the 
coefficients of L and their derivatives. For example, in the KdV- case 

oo 

(0.12) 

<>tL=[A,L] 0 .1 ) 

L=-a2

+u(x,t) , � = � � - | ^ � - | � �  (1.2) 
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For these equations or their perturbations 

9tL=[A,L]+eK 

(where �  is the differential operator of the order less than the order of L and its 

coefficients depend on L, i.e symbolically it can be written as K=K(L)) the 

formal asymptotic solutions 

L=LQ+eL +... , A=AQ+eA +... (1.3) 

can be easily constructed if the full set of solutions of the linearized equation 

5L=[A0,5L] + [5A,L0] (1.4) 

is known. 

For the periodic finite-gap solutions LQ, AQ of (1.1), such a set has been 

obtained exactly [5,9]. 

As it has been already explained, the parameters Ij of the exact finite-gap 

solutions LQ, AQ are the functions of slow variables X , T . Consequently, the 

first term in (1.3) has to satisfy the following non-homogeneous linear 

equation 

L l t - [ A Q , L 1 ] - [ A R L 0 ] = K+F(L 0 ) (1.5) 

where the coefficients of the operator F can be represented in terms of the 

coefficients of LQ and AQ and in terms of their derivatives in respect to slow 

variables 

F = 3 T L - { L , A } 

i=0 k=o 

(1.6) 

(1.7) 

j = 0 k=o 
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( Here L and A have the form (0.2).) 
Let's consider the solutions �  and � + of the auxiliary linear problems: 

� 0 � = � �  , (d f A 0 ) \ | /=0 (1.8) 

(� -spectral parameter) and conjugate system 

� % = � � + , 3 � �

+ + � + � 0 = 0 (1.9) 

(The right action of a differential operator on any row-vector function f+is 
defined in the common way 

� � � 3 � ) = ( - 3 � � � � ) 

The theorem ([5]) The uniformly bounded solutions Lj of the equation (1.5) 

exist only if for any pair of the solutions �  and � + of the equation (1.8,1.9) 

such that � +( � ,0� (� , � ) is qasiperiodic in �  the following relations are valid 

< y + F \ j o x = < � + � � > � (1.10) 

(Here and below <->x means 
�  

<f> =lim -Lff(x)dx .) 
x � - � » 2TJ 

-T 

From the definition of the right action of the differential operator it follows that 
for any f* and g one has 

(f+D)g = f+(Dg)+9x(f+(Dg)) 

The coefficients of the differential operator D are the differential polinomials 
on the coefficients of the operator D. Then, using (1.8,1.9) 
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^(� +� - � � )^ ( � + � - � � ^ �  Ljt + LjA^vj/) + 3 � ( � +( - A 0 L! � ) ) 

this equality proves (1.10). 
The relations (1.10) and the compartibility conditions for (0.7) are a 

complete set of the Whithem equations For the two-dimentional intgrable 
systems (and for Lax-type equations which are their partiqular case) they were 
obtained in an exact form in [5], where the construction of their solutions was 
also proposed. We shall not describe this in detail here, because we are going 
to demonstrate how this scheme works for the Benjamin-Ono equation. 

2 . The multiphase solutions of Benjamin-Ono equation 

The Benjamin-Ono equation is equivalent to the compatibility conditions of 
the system of linear equations 

where Uj(x,t) and U2(x,t) can be analytically extended into the upper and 
lower complex halfplanes of the variable, respectively. 

Indeed, from (2.1) it follows that 

and after that 

^ ( � + � , � ) - 3 � ( � + � 0 � ! � ) = \|/+(F + K)\|/ 

(ia+^+U· (� ,0)� .=0, j=l ,2 , 
J>* J 

� � � � 1 + � � 1 = � � 2 , 
(2.1) 

(2.3) 

(2.2) 
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The analytical continuations of Uj, as it follows from (2.2), can be represented 
with the help of Caushy integral. From the Plemiel-Sakhotsky formulae it 
follows that 

1 2 2�  Jx-y J 

_ i(u-c) � 

2 " 2 

(2.4) 

— i ^ y · 

Therefore, (2.3) transforms into (0.7) after the substitution of (2.4). 
For any set of numbers a,, bp Ci, i=l,...,n , let's define the matrix 

M=(M j < m ) 

� ] � � ^ i (a m - b m ) x - i(a2

m - � ^ . � . m - � - (2.5) 

Theorem 2.1. Let C, a m , b m be real .numbers 

C<z{<b{<2L2<h2< . . .<a n <b n (2.6) 

and let 

(b.-O^a.-a .Xb.-b.) 

