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Elliptic Analog of the Toda Lattice

I. Krichever

1 Introduction

The main goal of this paper is to construct the action-angle variables for a finite-dimen-

sional Hamiltonian system of equations

in = (in - 1)(V(Xn»Xn+1) ""_V(Xnaxnfl))» Xn+N = Xn, (1'1)

where

1p'(u—v)—p'(utv)

V(u,v) = ((u—v) + ((u+v) — {(2u) = T2 p(u—v)—pu+v)

, (1.2)

and to identify it as an elliptic analog of N-periodic Toda lattice. Here p(x) = p(x |
2w,2w’) and {(x) = {(x | 2w, 2w’) are classical Weierstrass functions.

Recently, finite-dimensional integrable soliton systems have attracted very spe-
cial interest due to their unexpected relations to the theory of supersymmetric gauge
models. The celebrated Seiberg-Witten ansatz [39], [40] identifies moduli space of physi-
cally nonequivalent vacua of the model with moduli space of a certain family of algebraic
curves. In [3],[20] it was shown that the family of curves corresponding to 4-dimensional
N = 2 supersymmetric SU(N.) theory is defined by the equation

N.—1
w? —wPn, (E) + AZNe =0, Pn (E) =ENe+ ) wiEl (1.3)
i=0

In [14] it was noted that this family can be identified with the family of spectral curves
of N.-periodic Toda lattice, and the Seiberg-Witten ansatz was linked with the Whitham
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384 1. Krichever

perturbation theory of finite-gap solutions of soliton equations proposed in [23], [24].
Integrable systems related to various gauge models coupled with matter hypermultiplets
in various representations were considered in [2], [4]-[13], [15], [16], [18], [19], [28], [29],
[31]-[37], [41], and [42], where a more complete list of references can be found.

In [13],[32] the N.-periodic spin chain related to an XYZ model was proposed as
a soliton counterpart of N = 1 supersymmetric SU(N,) theory in six dimensions com-
pactified in two directions and coupled with N¢ = 2N, matter hypermultiplets. Spectral

curves of the N.-periodic homogeneous XYZ spin chain have the form
w? —wPR (2) + Q3n.(2) =0, (1.4)

where P§ (z) and Qg (z) are elliptic polynomials, that is, elliptic functions with poles
of order N, and 2N, at the point z = 0. Note that (1.4) is an elliptic deformation of the
family of curves found in [17] for a 4-dimensional N = 2 supersymmetric SU(N.) model
coupled with matter hypermultiplets.

A particular case of (1.4), when QEINC (z) is a constant, leNc (z) = A%N¢ can be
seen as an elliptic deformation of (1.3). The corresponding family of curves depends on
N. parameters, which can be chosen as A, and the coefficients u; of the representation
of P¢i(z) in the form

oy CDN N N gt
PR(z) = maz “To(z) + l:Zl ui0;  p(z) + uo. (1.5)
An attempt to find a soliton system corresponding to the family of spectral curves defined

by the equation
w2 —wPg(2) + A®N =0 (1.6)

led us to (1.1). After the system was found, it turned out that, by itself, it is not new.
Up to a change of variables g,, = p(xn), it coincides with one of the systems listed
in [1], where the classification of all Toda-type chains that have Toda-type symmetries
was obtained. The new results obtained in this work are an isomorphism of (1.1) with
a pole system corresponding to elliptic solutions of a 2-dimensional Toda lattice, the
construction of action-angle variables, and an explicit solution of the system in terms
of the theta-functions.

In [28], [29] it was shown that a wide class of solutions of the Seiberg-Witten
ansatz can be described in terms of a special foliation on the moduli space of curves

with punctures. That allows us to consider such systems as reductions of 2-dimensional
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soliton equations. Following this approach, let us note that (1.6) defines an algebraic
curve I' as a 2-sheeted cover of the elliptic curve Iy with periods 2w,2w’. Let P+ be
preimages on I' of z = 0. According to the construction of [22], any algebraic curve with
two punctures generates a family of algebro-geometric solutions of the 2-dimensional
Toda lattice

(3t 9. ) on = (e n —evnen), (17

parameterized by points of the Jacobian J(T') of the curve.
In the next section we show that algebro-geometric solutions ¢, (x,t) corre-
sponding to I' defined by (1.6) are periodic in n up to the shift, ¢, = @ n+2NIn A, and

have the form

(x = xn41(t) + a)o(x 4+ xn41(t) + a)
o(x —xn(t) + a)o(x + xn(t) + a)

On(x,t) = an(t) +1n > (1.8)
Substitution of (1.8) into (1.7) leads to (1.1) for x, (t).

