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Key ideas of the algebra-geometric methods in the theory of solitons are presented. Unexpected links between
various theories in which the same objects emerge repeatedly, albeit under different names, like 7-function in the
Whitham theory, partition function in topological filed theories, and prepotential in Seiberg-Witten theory mainly
are discussed.

1.1 Introduction

The main goal of this chapter is to present key ideas which unify the algebro-geometric
methods in the theory of soliton equations and recent developments in the theory of N =2
supersymmetric gauge models.

Solitons arose originally in the study of shallow water waves. Since then, the notion of
soliton equations has widened considerably. It embraces now a wide class of non-linear
partial differential equations, which all share the characteristic feature of being expressible
as a compatibility condition for an auxiliary pair of linear differential equations. A variety of
methods have been developed over the years to construct exact solutions for these equations.
Since the middle seventies algebraic geometry has become one of the most powerful tools
among them.

In the next section we outline basic elements of the, so-called, finite-gap theory which
were originated in (Novikov [1994]; Dubrovin et al. [1976], Lax [1975], McKean et al.
[1975]) in the framework of the Floquet spectral theory of periodic Schrodinger operators
combined with a theory of completely integrable Hamiltonian systems. Analytical properties
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of Bloch solutions of finite-gap Schrodinger operators with respect to an auxiliary spectral
parameter, established in this remarkable series of papers, were a starting point in a
definition of the Baker- Akhiezer functions which are the core of a general algebro-geometric
construction of exact periodic and almost periodic solutions to soliton equations proposed
in (Krichever [1976, 1977a, 1977b]).

Section 3 is devoted to brief description of the Whitham method which is a generalization
to the case of partial differential equation of the classical Bogolyubov-Krylov averaging
method. It turns out that differential equations describing a slow modulation of integrals of
finite-gap solutions of soliton equations, called Whitham equations, are deeply connected
with a theory of deformations of topological quantum field models. This connection between
Whitham theory and the, so-called, Witten-Dijgraaf- Verlinde- Verlinde (WDVV) equations
is discussed in Section 4.

In the last section we show that the Seiberg-Witten theory of N = 2 supersymmetric
gauge theories can be considered on one hand as a part of the Whitham theory and at the
same time leads to a new general approach to Hamiltonian theory of soliton equations
proposed in (Krichever et al. [1977, 1999]).

Our discussion of unexpected links between various theories in which the same objects
emerge repeatedly, albeit under different names, like 7-function in the Whitham theory,
partition function in topological field theories, and prepotential in Seiberg-Witten theory
mainly follows Krichever et al. [1999]), where more details can be found.

1.2 Finite-gap Solutions of Integrable Systems

The finite-gap or algebro-geometric integration method is uniformly applicable to all soliton
equations. In the case of spatial one-dimensional evolution equations it is instructive enough
to consider as a basic example equations that have Lax representation

&L =[A,L], 1)

where the unknown functions {u;(x, y, t)};’:"o2 , {vj(x, y, t)};.":"o2 are the coefficients of the
ordinary differential operators

n—2 m—2
L=+ uix,0)dl, A=07"+ ) vj(x,09]. @)
i=0 j=0

A preliminary classification of equations of the form (1) is by the orders n, m of the operators
L and A.

In the case n = 2 the operator L is just the usual Schrodinger operator L = —32 +-u(x, t),
and for A = aj — 3/2udx — 3/4u, equation (1) is equivalent to the KdV equation
4u; — 6uuy, + uyxy =0.

From (1) it follows that certain spectral quantities of the operator L are integrals of
motion. In the framework of the finite-gap theory these integrals are organized in the form
of the so-called spectral curve. In all the cases, i.e. finite-dimensional integrable systems,
spatial one- or two-dimensional evolution equations, the spectral curve is defined by a
characteristic equation

R(w, E) =det(w — T (¢, E)) =0, 3)
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where T (¢, E) is a finite-dimensional matrix depending on a spectral parameter E.

In the case of finite-dimensional (or (0+1)) integrable systems, which have the Lax
representation L,(t, E) = [A(t, E), L(¢, E)], where L and A are finite-dimensional
matrices depending on the spectral parameter, the matrix 7 (¢, E) defining the spectral
curve is the Lax matrix L by itself, i.e. T'(¢, E) = L(¢, E).

In the infinite-dimensional case the spectral curve can be defined for special classes of
solutions, only. For spatial one-dimensional systems these classes are singled out by the
constraint that there exists an additional operator 7 which commutes with L and (3; — A).
For example, if the coefficients of the operator L of the form (2) are periodic functions of
the variable x with period 7', then the operator L commutes with the shift operator

T: y(x)— y(x +T). )

Therefore, the finite-dimensional linear space L(E) of the solutions of the ordinary
differential equation
y(x) € L(E): Ly =Ey 5)

is invariant with respect to T'. Restriction of the shift operator onto £ defines a finite-
dimensional linear operator
T(E) =TlcE)- (6)

A point Q of the spectral curve I is just a pair @ = (E, w) of complex numbers that satisfy
(3). They parametrize Bloch eigenfunctions of the operator L, i.e. common eigenfunctions
of L and the monodromy operator

Ly(x, Q) =E¥(x,Q), ¥(x+T,Q)=wy(x, Q). @)

In a generic case the corresponding Riemann surface is a smooth surface of infinite genus. If
its genus is finite then the corresponding operators are called finite-gap or algebro-geometric
operators. It should be emphasized that in such a case the Riemann surface defined by the
characteristic equation is a singular surface. After resolving the singularities we get a finite
genus smooth Riemann surface, i.e. an algebraic curve. For example, let L = —32 + u(x)
be the Schrodinger operator with a periodic potential u(x) = u(x + T). Then equation (3)
has the form

w? —20(E)w +1=0, 2Q(E) =Tr T(E). )]

The roots €; of the equation Q?(E) = 1 are points of the periodic or anti-periodic spectrum
of the Schrodinger operator. Equation (8) can be rewritten in the form

Y =[]E-e) y=w-0(&). ©)
i=1

If all of the edges ¢; are distinct then (9) defines smooth infinite genus hyperelliptic Riemann
surface. The finite-gap operators correspond to the degenerate case when all but a finite
number of eigenvalues of periodic or anti-periodic spectral problem for L are multiple. Let
E1 < -+ < Ejg41 be the simple eigenvalues. Then a finite genus smooth algebraic curve
of the Bloch functions is defined by

2g+1

y' =[] - Ep. (10)
i=1
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Note that E; are the edges of the spectrum bands of L, being considered as an operator in
the space of square integrable functions on the whole line.