I c . l 2 = ]4 (2.7) 

(a.-O^b.-a.Xa.-b.) 
j=l 

Then the formula 
�  

u ( x , t ) = C + ^ ( a m - b m ) - 2Im( 3xln det M(x,t)) (2.8) 
m=l 

defines the real non-singular quasi-periodic solutions of the Benjamin-Ono 
equation. 
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The remark The solutions (2.8) have the form 

u=u Q (Kx+Vt+0 I a.,b.,C) (2.9) 

where the � -periodic function UQ and the vectors K,V are defined by a set of 

data (a,, bp C) and the components of the phase vector �  are equal to 

� . - a r g c . . (2.10) 

The proof. Let's consider the the function vj/j(x,t,k) of the form 

�
�  r m (x, t) 2 

-^ - -L)exp( ikx- ik z t ) (2.11) 
m=l ~*m 

which satisfies the relations 
c m r e s k = a m ¥ , = ¥ l ( x , t , b m ) (2.12) 

The linear relations (2.12) are equivalent to the system of linear equations for 
unknown functions rm(x,t) 

�  

^ M j m ( x , t ) r m ( x , t ) = l . (2.13) 
m=l 

Lemma 2.1. The matrix �  is non-degenerate for x, such that lm �  > 0. 
The proof. Let's suppose that M(x 0 , t 0 ) is degenerate for some real 

numbers xo,to. It means that there exists the function VJ/Q of the form 

%^� � ^*� �� (
 i k v i k V (214> 

m=l m 

which satisfies the relations (2.12). Let's consider the differential 
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m 

� � - �  

9 ^ x 1 b - C 
res. DQ+res. . D A = I R m l z - ^ (1- - ^ - = · ) > 0 , (2.16) 

k=a m k=b m m jn^ a - C 

i=l 

where 

Hence, the sum of all the residues of dQ is positive which is impossible. This 

contradiction proves invertibility of the matrix M(x,t) for the real x,t. 

Let's consider the function 

�  

U l = CL ( a m' b m } " � � � �  d e t M ( X ' ° ' ( 2 ' 1 ? ) 

m=l 

From the definition of �  it follows that 

U1(x,t) = 0 ( e - a T m x ) , a = m i n ( a m - b m ) . (2.18) 

If for all m, the differences ( a ^ b m ) have the form 

a n r b m = ^ - s m » s m are integers , (2.19) 

dn=¥ o(k)y0(k)dkJ^[FA . (2.15) 

i=l i 

This differential is meromorphic in respect to the variable k and has a zero 
residue at the infinity 

reSoodQ = 0. 

At the same time from (2.12) and (2.6,2.7), it follows that 
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the matrix M(x,t) is a periodic function of the variable �  . The number of zeros 

of the function 

det M(x,t) in the domain Im x>0, 0 < Re �  <T equals 

This number does not change if we continiously change the parameters (av bj) 

keeping the relations (2.19). When I aj - aj I -»<*>, it is easily seen that �  =0 . 

Therefore, the statement of lemma is proved for the dense subset of data 

corresponding to the periodic matrix �  . The function Uj analytically depends 

on the set of data. That's why it should be holomorphic for x, Im x> 0, in a 

generic case, as well. The lemma is proved. 

It is well-known that the function � � (x,t,k) satisfies the equation 

where Uj = ��  r m (x, t) is the same as in (2.17). (See, for example [10]). 