In Section 3 we construct a new Lax representation for (1.1) and show that the
spectral curve defined by the Lax operator has the form (1.6). We also prove that if x,, (t)
is a solution of (1.1), then there exist functions «,, (t) (unique up to the transformation
on(t) = an(t) + c1t + ca, ¢ci = const), such that the functions ¢,,(x,t) of the form (1.8)
satisfy (1.7).

The last section is devoted to the Hamiltonian theory of system (1.1). Equations

(1.1) are generated by the Hamiltonian

N—-1
H=Y Insh? (pz—“) +1n (9(xn — Xn_1) — 9(xn + Xn_1)) (1.9)

n=0

and by the canonical Poisson brackets {p.,xn} = dnm. We emphasize that although this
Hamiltonian structure can be easily checked directly, it was found by the author using
the algebro-geometric approach to Hamiltonian theory of the Lax equations proposed
in [28], [29] and developed in [25]. The main advantage of this approach is that it allows
us to simultaneously find the action-angle variables and a generating differential that
defines low-energy effective prepotential.

Note that from the relation of system (1.1) to a 2-dimensional Toda lattice, it
is clear that degeneration of the elliptic curve I corresponds to a degeneration of this
system to the Toda lattice. It would be very interesting to consider this degeneration

explicitly on the level of the Hamiltonian structure. We consider this problem elsewhere.
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2 Elliptic solutions of a 2-dimensional Toda lattice

Algebro-geometric solutions of a 2-dimensional Toda lattice were constructed in [22].
Let I' be a smooth genus g algebraic curve with fixed local coordinates z. (Q) in neigh-
borhoods of two punctures Py € I} z4.(P+) = 0. Then for any set of g points v1,...,vq
in general position, there exists a unique function ¥, (x,t, Q) such that the following
conditions hold.

(1) As a function of the variable Q € I} (x,t, Q) is meromorphic on I" outside the
punctures Py and has at most simple poles at the points y; (if all of them are distinct).

(2) In the neighborhoods of the punctures, the function 1,, has the form

P = 2NV (Z £ (x, t)zft> , &g =1 (2.1)
s=0
Uniqueness of 1, implies that it satisfies the following system of linear equations:

(at + ax)lbn(xvty Q) = 21bn+1 (X>ta Q) + Vn(x) t)ll)n(x’ tv Q)’ (22)
(0t — 0x)Un(x,t,Q) = 2cn (x, t)Pn_1 (%, t), (2.3)

where the coefficients are defined by the leading coefficient &, of expansion (2.1) with

the help of the formulae

Vi = (0 + ) Pn(x,t),  cp =ePntTen ey g (x 1) =Ingy (x,1).  (2.4)

Compatibility of (2.2) and (2.3) implies that ¢, (x,t) is a solution of the 2-dimensional
Toda lattice (1.7).

The function 1V (x,t,Q) is called the Baker-Akhiezer function and can be ex-
plicitly expressed in terms of the Riemann theta-function associated with a matrix of
b-periods of holomorphic differentials on I'. The corresponding formula for ¢, is as
follows.