The finite-gap theory was initiated by the work (Novikov [1974]), where the spectral
theory of periodic operators was combined with an approach based on a use of the KdV
hierarchy. The KdV equation (as well as any soliton equation) is compatible with an infinite
hierarchy of commuting flows. They have the Lax representation

9
oL =[A;, L], 3i=§, amn

1

where A; is an ordinary differential operator of order 2i 4 1. Consider stationary solutions
of a linear combination of these flows, i.e. solutions of the ordinary differential equation

8
[L, A] =0, A=Zc,-A,~. (12)
i=1

As it was shown in (Novikov [1974]), equation (12) is a completely integrable Hamiltonian
system. Therefore, its general solution is a quasi-periodic function of x. Periodic solutions
are finite-gap potentials.

Let A(E) be the restriction of the operator A commuting with L onto L(E). The
matrix elements of A(E) are polynomial functions of the spectral parameter. Therefore,
the characteristic equation det(A(E) — w) = 0 defines an algebraic curve I'. It turns out
that this curve coincides with the spectral curve (10).

Note that the operator equation (12) is a particular case of the more general problem of
the classification of commuting ordinary differential operators L, and L,, of orders n and
m, respectively. As a purely algebraic problem it was considered and partly solved in the
remarkable works of Burchnall and Chaundy (Burchall ez al. [1922, 1928]) in the 1920s.
They proved that for any pair of such operators there exists a polynomial R(A, i) in two
variables such that R(L,, L,,) = 0. If the orders n and m of these operators are co-prime,
(n,m) = 1, then for each point Q = (A, u) of the curve I" defined in C? by the equation
R, u) = 0 there corresponds a unique (up to a constant factor) common eigenfunction
Y(x, Q)of L, and L,,

L,2y(x, Q) =2y (x, Q); Lny(x, Q) =uy(x, Q).

The logarithmic derivative ¥, ! is a meromorphic function on I. In the general position
(when I' is smooth) it has g poles y1(x), ... , y,(x) in the affine part of the curve, where
g is the genus of I'. The commuting operators L, and L,, (in this case of co-prime orders)
are uniquely defined by the polynomial R and by a set of g points y;(xo), ... , Vg (x0)
onT.

In such a form, the solution of the problem is one of pure classification: one set is
equivalent to the other. Even the attempt to obtain exact formulae for the coefficients of
commuting operators had not been made. Baker proposed making the program effective
by pointing out that the eigenfunction v has analytical properties that were introduced
by Clebsch, Gordan and himself as a proper generalization of the notion of exponential
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functions on Riemann surfaces. The Baker program was rejected by the authors of (Burchnall
et al. [1922, 1928]) consciously (see the postscript of Baker’s paper [1928]) and all these
results were forgotten for a long time. This program was realized only in (Krichever [1976,
1977a]) (though at that time the author was not aware of the remarkable results of Burchnal,
Chaundy and Baker) where the commuting pairs of ordinary differential operators were
considered in connection with the problem of constructing solutions to the KP equation.
Spatial two-dimensional integrable systems of the KP type have an analogue of the Lax
representation of the form
[0, —L,0, —A]l=0, (13)

where, as before, L and A are ordinary differential operators of the form (2) but now with
the coefficients depending on the variables x, y, ¢. In two dimensions in order to single out
special classes of solutions for which a spectral curve can be defined one needs to impose
two constraints. For example, that can be done if we assume that in addition to (13) there
exist two ordinary differential operators of orders n and m such that

[0y—-L,L,]=0, [0y —L,L,]=0. (14)

Such operators commute with each other, and commute with the operator (3; — A). The
corresponding spectral curve is a spectral curve of commuting operators L,, L,,. It does
not depend on (x, y, t). (Classification of commuting operators of arbitrary orders was
completed in Krichever [1978]).

The common eigenfunction of commuting operators is a particular case of the general
definition of the scalar multi-point multi-variable Baker-Akhiezer function. Let I" be a
non-singular algebraic curve of genus g with N punctures P, and fixed local parameters
k;'(Q) in neighbourhoods of these punctures. For any set of points y1, ... , Vg in general
position, there exists a unique (up to constant factor c(#,,;)) function ¥ (¢, Q), t = (t4.i),
a=1,..., N;i=1,..., suchthat:

(i) the function ¢ (as a function of the variable Q € I') is meromorphic everywhere
except for the points P, and it has at most simple poles at the points y1, ... , y, (if all
of them are distinct).

(i) in a neighbourhood of the point P, the function ¢ has the form

o0 o0
Y(t, 0) = exp(D_ taikl) (Y &na(Oky®), ko = ka(Q). (15)
i=1 s=0
The Baker-Akhiezer function y depends on the variables t = {t1 ;, ... , ty ;} as on external

parameters.
From the uniqueness of the Baker-Akhiezer function it follows that for each pair (c, n)
there exists a unique operator L, , of the form

n—1
Low =030+ Y u*®)d] |, (16)
j=l1
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where 9,,; = 0/01,;, such that

(aa,i - La,n)I//(t» Q) =0. (17)

The idea of the proof of theorems of this type proposed in (Krichever [1976]) is universal.
For any formal series of the form (15) there exists a unique operator L, , of the form
(16) such that

o0
(3 — Lan)¥rt, @) = O™y exp(D  ta,ikl)- (18)
i=1
The coefficients of L, , are differential polynomials with respect to &, . They can be found
after substitution of the series (15) into (18).
It turns out that if the series (15) is not formal but is an expansion of the Baker-Akhiezer
function in the neighbourhood of Py, then the congruence (18) becomes an equality. Indeed,
let us consider the function

Y1 = (8a,n — Lan)¥ (2, Q). 19)

It has the same analytical properties as v, except for one. The expansion of this function
in a neighbourhood of P, starts from O (k~!). From the uniqueness of the Baker-Akhiezer
function it follows that ¥; = 0 and the equality (17) is proved.

A corollary is that the operators L, , satisfy the compatibility conditions

[aa,n - La,ny aot,m - La,m] =0. (20)

The equations (20) are gauge invariant. For any function g(¢) operators ia,,, =gLang '+
(9.n8)g Y have the same form (16) and satisfy the same operator equations (20). The
gauge transformation corresponds to the gauge transformation of the Baker-Akhiezer
function ¥1 (¢, Q) = g()¥ (¢, Q).

In the one-point case the Baker-Akhiezer function has an exponential singularity at a
single point P; and depends on a single set of variables. Let us choose the normalization of
the Baker-Akhiezer function with the help of the condition &) ; = 1, i.e. an expansion of
in the neighbourhood of Pj is

Y, ..., Q) =exp(d_uk) (14 ) &@kK™). 1)

i=1 s=1
In this case the operator L, has the form

n—2
Ly=37 + ) ud}. (22)
i=0

If we denote 71, 17, 13 by x, y, ¢, respectively, then from (20) it follows (for n = 2, m = 3)
that u(x, y, t, t4, . . . ) satisfies the KP equation 3u,, = (4u; — 6uu, + u,xx)x. The exact
formula for these solutions in terms of the Riemann theta-function is based on the exact
formula for the Baker-Akhiezer function.