In addition to the ordinary statements, in our case Uj(x,t) is holomorphic for x, 

Im �  > 0 . Moreover, as it follows from (2.5), we have the estimation (2.18) 

and 

�  

0 

( i 3 t + 3 i - 2 U l i X ( x f t ) ) y I ( M . k ) = 0 , (2.20) 

Vj=exp(ikx - ik2t) (1 +0( e a I m x) (2.21) 

Let's consider now the function \|/2(x,t,k) of the form 

(2.22) 

which satisfies the relations 
(2.23) 
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where c are some constants. 
J 

This function is the solution of the following equation 

(idt+d2

x - 2U 2 x (x , t ) )y 2 (x , t ,k) = 0, (2.24) 

�  

U 2 = - i%*m- b m > " a x l n d e t �  (x. t) . (2.25) 
m=l 

where the matrix �  is equal to 

M m j = c m 5 m j e x p ( - i (a m - b m ) x + i - b ^ t ) t g - L - (2.26) 
J m 

The functions � 2 and U 2 are holomo� hic in respect to the variable �  in the 

lower halfplane, Im �  < 0 

The proof of these statements and (2.27, 2.28) is absolutely similar to the 

previous ones 

U2(x,t) = 0 ( e a I m x ) (2.27) 

�  (x,t,k)=( l+0 ( e a I m x )) exp (ikx - i k 2 t ) (2.28) 

Let's introduce the function 

Il ( k
 - b m > 

X(k)= (C - k) ^ . (2.29) 

l l ( k •»> 
m 
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Lemma 2.2. If the constants c m and c m satisfy the relations 

�  *m = c m � 2 ^ ^ (2.30) a - C n 

the following equality is valid 

�9 � � 1+� (� ,1)� 1 - � 00� 2 = 0 (2.31) 

where 
�  �  

u = £ ( �  - r.+b. - a.) + C = C - (a. - b.) + i(U 2 - O{) (2.32) 
j=l j=l 

The proof. From the definition of � |,� (10 and from the relations (2.30) it 

follows that 

X(k)\j/2(x,t,k) satisfies the relations (2.12). Let's define the function � ( � , ^ ) 

which equal to the left-hand side of (2.31 ).lt has the form 

�  = ( > ) exp (ikx - ik t ) (2.33) 

j=i J 

and as it should satisfy the relations (2.12), the functions Rj should be the 

solutions of the linear equations 

�  

� �  .R. = 0 
mj J 

j=l 

The matrix �  is invertible. Therefore, Rj = 0 and the equality (2.31) is proved. 

To complete the proof of the theorem it is enough to prove that the 
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restrictions of the parameters which were enlisted in the statement of the 
theorem are sufficient for the reality of u(x,t). 

lemma 2.3.M a m , b m are real and 

c m = - c m , (2.34) 

then _ 
Uj(x,t) = U2(x,t) . (2.35) 

The proof. Consider the functions 

� | =\j/2(x,t,k) , � + =y 1 (x , t ,k) (2.36) 

The function 
Vj(x,t,k)y |(x,t,k) 

is the rational function of the variable k and has the poles at the points a ^ b m . 

From (2.12) and (2.23) it follows directly that 

r e S k = a J l < + r e S k = b n i ^ l < = 0 

Hence, the residue of this function at the infinity is equal to zero. 

�  

0 = � � 8 � � � � � { = £ ( r i + f i > = " ( � 2 ^ ' ° • U 1 ( X ' 0 ) ( 2 ' 3 7 ) 

i=l 

The theorem is proved. 
The dual Baker-Akhiezer functions satisfy the equations 

(-ia.+a2-2u. >� + = �  , j=i,2, 
1 J ' x J (2.38) 

- 3 � � 2 + � � 2 = � � } . 
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3. Whithem equations 

The solutions of the Benjamin-Ono equation, which were constructed 
above, have the form (2.10). Therefore, according to the general scheme, they 
can be used for the construction of asymptotic solutions of the form 

u = u 0 (e _ 1 S(X,T) I a.(X,T), b.(X,T), C(X,T))+e W l +e 2 w 2 + . . . (3.1) 

The vector S is defined from the relations 

6XS = K(a.,b.,C) , d T = V(a.,b.,C) . (3.2) 

The righthand sides in (3.2) depend on X,T through the dependence of a p bv 

C on these slow variables. 
The Benjamin-Ono equation has not the Lax-pair representation. 