Let us fix a basis of cycles ai,bi, 1 = 1,...,g, on I with the canonical matrix of
intersections a; o a; = bj ob; = 0, a; o b; = 8;;. The basis of normalized holomorphic
differentials dQI(Q),j = 1,..., 9, is defined by conditions §ai dQ}* = &;;. The b-periods
of these differentials define the Riemann matrix By = §bi dQ}. The basic vectors ey of
C9 and the vectors By, which are columns of the matrix B, generate a lattice B in C9. The

g-dimensional complex torus

](F) = — B = anek 4+ mByx, Nk, My € Z, (2.5)
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is called the Jacobian variety of I'. A vector with the coordinates

Q

Ax(Q) = JP dog (2.6)

defines the Abel map A : T"— J(T').
The Riemann matrix has a positive-definite imaginary part. The entire function

of g variables z = (z1,...,24),

0(z) =6(z|B) = Z e27i(z,m)+mi(Bm,m)

meZ9

is called the Riemann theta-function. It has the following monodromy properties:
0(z + ex) = 0(2), 8(z + By) = e 2™z TBri g (7)), (2.7)

The function 6(A(Q) + Z) is a multivalued function of Q, but according to (2.7), the zeros
of this function are well defined. For Z in a general position, the equation 6(A(Q)+Z) =0
has g zeros vi,...,v4. The vector Z and the divisor of these zeros are connected by the
relation Z = — ) _ A(ys) + X, where X is the vector of Riemann constants.

Let us introduce normalized Abelian differentials dQ®) and dQ() of the second
kind. They are holomorphic on I" except at the punctures P.. In the neighborhoods of P,
they have the form

do® =d(z;' +0(1)), dQ® =d(+z:' +0(1)).

Normalized means that they have zero a-periods. The vectors of b-periods of these dif-
ferentials are denoted by 271V and 27tiW, that is, the coordinates of the vectors V and W
are equal to

- 1
T 2mi

1

=—¢ 4o, 2.8
27 Jy, (2.8)

Vi j@ do®  wy
by

Let dQ™) be a normalized Abelian differential of the third kind with simple poles at the
punctures P, with residues F1. From the Riemann bilinear relations, it follows that the

vector of its b-periods satisfies the relation

1
U =-—¢ dQM™ =A(P_)—A(P,). 2.9
“= 39, (P) = A(P) (29)
If we choose a branch of the Abelian integral Q™ near P, such that Q™ = —Inz, +

O(z;), then near P_ it has the form

QO™ =Inz +1,+0(z).
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Theorem 2.1 (see [22]). The Baker-Akhiezer function is equal to

0(A(Q) +nU+xV +tW + Z)6(Z)

a(x,1,Q) = e Qm Q™ L tQ®).
Pn(0b Q) = G v T W ZJa(A(Q) + 2) TP (M X )
(2.10)
The function ¢, (x,t) given by the formula
0 HU+xV+tW+Z
on(x,1) = nlo + In L DU XV +IW ) (2.11)
B(nU +xV +tW + Z)
is a solution of a 2-dimensional Toda lattice. O

For a generic set of algebro-geometric data, the function ¢, (x,t) given by (2.11) is
a quasi-periodic meromorphic function of all the variables (n, x, t). In [30] the solutions of
a 2-dimensional Toda lattice which are ellipticin the discrete variable n were considered.
It was found that dynamics of its poles coincide with the elliptic Ruijsenaars-Schneider
system [38]. In this paper we consider solutions that are elliptic in the variable x and
are periodic in n.

The condition that ¢, is elliptic in one of the variables is equivalent to the prop-
erty that the complex linear subspace in J(I') spanned by the corresponding directional
vector is compact, that is, it is an elliptic curve I. In the case of the x-variable it means
that the vectors 2w, V, « = 1,2, belong to the lattice B defined by (2.5):

20,V =) nfe+miBy, nf,myeZ (2.12)
k

Here and below, w; = w, w, = w’ are half-periods of the elliptic curve TG.

Theorem 2.2. Let " be a smooth curve defined by (1.6), and let P, be preimages on I" of
the point z = 0 € I with local coordinates in their neighborhoods defined by the local
coordinate z on I. Then the corresponding algebro-geometric solutions given by (2.11)

satisfy the relation

PniNn(x,t) = @n(x,t) + 2N1In A, (2.13)
and have the form (1.8), that is,

(X —Xnt1(t) + a) G(X +xnp1(t) + (1)

o
@n(x,t) = o (t) +In o(x —xn(t) + a)o(x +xn(t) + a)
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The functions x,, (t) defined by this representation satisfy equations (1.1). The functions
o satisfy the relation