BAKER-AKHIEZER FUNCTIONS AND INTEGRABLE SYSTEMS 7

Let us fix the basis of cycles a;, b;, i = 1,..., g on I' with the canonical matrix of
intersections: a; o a; = b; o b; = 0, a; o b; = §;;. The basis of normalized holomorphic
differentials w; (Q), j =1,..., g is defined by conditions fa,- wj = 8;j. The b -periods of
these differentials define the so-called Riemann matrix By; = fb, wy. The basic vectors e
of C# and the vectors By, which are the columns of matrix B, generate a lattice B in C8.
The g-dimensional complex torus

J(I') = C#/B, B=an6k+mk3k, ng,mg € Z, (23)

is called the Jacobian variety of I". A vector with coordinates Ax(Q) = f q? wy, defines the
Abel map A : I' —> J(I') which depends on the choice of the initial point go.

The Riemann matrix has a positive-definite imaginary part. The entire function of g
variables

G(Z) — 0(Z|B) — Z eZm’(z.m)+m’(Bm,m), (24)
meZs
2=(21,--s20), M= (my, ... ,my), (z,m)=2zimy+...+ 2,My,

is called the Riemann theta-function. It has the following monodromy properties
0(z+ea) =0(2), 0(z+ B) = e 7aTHeg(g), (25)

The function 0 (A(Q) — Z) is a multi-valued function of Q. But according to (25), the zeros
of this function are well-defined. For Z in a general position the equation

0(A(Q)—2)=0 (26)
has g zeros yi, ... , ¥,. The vector Z and the divisor of these zeros are connected by the
relation .

Zi=Y Al +K, 27)

i=1
where K is the vector of Riemann constants.
Let us introduce the normalized Abelian differentials d Qg' ; of the second kind. The
differential d ng ; is holomorphic on I" except for the puncture P,. In the neighbourhood
of P, point it has the form

dQd; = d(ki, + o(1)). (28)

“Normalized” means that it has zero a-periods, fa_ d Qg ; = 0. Consider the function
; ,

0(AQ) + o, tajUaj = Z) /Q 0
, = 2 o, ] dQ : 29
v 6(AQ) — 2) P C,Zj"’ W e @

where the coordinates of the vector Uy, j are equal to

Uk = — ¢ db .. (30)
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Equations (25-27) imply that v is a single valued function on I' and has all the analytical
properties of the Baker-Akhiezer function. That proves the existence of the Baker-Akhiezer
function. Let v be any function with the same analytical properties. The ratio ¥ /v is a
meromorphic function with at most g poles. The Riemann-Roch theorem implies that such
a function is equal to a constant. Hence, the uniqueness of the Baker-Akhiezer function (up
to a constant factor) is also proved.

The coefficients of the operators L, ; which are defined by the equations (17) are
differential polynomials in the coefficients of the expansions of the second factor in (29) near
the punctures. Hence, they can be expressed as differential polynomials in terms of Riemann
theta-functions. For example, the algebraic-geometrical solutions of the KP hierarchy have
the form

u(x, y,t,ta,...) =202 In0xU; + yUs + tUs + - - - + Z) + const. (31)

The common eigenfunction of commuting operators of co-prime orders is the particular
case of a one-point Baker-Akhiezer function corresponding to #; = x,5, = 0,13 =
0, .... Therefore, the coefficients of such operators (in general position) are differential
polynomials in terms of the Riemann theta-functions. This has an important corollary.
The coefficients of commuting differential operators of co-prime orders are meromorphic
functions of the variable x. Moreover, in general position they are quasi-periodic functions of
x. The last statement presents evidence that the theory of commuting operators is connected
with the spectral Floquet theory of periodic differential operators. These connections were
missing in (Burchnall ez al. [1922, 1928], Baker [1928]).

Let us introduce real normalized Abelian differentials d2,; of the second kind. The
differential d2,; is holomorphic on I" except for the puncture P,. In the neighbourhood
of this point it has the same form as dQJ ;, i.e. dQq,; = d(k, 4+ O(1)). Real normalization
means that for any cycle on I' the period of the differential is pure imaginary, i.e.
Re (§,dQq,i) = 0.

From (29) it follows that the algebro-geometric solutions corresponding to I'" are periodic
functions of the variable ¢, ; with a period T if and only if the periods of the corresponding
differential have the form

Vs
?§ dQu; = S (32)

where n. are integers.

The spectral theory of two-dimensional periodic operators was developed in (Krichever
[1989]). It was proved that for the operator (3, — 83 + u(x, y)) with a real analytic periodic
(in x and y) potential the spectral curve does exist. Points of this curve Q = (wy, wp) € I'
parametrize Bloch solutions of the equation (9, — 83 + ulx, y)¥(x, y, w, wr) =0, ie.
they parametrize pairs of complex numbers (w1, w2) such that there exists a solution to the
equation with the following monodromy properties:

Vx+ 0, y, wi, w2) = wiy(x, y, wi, w2), ¥x,y+h,w, w)=wyx,y, w, w).

(33)
In a general case the spectral curve has infinite genus. For the algebro-geometric potentials
the spectral curve has finite genus and coincides with the spectral curve of a corresponding
pair of the commuting differential operators.
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The space of algebro-geometric data defining solutions of the full hierarchy of spatially
two-dimensional KP type systems is infinite dimensional because it contains a choice of
the local coordinates near the punctures. At the same time the space of algebro-geometric
solutions of a single equation of the zero-curvature form (13) is finite-dimensional. If L and
A are operators of orders n and m with scalar coefficients, then this space can be described
as follows (see details in (Krichever et al. [1997])).

Let Mg (n, m) be the space (I, E, Q) of pairs of Abelian integrals on a smooth genus g
algebraic curve I', where E and Q have poles of orders n and m, respectively, at a puncture
Py . Then we define a local coordinate k! near the puncture by the equality k" = E. This
choice of the local coordinate corresponds to the identification of the variable y with a basic
time variable y = ¢,.

In the presence of a second Abelian integral Q, we can select a second time ¢, by writing
the singular part Q. (k) of Q as a polynomial in k and setting

O+k)=artk+---+ank™, ti =a;t, 1 <i <m. (34)

This means that we consider the Baker-Akhiezer function ¥ (x, y, ¢; k) with the essential
singularity exp(kx + k" y + Q4 (k)t), and construct the operators L and A by requiring that
@y — L)y = (3; — A)y¥ = 0. The pair (L, A) provides then a solution of the zero-curvature
equation. By rescaling ¢, we can assume that A is monic.

The proper interpretation of the full geometric data (I", E, Q; y1, - - - ¥¢) is as a point in
the bundle N, f (n, m) over Mg (n, m), whose fiber is the g-th symmetric power S&(I") of
the curve: i

NE,m) T8 My (n,m) (35)
The g-th symmetric power can be identified with the Jacobian of I" via the Abel map.
More generally, we can construct the bundles N¥ (n, m) with fiber S¥(I") over the bases

M, (n, m). Thus the bundle N, g"zl (n, m) = Ng(n, m) is the analogue in our context of the
universal curve.