Nevertherless, the general scheme which was proposed in the First paragraph 
works the same as for Lax-type equations. The first term w = Wj in the series 
(3.1) is defined from the linear equation 

w.+2u„wx+2un w+( W, +W 0 ) = F[u„] (3.3) 
t 0 * Ox l,xx 2,xx 0 

where the functions Wj, W 2 have the analytical continuations in the upper and 

lower complex halfplanes of the variable x, respectively. The function w is 

equal to 
iw = W 1 - W 2 . (3.4) 

The rightgand side of (3.3) equals 

F[u 0 ] = d T u 0 + 2 u 0 c ) x u 0 + 2 d x ( U, x + U 2 � ) . (3.5) 

Lemma 3.1. The uniformly bounded solutions of the equation (3.3) exist 
only if the following equality 

<y 1 F [u
( )
] y

2

h

> = 0 (3.6) 
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is valid. 
The proof. From the equations (2.1,2.38 ) it follows, that 

� ,< w t + 2 u 0 w x + 2 u o x w + W l x x + W 2 x x M£ = 

= a t ( y ,wy£) - i3x( w (�
]�
� + - )) + 

+
a

x ( ¥ l
( w

l 5 x +
w 2 ) x + 2 � \ �

1 � � � � �
; - 2� \�

2 ) �
�

2
� -

(3.7) 

The average values of all the terms in the righthand side of the equality (3.7) 
except the two last terms are equal to zero because they are the derivatives of 
the quasi-periodic functions. The average values of the 1st two terms equal zero 
because the contour of the integration can be shifted into the upper and lower 
halfplanes, respectively, where the integrant are exponentially small. Hence, 
the average value of the whole righthand side of (3.7) is equal to zero. The 
lemma is proved. 

Theorem 3.1. The relations (3.6) and the compatibility conditions of the 
equations (3.2) are equivalent to 

The proof. Let's consider the variation of the parameters a j ( � ) , b, (�  ), C 

parameter �  . Let's introduce the "short derivative" axu of the function u which 

is equal to the derivative of the formulae (2.10) assuming that the vectors �  

and V are constants. By this definition 

a ^ = - a x a 2

, a T b = - a x b 2

, a
T
c = - a

x
c

2 (3.8) 

(3.9) 

Lemma 3.2. The following relations 
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Kyfay* > = 3 � �  - i 9 � �  <\|/j\|/J > , (3.10) 

< � � | ^ � 2 > = 0 ( 3 1 1 ) 

are fulfilled. 

The proof. Let functions � . = V.(x,t,k ��  ) and � ?" = \|/?"(x,t,k I � . ) 

correspond to the different values of parameter � . Then 

i9 x ( � ^ )+� ,( u(x,t lij) - u(x,t � � 2 ))� + = (XfldTj) - � ^ � � ^ � * . (3.12) 

Consider the derivative of (3.12) in respect to � \ and take � } = � 2 after that we 

shall obtain 

i 3 � �  ( � � � + ) + VjSxu � + = dxX ( � 2 � + ) + Q (3.13) 

where the term Q has the form 

Q = X <asx + Psl > a x w s (Kx+Vt+�  ) (3.14) 
s 

a s , � 8 are constants, the functions w s = w s (z 1 , . . . , z n ) are periodic functions 

of the variable zv Let's define the subtorus � 0 ( �  ) c T n

 a s the closure of the 

set points Kx+Vt+�  for any vector � . 

Consider the average value of (2.11) in respect to � �  � 0 ( � 0 ) . The 

average value of Q equals zero, as it follows from (3.14). Hence, (3.10) is 

fulfilled, because 
<�

1
� |> = <� 2� 2>= I- (3-15) 

(The latter equalities can be obtained, when using the shift of the contour of the 
integration into the complex plane.) 