gen 1 (M=ot = (1 — 52 (£))W(xn, Xnt1)W(Xn, Xn—1), (2.14)

where
Wi, v) = olu—v)o(u+v) (2.15)
o(2u) 0

Proof. The first statement of the theorem is a direct corollary of the uniqueness of the
Baker-Akhiezer function. The projection Q = (w,z) € T — w defines w = w(Q) as a
function on the curve. This function is holomorphic on I' outside the puncture P, where
it has the pole of order N, w = z~N(1 + O(z)). At the point P_, it has zero of order N,
w = AZNzN(1 + O(z)). Therefore, we have the equality

Pnin(x, 1, Q) =w(Q)n(x, t,Q), (2.16)

because the functions defined by its left- and right-hand sides have the same analytical
properties.

Let us consider the functions

T(X(Z) _ ezé(z)wafzﬂaz’ Mo = C(w“)‘ (2‘17)

They are double-periodic and holomorphic on Iy except at z = 0. Again, comparison of
analytical properties of the left- and right-hand sides proves the equality

Pu(x+2wa,t, Q) = Ta(2)hn(x,1,Q), Q= (w,z). (2.18)

The function e is defined as a ratio of the leading coefficients of an expansion of {,
on two sheets of I'. Therefore, it does not change under the shifts x — x + 2wq, and
consequently, it is an elliptic function of the variable x. From (2.11) it follows that if we
denote roots of the equation 6(nU + xV + tW + Z) = 0 in the fundamental domain of Iy
by ¥ (t),j=1,...,D, then

D J
e®n(0,t) _ pan(t) H" ) E()t))) (2.19)

Our next step is to show that e®~ has only two poles and zeros in Ip.
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Lemma 2.1. The function 8(xV + &) corresponding to a smooth algebraic curve I, defined
by (1.6) as a function of the variable x, is an elliptic theta-function of weight 2, that is,

it can be represented in the form

O(xV + &) =1(&)o(x —x' (&) o(x —x*(§)). (z.zoD)
Proof. Let us find the coefficients of expansion (2.12). The branching points zijE of T over
Io are roots of the equations P${(z) = +AN. In a generic case, when they are distinct, the
curve I" is smooth. The Riemann-Hurwitz formula 2g — 2 = v, which connects genus g of
branching cover of an elliptic curve with a number v of branching points, implies that I'
has genus N + 1. We choose a;, b; cycles on it as follows: a;, i =1,...,N — 1, are cycles
around cuts between branching points z,z;, and an and an+1 are two preimages of
a-cycle on Ty. (We assume that a- and b-cycles on Iy correspond to the periods 2w and
2w’, resp.)

From the definition of the differential dQ®™) | it follows that

() — _n
dQ® =4 (C(z) wz). (2.21)
Therefore, the coordinates of the vector V defined by (2.8) are equal to

. 1 Ul 1
Vi=0, i=1,...N—1, V=V :7( 1 ’):——. 2.22
i 1 N N+1 pry n ww 20w ( )

Comparing the vector of b-periods of dQ®) with the vector (0,...,0,2w’,2w’) of b-

periods of the differential dz, considered as a differential on I} we get

% aQm = ™ fi; dz, i=1,...,N+1. (2.23)
by 2ww’ Jp,
The a-periods of dz are equal: (0,...,0,2w, 2w). Therefore,
dz = 2w (dQY + dQY ),
where dQ!' are normalized holomorphic differentials. From (2.23), we finally obtain that

2(U/V = —BN — BN+1, (224)

where B; is the vector of b-periods of dQ'. The monodromy properties of 6-function
imply

O((x +2w)V+2Z) =0(xV+2), 0((x+2w)V+2Z)=e™MoxV+2), (2.25)

1T0Z ‘0z Iidy uo Areiqr] opeiojod N ¥e B10°S[euInolpIoyxo-uiwl woly papeojumoq


http://imrn.oxfordjournals.org/

Elliptic Analog of the Toda Lattice 391

where

I(X) = ﬂi(ZX(VN + VN+1) + BN+1,N+1

+BN,N = BNt — BgrN 2241 + 2ZN).