1.3 Whitham Equations

We have seen that soliton equations exhibit a unique wealth of exact solutions. Nevertheless,
it is desirable to enlarge the class of solutions further, to encompass broader data than just
rapidly decreasing or quasi-periodic functions. Typical situations arising in practice can
involve Heaviside-like boundary conditions in the spatial variable x, or slowly modulated
waves which are not exact solutions, but can appear as such over a small scale in both space
and time.

The non-linear WKB method (or, as it is now also called, the Whitham method of
averaging) is a generalization to the case of partial differential equations of the classical
Bogolyubov-Krylov method of averaging. This method is applicable to nonlinear equations
which have a moduli space of exact solutions of the form uo(Ux + Wt 4+ Z|I). Here
uo(z1, ... , zg|I) is a periodic function of the variables z;; U = (Uy,...,U), W =
(W1, ..., W,) are vectors which like u itself, depend on the parameters I = (Iy, ..., Iy),
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ie. U = U(I), W = W(I). These exact solutions can be used as a leading term for the
construction of asymptotic solutions

u(x,t) = uo(e"'S(X, T) + Z(X, DIX,T))+eup(x,t) + ur(x,t)+---, (36)

where I depend on the slow variables X = ex, T = &t and and ¢ is a small parameter. If
the vector-valued function S(X, T') is defined by the equations

xS=UUX,T)=UX,T), orS=WU(X,T))=W(X,T), 37)

then the leading term of (36) satisfies the original equation up to order one in €. All the other
terms of the asymptotic series are obtained from the non-homogeneous linear equations,
whose homogeneous part is just the linearization of the original non-linear equation on the
background of the exact solution ug. In general, the asymptotic series becomes unreliable on
scales of the original variables x and  of order £~ .. In order to have a reliable approximation,
one needs to require a special dependence of the parameters (X, T'). Geometrically, we
note that ¢! S(X, T) agrees to first order with Ux + V¢, and x, ¢ are the fast variables.
Thus u(x, t) describes a motion which is to first order the original fast periodic motion
on the Jacobian, combined with a slow drift on the moduli space of exact solutions. The
equations which describe this drift are in general called Whitham equations, although there
is no systematic scheme to obtain them.

One approach for obtaining these equations in the case when the original equation is
Hamiltonian is to consider the Whitham equations as also Hamiltonian, with the Hamiltonian
function being defined by the average of the original one. In the case when the phase
dimension g is greater than one, this approach does not provide a complete set of equations.
If the original equation has a number of integrals one may try to get the complete set of
equations by averaging all of them. This approach was used in (Flashka et al. [1980])
where Whitham equations were postulated for the finite-gap solutions of the KdV equation.
The Hamiltonian approach for the Whitham equations of (1+1)-dimensional systems was
developed in (Dubrovin et al. [1983]) where the corresponding bibliography can also be
found.

In (Krichever [1988]) a general approach for the construction of Whitham equations for
finite-gap solutions of soliton equations was proposed. It is instructive enough to present it
in the case of zero-curvature equation (13) with scalar operators.

Recall from the previous section that the coefficients u;(x, y,t), v;(x,y,t) of the
finite-gap operators L and Ay satisfying (13) are of the form

ui =uio(Ux +Vt + Wt + Z|I), vy =vjo(Ux + Vt + Wt + Z|I), (38)

where u; o and v; o are differential polynomials in 6-functions and I is any coordinate
system on the moduli space M, (n, m). (A helpful example is provided by the solutions
(31) of the KP equation, where [/ is the moduli of a Riemann surface, and U, V, W are the
By-periods of its normalized differentials d21, d2, and d23.) We would like to construct
operator solutions of (13) of the form

L=Lo+eLi+--,A=Ao+eA1+- -, (39)
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where the coefficients of the leading terms have the form

wi =uio(e 'S(X, Y, T) + Z(X, Y, T)|[(X, Y, T)),
v = vjo(e”'S(X, Y, T) + Z(X, Y, T)|[(X, Y, T)) (40)

If I is a system of coordinates on M, (n,m), then we may introduce a system of
coordinates (z, /) on AQ (n, m) by choosing a coordinate along the fiber I". The Abelian
integrals p, E, Q are multi-valued functions of (z, 1), ie. p = p(z, 1), E = E(z, 1),
0 = Q(z,I). If we describe a drift on the moduli space of exact solutions by a map
(X,Y,T) > I = I(X,Y,T), then the Abelian integrals p, E, Q become functions of
(z, X, Y, T). The following was established in (Krichever [1988]):

A necessary condition for the existence of the asymptotic solution (4) with leading term
(5) and bounded terms L1 and A is that the equation

b oE 0 oE [0 ] b b JoE
op (BE _9Q\ OE (dp 93Q +_Q 9 _9%\_p (1)
dz \oT 9dY dz \oT 90X dz \dY 00X

is satisfied.

The equation (41) is called the Whitham equation for (13). It can be viewed as a
generalized dynamical system on M, (n, m), i.e., amap (X,Y,T) — My(n, m). Some
of its important features are:

e Even though the original two-dimensional system may depend on y, Whitham solutions
which are Y-independent are still useful. As we shall see later, this particular case has
deep connections with topological field theories. If we choose the local coordinate z
along the fiber as z = E, then the equation simplifies to

orp=09xQ. 42)

e Naively, the Whitham equation seems to impose an infinite set of conditions, since it is
required to hold at every point of the fiber I'. However, the functions involved are all
Abelian integrals, and their equality over the whole of I" can actually be reduced to a
finite set of conditions.

e The equation (41) can be represented in a manifestly invariant form without explicit
reference to any local coordinate system z. Given a map (X, Y, T) — M,(n, m), the
pull-back of the bundle N, gl (n, m) defines a bundle over a space with coordinates X, Y, T'.