Lemma 3.3. The relations 
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2 < � � ( 3� ( U 1 x + U 2 �  )+u d t u ) � * > = 2K dxX+ iaTV < � � � + X3.16) 

are valid. 
The proof. From (2.1) and (2.38) it follows that 

i a t ^\^2 ) + 3 x ( � 1 � � 2 " � 1 � 2 �  ) = 

2(� � ��� 1� � +2�(� �� 1� �  (3.17) 

where bV\ = Ui(x,t l i j ) - Ui(x,t ��  2 )· We also have 

u ( � � � 2 >x + � �  (� �� 2�  } = �  ( � 2 � 2 � + � 1 � � 1 ) + � �  ( � 2 � 2 � } ' ( 3 ' 1 8 ) 

From (3.17) (with the help of (3.18) and the equality 

� � 2 � = " " � 2 + � � | ) (3.19) 

it can be obtained : 

2 tfUj x +2u 5u ) � � � ^ - 2 5u �  � � � [ - 2i � �  (� 2 � + � ) = 

=i9t ( � � � + ) - ��  ( � ^ + � ^ � ) �  - � �  (� 2� + ) �  - 2��  ( � 2 � 2 � + � 1 � � | ) · (3-20) 

Taking the derivative of (3.20) and considering its average value, we shall 
obtain 

2 < � 1 $ � � , x +u 3xu ) � + > - 2�  < 3xu � , � | > - 2i 3 � �  < � 2 � ^ � > = 

� ^ < � � � + > (3.21) 

(The average value of all the terms, except for the first term, in the lefthand 
side of (3.20) equals zero. It can be shown, using the shift of the contours of 
integration into the complex plane.) 
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�  

Let's denote the value C - ^ ( a m - b m ) by A = A(x) then 
m=l 

- �  < S t u > = � �  <dx (Uj - U 2 - A ) > = 

=i <- a x U 2 VjXi/J >�  - i � � �  = � �  < d t U 2 ( � 2 � 2 - > - � � � �  = 

= - < 9 X U 2 ( � , � + ) � > - i � � �  = < 3 � � 2 � � � � + > - i � � �  (3.22) 

( � �  (3.22) the equalities 

< 5 � � � � � � � > = < 3 � �

2 � 2

� 2 > = 0 

were used.) 
The eqyality (3.21) is transformed with the help of (3.22) into the equality 
(3.16). finally, from (3.10) and (3.16) we have that 

< � � F[u( )] � + > = 2k dxX - i (9 T K - 9 � � ) <� 1� 2

� > + 2 � 3 � �  (3.23) 

Hence, as the consequence of (3.6) and djK = � � �  (which follows from 

3.2), we obtain 
aTln �  + 2k 3 � 1�  �  + 2 � �  = 0 . (3.24) 

This equality is equivalent to the statement of the theorem. 
The remark. The equations which were obtained for the parameters a^ bj, 

C are integrable. They coincide with the Hopf equation 

I t = - d 2 ) x (3.25) 

It is well-known that the solutions of this equation are given in the following 
form: 



Averaging procedure for the soliton-like solutions 

I = f ( x - 2 I t ) 

where f ( � ) is the fixed function of one variable, and is the Caushy 

data for the equation (3.25) : f (� ) = I (x,0). 

4. The TLW equation 

The ILW equations (0.8) are the compatibility conditions of the same 

system of linear equations as in case of the Benjamin-Ono equation, but with 

different analytical properties of the coefficients. If Uj(x,t) and U 2 (x,t) are 

boundary values of the function U(x,t) which is holomorphic inside the strip I 

Im �  I < �  
Uj(x,t) = U ( � +� � ) , U2(x,t) = U ( �  - � � ) 

the compatibility conditions for the system (2.1) are equivalent to the equation 

(0.8). [11,12] 

The main purpose of this paragraph is the construction of the finite-gap 

solutions of the ILW equations. It is based on the algebraic geometrical 

construction of the integrable potentials of the non-stationary Shrodinger 

operator (see [13]). 