Using (2.22), we obtain

o
dl(x) = —g dx. (2.26)

The number D of zeros of the function 6(xV + &) in the fundamental domain can be

found by integrating the logarithmic derivative of this function over the boundary of the
domain. From (2.25) and (2.26), it follows that

1

D=— dln®O(xV+ Z) =2. (2.27)

2m Jaq, n

The equality (2.20) implies that the index j in (2.19) takes values j = 1,2. The

sums of zeros and poles of an elliptic function are equal to each other (modulo periods

of Ty). Hence, x), (t) can be represented in the form

xL =xn(t) +a(t), xA(t) = —xa(t) +a(t). (2.28)

To complete a proof of (1.8), we need only to show that a(t) does not depend on t.
Let us substitute (2.19) into (1.7). A priori, the difference of the left- and right-
hand sides of (1.7) is an elliptic function of x with poles of degree 2 at the points x}, (t)

and x/, 41 (t). Vanishing of the pole of degree 2 at x} implies that
(x)" —1=FL(x}), (2.29)

where

[T;0(x—x,y)o(x— XL_I)

Hj;éi o? (X - X]n)

Fi(x) =Tn , T = —4eXn%n-1, (2.30)

Vanishing of the pole of degree 1 at x!, implies that

X5 = 0xFh (xh) = Fi(xh) (0x InFl (x}))

n

LiN2 ; ; . : ) ) (2.31)
= (()" = 1) [ Dbk =xy) + Q0 =% y) =2 C(xh —xh)

j i#
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Substitution of (2.28) in (2.30) shows that

F111 (X}T) = F12’L (in) = rn(t)w(xnaXnJrl)W(Xn»anl)‘

Hence, we obtain the equality (x})? = (x2)?, which implies that a = 0. Equalities (1.8)
and (2.14) are proved. At the same time, substitution of (2.28) into (2.31) gives us (1.1).
|

3 Generating problem and Lax representation

In this section we construct the Lax representation for (1.1) following an approach pro-
posed in [21] and developed in [26], [27], and [30] (see the summary in [25]). According
to this approach, pole dynamics can be obtained simultaneously with its Lax represen-
tation from a specific inverse problem for a linear operator with elliptic coefficients.
In the most general form the inverse problem is to find linear operators with
elliptic coefficients that have sufficient double-Bloch solutions. A meromorphic function

f(x) is called double-Bloch if it has the following monodromy properties:
f(x +2wy) = Bof(x), a=1,2. (3.1)

The complex numbers B, are called Bloch multipliers. (In other words, f is a meromorphic
section of a vector bundle over the elliptic curve.) It turns out that existence of the double-
Bloch solutions is so restrictive that only in exceptional cases do such solutions exist.
The basis in the space of double-Bloch functions can be written in terms of the
fundamental function ®(x,z) defined by the formula
O(x,z) = =) caan (3.2)
a(z)o(x)
From the monodromy properties of the Weierstrass functions, it follows that @, consid-
ered as a function of z, is double-periodic: ®(x,z+2w,) = ®(x,z), though it is not elliptic
in the classical sense due to essential singularity at z = 0 for x # 0. As a function of x,

the function ®@(x, z) is a double-Bloch function, that is,
D(x + 2wq, z) = Tx(2)P(x,z),

where Ty (z) are given by (2.17). In the fundamental domain of the lattice defined by 2w,
the function ®@(x, z) has a unique pole at the point x = 0:

O(x,z) =x ' +0(x). (3.3)
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Let f(x) be a double-Bloch function with simple poles x; in the fundamental domain and
with Bloch multipliers B, (such that at least one of them is not equal to 1). Then it can

be represented in the form

N
fx) =) ci®(x—xi,2)e", (3.4)

where c; is the residue of f at x;, and (z, k) are parameters such that B, = T«(z) exp(2w «k).

Now we are in position to present the generating problem for (1.1).