The total space AN/* of this bundle is 4-dimensional. Let us introduce on it the one-form
o = pdX + EdY + QdT, 43)
Then (41) is equivalent to the condition that the wedge product of do with itself be zero

(as a 4-form on N'%)
do Ada =0. (44)
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e It is instructive to present the Whitham equation (41) in yet another form. Because (41)
is invariant with respect to a change of local coordinate we may use p = p(z, I) by
itself as a local coordinate. Then we may view E and Q as functions of p, X, Y and T,
ie. E=E(p,X,Y, T), Q= Q(p, X, Y, T). With this choice of local coordinate (41)
takes the form

orE—-0yQ+{E, 0} =0, (45)

where {-, -} stands for the usual Poisson bracket of two functions of the variables p and
X,ie. {f 8} = fpgx — gpfx-

e Above we had focused on constructing an asymptotic solution for a single equation. This
corresponds to a choice of A, and thus of an Abelian differential Q, and the Whitham
equation is an equation for maps from (X, Y, T) to M, (n, m). As in the case of the KP
and other hierarchies, we can also consider a whole hierarchy of Whitham equations.
This means that the Abelian integral Q is replaced by the real normalized Abelian integral
2; which has the following form

Q=kK+0k™", K" =E,

in a neighbourhood of the puncture P. The whole hierarchy may be written in the form
(44) where we set now
a=) QdT;.
i

In (Krichever [1988]) a construction of exact solutions to the Whitham equations (41)
was proposed. We present the most important special case of this construction, which
is also of interest to topological field theories and supersymmetric gauge theories. It
should be emphasized that for these applications, the definition of the hierarchy should
be slightly changed. Namely, the Whitham equations describing modulated waves in
soliton theory are equations for Abelian differentials with a real normalization. In what
follows we shall consider the same equations, but where the real-normalized differentials
are replaced by differentials with the complex normalization § 4, 492 = 0. The two
types of normalization coincide on the subspace corresponding to M-curves, which is
essentially the space where all solutions are regular and where the averaging procedure
is easily implemented. Thus, the two forms of the Whitham hierarchy can be considered
as different extensions of the same hierarchy. The second one is an analytic theory, and
we shall henceforth concentrate on it.

In the rest of this chapter we shall restrict ourselves to the hierarchy of “algebraic
geometric solutions” of Whitham equations, that is, solutions of the following stronger
version of the equations (45)

or,E = {Q;, E}. (46)

We note that the original Whitham equations can actually be interpreted as consistency
conditions for the existence of an E satisfying (46). Furthermore, the solutions of (46)
can be viewed in a sense as “Y-independent” solutions of Whitham equations. They play
the same role as Lax equations in the theory of (2+1)-dimensional soliton equations. As
stressed earlier, Y -independent solutions of the Whitham hierarchy can be considered even
for two-dimensional systems where the y-dependence is non-trivial in general.
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Equations (46) define a system of commuting flows on the moduli space of Abelian
integrals. For the one puncture case this space is a union of the spaces M, (n) of Abelian
integrals with the pole of order » at the puncture. The complex dimension of Mg (n) is
equal to dim Mg (n) = 4g + n — 1. Let us describe a special system of coordinates for it.

The first 2g coordinates are still the periods of dE,

Ta, E =% dE, Tp E :% dE. 47
A B;
The differential dE has 2g + n — 1 zeros (counting multiplicities). When all the zeroes
are simple, we can supplement (47) by the 2g + n — 1 critical values E; of the Abelian
differential E, i.e.

E; =FE(qs), dE(qs) =0, s=1,...,2¢g+n—1. (48)

Let D’ be the open set in Mg (n) where the zero divisors of dE and dp, namely the sets
{z|ldE(z) = 0} and {z|dp(z) = 0}, do not intersect and where all zeros of d E are simple.
As shown in Krichever et al. [1997], the set (T4, , T, E, Es) define a local coordinate
system on D°,

The Whitham equations (46) define a system of commuting meromorphic vector fields
(flows) on Mg (n) which are holomorphic on D' C Mg (n) and have the form

a ] Q;j

ETA,,E =0, ETB,,E =0, a5 Es = (ij—;(qs)axEs- (49)
An important consequence of (49) is that the space M, (n) admits a natural foliation by
the joint level sets of the functions T4, g, Tp, E. The leaves of the foliation are smooth
(2g + n — 1)-dimensional submanifolds, and are invariant under the flows of the Whitham
hierarchy (46).

A special case of the construction of exact solutions to (46) in [Krichever [1988]) may
now be described as follows: the moduli space M, (n, m) provides the solutions of the first

n + m-flows of (46) parametrized by 3g constants, which are the set

Tno=§ d0. Too=$ d0.a=¢ gaE. (50)
A; B; A;

Let us consider the joint level set of functions (47, 50). Then the functions
1 .
Ti = —Resp,(E™"/" QdE) (51)
l

define coordinates on its open set D’ where the zero divisors of d E and d Q do not intersect.
The projection
Mg(n,m) — Mg(n): (I',E, Q) +— (I', E) (52)

defines (I, E) as a function of the coordinates on M, (n, m). For each fixed set of parameters
Ta,e, Ts.E,Ta, 0 Ta, 0. ai, the map (T})!=1"" — M,(n) satisfies the Whitham
equations (46).
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For the proof of this statement it is enough to note that if we use E(z) as a local
coordinate on I', then as we saw earlier, the equations (46) are equivalent to the equations
or,p(E,T) = 0x2;(E, T). These are the compatibility conditions for the existence of a
generating function for all the Abelian differentials d€2;. In fact, if we set

dS = QdE, (53)

then it turns out that
or,dS =dQ;, 0xdS =dQ, 54)

(For the proof of (54), it is enough to check that the right and the left hand sides of it have
the same analytical properties.)

Consider now the second Abelian integral Q as a function of the same parameters 7T;,
1 <i <n+ m.Then Q(p, T) satisfies the same equations as E, i.e.

or, @ = {Qi, 0} (55)

Furthermore,
{E,Q}=1. (56)

We note that (56) can be viewed as a Whitham version of the so-called string equation (or
Virasoro constraints) in a non-perturbative theory of 2-d gravity (Douglas [1990], Witten
[1991]).

The solution of the Whitham hierarchy can be summarized in a single t-function defined
as follows. The key underlying idea is that suitable submanifolds of M, (n, m) can be
parametrized by Whitham times T4, to each of which is associated a “dual” time Tp4, and
an Abelian differential d€2 4, which generates with the help of equation (46) the T4-flow.

Recall that the coefficients of the pole of d S determine n + m Whitham times (51). Their
dual variables are

TDj = ReSp(Z—de), 57

and the associated Abelian differentials are the familiar d2; of (28) (complex normalized).
When g > 0, the moduli space M, (n, m) has in addition 5g more parameters. We consider
only the foliations for which 3g parameters Ty, g, T, £, and Ty, o (defined by (47, 50) are
fixed.

Thus the case g > 0 leads to two more sets of g Whitham times, namely each a; and
Tg,,o- Their dual variables are

1 1
=——— ¢ ds, TS = _f EdS. 58
4Dk 2mi B Dk 2mi A; ( )

(Because Ed S has ajump on the cycle, one has to be careful in choosing a side of integration.
The superscript A, here means the left hand side of the cut with respect to the natural
orientation.) The corresponding Abelian differentials are respectively the holomorphic
differentials dwy and the differentials koE , defined to be holomorphic everywhere on
I" except along the A; cycles, where they have discontinuities

dQft —dQF~ = s;dE. (59)
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We denote the collection of all 2g + n + m times by T4 = (T}, ax, T,F = T, o).
We can now define the t-function of the Whitham hierarchy by

1 1 &
T = = — — E .
Inz(T) = F(T) 2 EA TaTpa + ypr kE=1aka E(Ar N By) (60)

where Ay N By is the point of intersection of the Ax and By cycles. Note that the definition
of the t-function for a general case of the universal Whitham hierarchy (for which a
corresponding moduli space is the space of curves with fixed pair of Abelian integrals
with several poles) is given by the same formula. The only difference is that there are more
times and more corresponding differentials (see (Krichever et al. [1997, 1999]).