Let �  be a smooth algebraic curve of the genus g with the fixed point PQ on 

it and a local parameter k"1 ( P ) in the neighbourhood of this point. For any set 

of the g points J\,...yg in general position there exists the unique function 

y(x , t ,P) with the following analytical properties: 

1°. outside the point PQ the function �  (x,t,P ) is meromorphic and has 

simple poles at the points Yj; 

2°. in the neighbourhood of the point PQ it has the form : 

oo 

� (� ,1,� ) = exp (ikx - i k 2 t ) (1 + £ � 8 (�>�> k " S > · k = k ( p > - ( 4 

s=l 
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This function is the most important example of the, so-called, Baker-Akhiezer 
functions (see the general definition in [1]). 

As it was proved in [1] , the function �  is the solution of the equation 

( i a
t
+d

x
 - 2Ux(x,t) )i|/(x,t,k ) = 0 (4.2) 

where 
� ^ � � ^ � , � ) (4.3) 

The Baker-Akhiezer function can be represented in terms of the Riemann theta-
function (see [1]). Using these formulae we shall obtain 

U (x,t) = i 3� 1�  �  (Kx+Vt +�  ) (4.4) 

where the theta-function 

Giz^.-.Zg) = ^ exp (2� � (m,z) + � � (Bm,m)) 
„g 

me �  

is defined with the help of the matrix �  which is a matrix of b-periods of the 
normalized holomorphic differential on � . The vectors �  and V are b-periods 
of the normalized differentials dQj and d Q 2 with the only singularity at the 
point Po of the form 

dQj = dk ( l + 0 ( k " 2 ) ) , dQ2 = dk 2 ( l + 0 ( k " 3 ) (4.5) 

The vector �  in (4.4) corresponds to the set �  and can be considered as an 
arbitrary vector. 

The integrable potentials U X depends on the set of data ( �  , PQ, 
[k"*]2 )» where [ k " 1 ^ is the equivalence class of local parameter, k '« k 
if k' = k+ 0 ( k ' 2 ) . 

Now we are going to select the subset of the data which give the 
solutions of the ILW-equat ion. It should be emphasized that the 
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corresponding subclass of the curves looks like the � -deformation of 
the hyperelliptic curves. 

Consider the curve �  with a fixed point PQ , such that there exists 

the function � ( � ) on it, which is holomorphic outside P Q and has the 

form: 

� (� ) = - k e 2 5 k ( l + a j k ^ + c ^ k ' 2 + . . . ) (4.6) 

in the neighbourhood of the point PQ. We shall call such curves pseudo-

hyperelliptic. 
Consider the functions 

� ,(� ,� ,� ) = � (� +�� ,1,� ) 
(4.7) 

� 2(� ,1,� ) = � (�  - � � , � , � ). 

Lemma 4.1. For pseudo-hyperelliptic curves the functions � � , � 2 satisfy 

the relation 
� � 1 � + � � � - � ( � ) � 2 = 0 (4.8) 

where 
iu = � (� +� � ) - U(x - �� ) - ic t j . (4.9) 

The proof is standart in the frame work of the algebraic-geometry 

methods. Let's denote the lefthand side of (4.8) by � (� ,�,� ). This function has 

simple poles outside P 0 and has the form: 

�  = exp (ik(x+i5) - i k 2 t ) (�  (�  - �� ) - � ^� +� � ) + u + � � + 0 ( k _ 1 ) = 

=0(k _ 1 ) exp (ik(x+i5) - i k 2 t ) (4.10) 

From the uniqueness of the Baker-Akhiezer functions it follows that �  = 0. 

The lemma is proved. 

Let's suppose that there exist the antiholomorphic involution of �  , � : 

� —>� , which preserves the point PQ, and such that 
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k (T (P) ) = k ( P ) . (4.11) 

We also suppose that the fixed cycles a j , j = l,...,m < g , separate the 

domains � 4", � " such that 

� + = � ( � ) , � = � + � �  . 

We shall choose the orientation of the cycles aj as on the boundary of the 
complex domain � *. 