As shown in Krichever [1994] the derivatives of F with respect to the 2g 4+n+m Whitham
times T4 are given by

1 g
%f=nm+zggﬁ%ﬂfﬂmn&x

a%thJ-' = ResP(zide),

1

33k,A7'- = oni (E(Ak N Br)d(E k), A —ﬁ dQA) , (61)
k

1

2
dEpaF = %72 EdQy,
k
dQ24dQ2pdQ2c

aiBC.’F = Z Resq: <—d—Ed—'Q——> .

4qs

These formulae show that the t-functions encodes the whole hierarchy, because the
coefficients of expansions of the differentials at the puncture, as well as their periods
are given by derivatives of 7. (Note that formulae (61) require some modifications in the
multi-puncture case for differentials with nonzero residues (see D’Hoker et al. [1997]).)

1.4 Topological Landau-Ginzburg Models on Riemann Surfaces

In general, a two-dimensional quantum field theory is specified by the correlation functions
< ¢(z1) - - ¢(zn) >¢ of its local physical observables ¢;(z) on any surface I" of genus g.
Here ¢; (z) are operator-valued tensors on I". The operators act on a Hilbert space of states
with a designated vacuum state |2 >. Topological field theories are theories where the
correlation functions are actually independent of the insertion points z;. Thus they depend
only on the labels of the fields ¢; and the genus g of I'. This independence implies that
for all practical purposes, the operator product ¢; (z;)¢;(z;) can be replaced by the formal
operator algebra

$idj =) clion. (62)

k
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The associativity of operator compositions translates into the associativity of the operator
algebra (62). Furthermore, the operator algebra is commutative.

As shown in (Dijkgraaf ez al. [1990, 1991a, 1991b], the partition function F(x, ... , X,)
for the marginal deformations of a topological field theory with n primary fields ¢1, ... , ¢,
satisfies an overdetermined system of equations which are equivalent to the condition that
the commutative algebra with generators ¢ and the structure constants defined by the third
derivatives of F:

Ckim (x) = %%% (63)
b = cii(x) dms i = cui 1" mein'™ = 8¢, (64)

is an associative algebra, i.e.
€57 ()i (6) = € ()i () (65)

In addition, it is required that there exist constants " such that the constant metric 7 in (64)
is equal to
Mt = 1" Cim (X). (66)

In terms of F the conditions (65) become a system of non-linear equations called the
Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations. In recent years these equations
have become a key element of the theory of Gromov-Witten invariants and have been
applied for solving various problems of enumerative geometry.

In the original work (Dijkgraaf et al. [1991a,b]) a solution to WDVV equations for
some topological Landau-Ginzburg theories was found. In Krichever [1992], it was noted
that the calculation of Dijkgraaf [1991], are similar to the construction of solutions to the
dispersionless Lax equations which are the zero genus case of the Whitham hierarchy. The
results of Krichever [1992] were generalized for higher genus Whitham hierarchies for Lax
equations in Dubrovin [1992]. The general case of the universal Whitham hierarchy was
considered in Krichever [1994].

Let us consider the space M, (n) = {I", E} of normalized Abelian integrals on genus g
curves with a single pole of order n at the puncture (for simplicity, we consider only the
one-puncture case). As before, we identify M, (n) with M, (n, 1) by the choice dQ = d2;.
The relevant leaf within Mg (n, 1) is of dimension n — 14 2g and is given by the constraints

n
Tn = 0, Tn = )
TS
f dE =0, ¢ dE = fixed, f dQ =0. (67)
Ay By Ag

The leaf is parametrized by the (n — 1) Whitham times 74, A = 1,--- , n — 1, and by the
periods a; and TjE = T, o defined by (50). The fields ¢4 of the theory can be identified

with dQ;/d Q. We take the 2g additional fields to be given by dw;/dQ and de/dQ,

where the differentials dw; and d QJE are the ones associated to a; and TjE, as described
earlier.
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Let nap and c4pc be defined by

dQ4dQ2 dQ24dQ2pdQ2c
NA,B = ZResqS%, CABC = ZResqx——/;a%—, (68)
gs qs

where g, are the zeroes of dE, and the indices A,B,C are running this time through the
augmented set of n — 1 + 2g indices given by Ty = (T;, gj, TjE). Then n; j = 8iyjns
Na,.(E.k) = j k- All other pairings vanish.

The algebra ¢ps¢p = cg p®c can be identified with the algebra of functions at zeros g5 of
the differential d E which is obviously associative. From (61) it follows that 8% gcF(T) =
capc. We have nap = ciaB, also. Therefore, the t-function of the Whitham hierarchy
F(T;, aj, TjE ) restricted to the leaf (67) is a solution of the WDVV equations.

Remarkably, the larger spaces M, (n, m) can accommodate the gravitational descendants
of the fields ¢ 4. More precisely, consider for g = O the leaf of the space My(n, mn + 1)
given by the following normalization

nm
nm+1

nn=01i=11"'ym7 Tnm+1=

The space of Whitham times is automatically increased to the correct number by taking all
the coefficients of QdE. The additional m(n — 1) fields may be identified with the first m
gravitational descendants of the primary fields. Namely, the p-th descendant o, (¢;) of the
primary field ¢; is just d<2,,4;/d Q. This statement is a direct corollary of the following
result proved in Krichever [1994].

The correlation functions given by < padpppc >= B%BC}' with op(¢i) = dQ%4pn/dQ
satisfy the factorization properties for descendant fields

< 0p(@)pBdC >=< 0p_1(91)b; > n'* < txdpdC >,

where ¢;,i =1, ... ,n—1areprimary fields, and ¢ 4 are all fields (including descendants).
Factorization properties for descendant fields were derived by Witten [1988a, 1988b, 1991,
1992].

1.5 Seiberg-Witten Solutions of N=2 SUSY Gauge Theories

Moduli spaces of geometric structures are appearing increasingly frequently as the key to
the physics of certain supersymmetric gauge or string theories. One recurring feature is a
moduli space of degenerate vacua in the physical theory. The physics of the theory is then
encoded in a Kéhler geometry on the space of vacua, or, in presence of powerful constraints
such as N=2 supersymmetry, in an even more restrictive special geometry, where the Kéhler
potential is dictated by a single holomorphic function F, called the prepotential.

In Seiberg [1994a,b] Seiberg and Witten introduced the following fundamental ansatz
that for N = 2 SUSY gauge theories:

(i) the quantum moduli space should be parametrized a family of Riemann surfaces I' (a),
now known as the spectral curves of the theory;
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(ii) on each I'(a), there is a meromorphic one-form dA, such that its derivatives along the
moduli space are meromorphic differentials;
(iii) F is determined by the periods of dA

1 oF
ay =f d\, apy = =— @ dA, — =app-. (69)
A 2mi [, dax

In Gorsky et al. [1995], it was noticed that the moduli space of curves for SU (N) theories
can be identified with spectral curves of the N-periodic Toda lattice. It was also noted
that the generating differential dA coincides with the generating differential dS (c.f. 53) of
the Whitham hierarchy. A general approach for solution of the Seiberg-Witten ansatz was
developed in Krichever et al. [1997]. We present here key elements of this approach.

Letnow n = (ny), m = (my), « = 1,..., N, be multi-indices, and M, (n, m) be the
moduli space (T, E, Q) of pairs of Abelian differentials on I" with poles of orders n, and
my at punctures P,. The dimension of this space is equal to

N
dimM,(n,m) =58 =3+ 3N + ) (4 + ma). (70)

a=1

The Whitham coordinates on this space can be introduced in a similar way to the one
puncture case. The Abelian integral E defines a coordinate system z,, near each P, by

E =z" + Rllog za,

(for simplicity we assume that n, is strictly positive). Then the formulae
1 .
Toi = —;Respa(zLQdE), Ty,0 = Resp,(QdE), ()

define Z(lxvzl (ng + mg) + N — 1 parameters (Za Ta0 = 0).
The remaining parameters needed to parametrize M, (n, m) consist of the 2N —2 residues
of dE and dQ

RE = Resp,dE, R? = Resp,dQ, ¢ =2,--- , N, (72)

and S5g parameters which are the periods of d E, d Q and a-periods of dS = gd E given by
(47, 50).

In Krichever et al. [1997], it was shown that the joint level sets of all parameters except
a, = f A d S define a smooth foliation of the open set D’ of M ¢ (n, m), which is independent
of the choices made to define the coordinates themselves. This intrinsic foliation is central
to the Seiberg-Witten theory and the Hamiltonian theory of soliton equations. We shall refer
to it as the canonical foliation.

Our goal is to construct now a symplectic form w on the complex 2g-dimensional space
obtained by restricting the fibration N, ég (n, m) to a g-dimensional leaf M of the canonical
foliation of M, (n, m).



BAKER-AKHIEZER FUNCTIONS AND INTEGRABLE SYSTEMS 19

Let us consider the Abelian integrals E and Q as multi-valued functions on the fibration.
Despite their multivaluedness, their differentials along any leaf of the canonical fibration are
well-defined. In fact, E and Q are well-defined in a small neighbourhood of the puncture P;.
The ambiguities in their values anywhere on each Riemann surface consist only of integer
combinations of their residues or periods along closed cycles. Thus these ambiguities are
constant along any leaf of the canonical foliation, and disappear upon differentiation. The
differentials along the fibrations obtained this way will be denoted by § E and § Q. Restricted
to vectors tangent to the fiber, they reduce to the differentials d E and d Q. These arguments
show that (Krichever et al. [1997])
the following two-form on the fibration N8 (n, m) restricted to a leaf M of the canonical
foliation of Mg(n, m)

8 8
om =8()_QIdE(W)) =Y 8Q() AdE (i) (73)

i=1 i=1

defines a holomorphic symplectic form which is equal to

8
wpm =) da; Adé, (74)

i=1
where ¢y are canonical coordinates on the Jacobian of the curve.

Note that the first set of formulae (61) implies that the restriction of the logarithm of the
7-function of the Whitham hierarchy on a leaf of the canonical foliation satisfies relations
(69) for the prepotential, and therefore, the function F(T") given by (60) is a solution of the
Seiberg-Witten ansatz. Although the results presented above suggest deep relations between
N=2 gauge theories, soliton equations, their Whitham theory, and Landau-Ginzburg type
models, such relations are still not fully understood at the present time. Nevertheless, the
parallels between these fields allows us to apply to the study of the prepotential F of gauge
theories the methods developed in the theory of solitons. In D’Hoker et al. [1997], with
the help of these methods, the renormalization group equation for the prepotential F for
SU(N,) gauge theories with Ny < 2N, hypermultiplets of masses m; in the fundamental
representation was derived. It was shown that this equation is powerful enough to generate
explicit expressions for the contributions of instanton processes to any order.

We conclude this chapter by a discussion of connections of the symplectic form (73) with
the Hamiltonian theory of soliton equations. The Hamiltonian theory of finite-dimensional
and spatial one-dimensional soliton equations is a rich subject which has been developed
extensively over the years (see Faddeev et al. [1987], Dickey [1991]). However, until
recently much less was known about the 2D case. In Krichever et al. [1997, 1999], a new
algebro-geometric approach to the Hamiltonian theory of soliton equations was developed.
This approach is uniformly applicable for all integrable systems: finite-dimensional, spatial
one- or two-dimensional evolution equations. Its universality is based on a universal
symplectic form which can be defined on a space of operators in terms of operators and
their eigenfunctions, only. For simplicity we consider here the Lax equations (1) for the
operators (2) with scalar coefficients.
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Let v (x, k) be a formal solution of the form

Yoo k) =+ ) &) (75)

s=1

to the equation Ly = k", normalized by the condition v/ (0, k) = 1. The coefficients A;
of the expansion

o0
o lny =k+ Z hsk™* (76)
s=1
are differential polynomials in the coefficients u; of L, i.e h; = h;(u). They are densities
of integrals of motions H; = f h;(u)dx of the Lax equation (1). Let us introduce the dual
formal solution

oo
Y= A+ Y E k) (7
s=1
of the formal adjoint equation y*L = k"*, normalized by the condition [ ¢*ydx = 1.
The main ingredients are the one-forms § L and §Wy. The one-form §L is given by

n-2 )
SL =) du;d.,
=0

and can be viewed as an operator-valued one-form on the space of operators L. Similarly,
the coefficients of the series i are explicit integro-differential polynomials in u;. Thus §v
can be viewed as a one-form on the space of operators with values in the space of formal
series.

Consider the following two-form on the space of operators L

w = Resy (f(d/*éL A 81/f)dx) dp, (78)

where p = k + Y, Hsk™*. In Krichever et al. [1999] it was shown that on the subspaces
of the operators L defined by the constrains { H; = const, i =1, ... ,n — 1} the form @

(1) defines a symplectic structure, i.e. a closed non-degenerate two-form;
(1) the form w is actually independent of the normalization point (x = 0) for the formal
Bloch solution ¥ (x, k);
(iii) the flows (1) are Hamiltonian with respect to this form, with the Hamiltonians
2nHy -y (u).