Theorem 4.1 .If the set of poles Yj of the Baker-Akhiezer function �  and 
the set of conjugate points �  ( y } ) are zeros of the Third-type differential � �  

with the only simple poles at the points PQ and Pj , where P\ is the zero of the 
function �  ( � ) , �  (Pj) = 0, and if the differential X(P)dQ > 0 is non-negative 
on cycles aj , then the formulae (4.9) and (4.4) define the real non-singular 
quasi-periodic solutions of the ILW-eqation. 

The proof. As it follows fromn (4.4) , in the generic case the function 
U(x,t) in respect to the variable �  is the meromorphic function with the possible 
simple poles with the non-negative integer residues. 

As it follows from (4.4) and the exact furmula for �  (see [1] ), the 
function U(x,y) has the poles at the point XQ, to only, if there exists the 
function � � (� ) which is meromorphic outside poin PQ with simple poles at the 
points Yj and which has the form: 

� 0 ( � ) = 0(k" ! ) exp (ikQx - i k 2 t Q ) (4.12) 

near the point PQ. 

Let's prove at the beginning that there exist no such functions for XQ, such 

that Im x 0 = � . 

The differential 

dQ* = \ | / 0 (P) \ i i ( ) (T (P)U(P )da 

is aholomorphic differential on �  and non-negative an all the cycles a; . Hence, 
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m 

�  d Q * > 0 . (4.13) 
i=l ( 

But at the same time the lefthand side of (4.13) should be equal to zero, 

because the union of the cycles aj is the boundary of the complex domain � * . 

This contrudiction proves that the function U(x,t) is regular for x, such that I 

Im �  I = 6. 

Now we are going to prove that the function U(x,t) is holomorphic for all 
x, such that I Im �  l<0. In the set of all data there is a dense subset of the data 
such that the corresponding function U is periodic in x. In this case the namber 
of the poles U(x,t) in the strip I Im �  I < �  per the period equals 

�  

N = J ( U ( � +�� , t ) - U(x - � � ,� )) dx . (4.14) 

0 

From (4.4) it follows, that �  = 0 . Therefore, in the periodic case the function 

U(x,t) is holomorphic for �  , such that I Im �  I < �  . The function U 

analytically depends on the parameters. That's why it should be holomorphic in 

the quasi-periodic case, as well. 

Consider the differential 

�  (x,t,P )�  (x,t, � ( � ) ) � (� ) dQ (4.15) 

For �  , Im �  = �  , this differential is meromorphic on �  with the only double 

pole at the point PQ . Its residue at this point should be equal to zero. Hence, 

� 1 ( �  + � � , 1 ) + � 1 ( � - � � , � ) - � 1 = 0 

and u(x,t) is real. The theorem is proved. 
At the end of this paragraph we shall present the Whithem equation for the 

algebraic-geometrical solutions of the ILW-equations. They will have the same 
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form as the Withem equations for the KdV-equation (see [3]) , if the function 

� (� ) is used instead of the projection E(P) for the hyper-elliptic curves. Let's 

formulate it exactly. 

Consider the differentials dp and 6�  on �  , which have the form 

dp = dk ( l + 0 ( k ' 2 ) ) , dQ = dk 2 ( l+0(k* 3 )) (4.16) 

which are normalized by conditions 

Im J d p = 0 , Im J d Q = 0 , 0 � H j ( r ) (4.17) 
�  �  

If the parameters of construction ( � , PQ, [ k ) are the functions of 

variables X,T, than the integrals of dp and d�  can be considered locally as the 

function of 

�  = � ( � , � , � ) , �  = � ( � , � , � ) (4.18) 

Theorem4.2. The Whithem equations for the 1LW equation have the form: 

^ � � ( � , � , � ) = ^ � � ( � , � , � ) . (4.19) 

The proof of this theorem can be obtained in the same way as it was done for 
the Benjamin-Ono equation. 

It should be mentioned that the exact solutions of the equations (4.19) can 
be constructed using the ideas of the previous work of the author [5] . 
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