Consider now the leaves MO of the canonical foliation on M,(n, 1) corresponding
to zero values of variables § dE = 0. These leaves correspond to spectral curves of
one-dimensional finite-gap Lax operators, i.e. we have a geometric map of the Jacobian
bundle A'? over MO to the space of operators

G:N° — (L).
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A connection of the Hamiltonian theory of soliton equations with the previous construction
of algebro-symplectic structures associated with the Seiberg-Witten theory was established
in Krichever [1997]. Namely, it was proved that

(iv) the restriction of the symplectic form w given by (78) via the geometric map to the leaf
N of the canonical foliation is holomorphic symplectic form equals

8
wpo =G (w) = Zdak A dey.

k=1

The results presented above are a particular case of more general settings. It turns out the the
algebro-geometric symplectic structure (73) on the general leaves of the canonical foliation
on M, (n, 1) is arestriction of the basic symplectic structure for 2D soliton equations. The
symplectic structure on leaves of the foliation for M (n, m) for m > 1 is the restriction of
higher symplectic forms for soliton equations. It is necessary to emphasize that the same
soliton equations are Hamiltonian flows with respect to all these structures but generated by
different Hamiltonians. A variety of examples which show the universality of our approach
can be found in Krichever et al. [1997, 1999].

Acknowledgement

Research supported in part by National Science Foundation under the grant DMS-98-02577
and by the grant RFFI-98-01-01161.

References

Baker, H.F., Note on the foregoing paper “Commutative ordinary differential operators”, Proc. Royal
Soc. London 118, 584-593 (1928).

Burchnall, J.L., and Chaundy, T.W., Commutative ordinary differential operators. I, Proc. London
Math Soc. 21, 420-440 (1922).

Burchnall, J.L., and Chaundy, T.W., Commutative ordinary differential operators. II, Proc. Royal Soc.
London 118, 557-583 (1928).

D’Hoker, E., Krichever, I, and Phong, D.H., The renormalization group equation for N=2
supersymmetric gauge theories, Nucl. Phys. B494, 89-104, hep-th/9610156 (1997).

Dickey, L.A., Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics,
Vol. 12 (1991) World Scientific, Singapore.

Dijkgraaf, R., and Witten, E., Mean field theory, topological field theory, and multi-matrix models,
Nucl. Phys. B 342, 486522 (1990).

Dijkgraaf, R., Verlinde, E., and Verlinde, H., Topological strings in d < 1, Nucl. Phys. B 352, 59-86
(1991).

Dijkgraaf, R., Verlinde, E., and Verlinde, H., Notes on topological string theory and 2D quantum
gravity, in “String theory and quantum gravity”, Proceedings of the Trieste Spring School 1990,
M. Green (ed), World-Scientific, 1991.

Douglas, M., and Shenker, S., Strings in less than one dimension, Nucl. Phys. B 335, 635-654 (1990).

Dubrovin, B., and Novikov, S., The Hamiltonian formalism of one-dimensional systems of the
hydrodynamic type, and the Bogoliubov-Whitham averaging method, Sov. Math. Doklady 217,
665-669 (1983).



22 I. KRICHEVER

Dubrovin, B., Hamiltonian formalism of Whitham-type hierarchies and topological Landau-Ginzburg
models, Comm. Math. Phys. 145, 195-207 (1992).

Dubrovin, B., Matveev, V., Novikov, S., Non-linear equations of Korteweg-de Vries type, finite zone
linear operators and Abelian varieties, Uspekhi Mat. Nauk 31(1), 55-136 (1976).

Faddeev, L., and Takhtajan, L., “Hamiltonian methods in the theory of soliton”, Springer-Verlag,
1987.

Flaschka, H., Forrest, M., and McLaughlin, D., Multiphase averaging and the inverse spectral solution
of the Korteweg-de Vries equation, Comm. Pure Appl. Math. 33, 739-784 (1980).

Gorsky, A., Krichever, 1., Marshakov, A., Mironov, A., and Morozov, A., Phys. Lett. B 355, 466—474
(1995).

Krichever, 1., and Phong, D.H., On the integrable geometry of soliton equations and N = 2
supersymmetric gauge theories, J. Differential Geometry 45, 349-389 (1997).

Krichever, I., and Phong, D.H., Symplectic forms in the theory of solitons, Surveys in Differential
Geometry: Integral Systems, vol. 4, 239-313. International Press, Boston (1999).

Krichever, I., Averaging method for two-dimensional integrable equations, Funct. Anal. Appl. 22,
37-52 (1988).

Krichever, I., Methods of algebraic geometry in the theory of non-linear equations, Russian Math
Surveys 32, 185-213 (1977a).

Krichever, I., Spectral theory of two-dimensional periodic operators and its applications, Uspekhi
Mat. Nauk 44(2), 121-184 (1989).

Krichever, I., The t-function of the universal Whitham hierarchy, matrix models, and topological field
theories, Comm. Pure Appl. Math. 47, 437475 (1994).

Krichever, L., The algebraic-geometric construction of Zakharov-Shabat equations and their solutions,
Doklady Akad. Nauk USSR 227, 291-294 (1976).

Krichever, I., The commutative rings of ordinary differential operators, Funk. anal. i pril. 12(3), 20-31
(1978).

Krichever, L., The dispersionless Lax equations and topological minimal models, Comm. Math. Phys.
143(2), 415-429 (1992).

Krichever, L., The integration of non-linear equations with the help of algebro-geometric methods,
Funk. anal. i pril. 11(1), 15-31 (1977b).

Lax, P., Periodic solutions of Korteweg’de Vries equation, Comm. Pure and Appl. Math. 28, 141-188
(1975).

McKean, H., and van Moerbeke, P., The spectrum of Hill’s equation, Invent. Math. 30, 217-274
(1975).

Novikov, S., Periodic Problem for the Korteweg-de Vries equation, Funct. anal. i pril. 8(3), 54-66
(1974).

Seiberg, N., and Witten, E., Electric-magnetic duality, Monopole Condensation, and Confinement in
N = 2 Supersymmetric Yang-Mills Theory, Nucl. Phys. B 426, 1952, hep-th/9407087 (1994).

Seiberg, N., and Witten, E., Monopoles, Duality and Chiral Symmetry Breaking in N = 2
Supersymmetric QCD, Nucl. Phys. B 431, 484-550, hep-th/9410167 (1994).

Witten, E., Topological Quantum Field Theory, Comm. Math. Phys. 117, 353-386 (1988).

Witten, E., Topological sigma models, Comm. Math. Phys. 118, 411-449 (1988).

Witten, E., Two-dimensional gravity and intersection theory on moduli space, Surveys in Differential
Geometry 1, 281-332 (1991).

Witten, E., Mirror manifolds and topological field theory, in “Essays on Mirror Manifolds”, ed. by
S.T. Yau, International Press (1992), Hong-Kong, 120-159.