Theorem 3.1. The equation

(0t + 05 )Wn = 2Wn 11 +vn(x, t)¥n (3.5)

with an elliptic coefficient of the form

2

Vi 06 t) = ¥n(t) + Y [RL(OC(x = x5 (8) = by (D¢ (x = xh 0 (1)) (3.6)

i=1

where

xL(t) =xn(t) +a, x%4(t) = —xn(t) +a, a=const, (3.7)

has two linear independent double-Bloch solutions with Bloch multipliers T(z) (for

some z), that is, solutions of the form

2
Yn(x,t) =) ch®(x—xi(1),2) (3.8)
i=1
if and only if the functions x,,(t) satisfy (1.1).
If (3.5) has two linear independent solutions of the form (3.8) for some z, then

they exist for all values of z. O

Proof. Let us substitute (3.8) into (3.5). Both sides of the equation are double-Bloch
functions with the same Bloch multipliers and with the pole of order 2 at x!,, and the
simple pole at x! ;. They coincide if and only if the coefficients of their singular parts
at these points are equal to each other. The equality of the coefficients at (x — x!, )2

implies that

hi =xi —1. (3.9)

1T0Z ‘0z Iidy uo Areiqr] opeiojod N ¥e B10°S[euInolpIoyxo-uiwl woly papeojumoq


http://imrn.oxfordjournals.org/

394 I. Krichever
The equality of residues at x!, ,; is equivalent to the equation
chi =27'hi, ZCD(X;H —x),)c,. (3.10)
j

The equality of residues at x!, is equivalent to the equation

dich =Mbch +hh Y O(xh,, —x))c), (3.11)
£
where
M, :Vn*ZhixHC(XiL*XLH) +Zhilc(xilixji)‘ (3.12)
j AL

Equations (3.10) and (3.11) are linear equations for c!,. Their compatibility is just a

system of the equations

Ot (Inhy 1)@ (xqpq —xh) + (K — %0) @ (Xiy — )

= (M1 = ML) @ (x4 — X)) + Z D (X1 — X ) M1 @ (X —x0)

k#i
=) O(xhy —xE)hEO(xE —x,), (3.13)
k#j
which can be written in the matrix form as
ath = Mn+1Ln7]—nMn» (3.14)

where L,, and M,, are matrices defined by the right-hand sides of (3.10) and (3.11).
Equation (3.14) is a necessary and sufficient condition for the existence of solutions of
(3.5) that have the form (3.8). Therefore, the following statement completes a proof of
the theorem.

Lemma 3.1. Let L,, = (LY (t,z)) and M,, = (M{ (t, z)) be defined by the formulae
L) =2""hi 1 O(xk,, —x,,2), MI=M,, My=hi0x,—x),z), i#j,
(3.15)

where x}, = xn, X2 = —xn, hi, =%} — 1, and M}, is given by (3.12) with y,, such that

(th B 1)02 (zxn)

G(Xn — Xn+1 )G(Xn + Xn+1 )G(Xn —Xn-—1 )G(Xn + Xnfl)

Yn —VYn_1 =d¢ ln( ) . (3.16)

Then they satisfy equation (3.14) if and only if the functions x, (t) solve (1.1). O
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Note that (3.16) defines v, (t) up to a constant shift vy, (t) — yn(t) + g(t), which
corresponds to the gauge transformation ¥,, — e9V¥,, of equation (3.5) and which does

not effect equations for x,,.

Proof. The right- and left-hand sides of (3.13) are double-periodic functions of z that
are holomorphic except at z = 0, where they have the form O(z2) exp((x},, — xh)(2)).
Such functions are equal if and only if the corresponding coefficients at z=2 and z ™! are
equal. The equality of the coefficients at z=2 gives

(XilJrl 'Tl) hll-&-l h +Z hk h}rcl+l hi'l-ﬂ-l _hiﬂ (317)

which is fulfilled due to (3.9). (The second equality in (3.17) holds because v(x, t) is an
elliptic function of x and, therefore, a sum of its residues is equal to zero.)

The equality of the coefficients at z~! in the expansion of (3.13) at z = 0 gives
(lnhnﬂ) (kilJrl _’.‘L)qXLH _Xix)

= Mhﬂ - Mil + Zh‘:wl [C<x;+1 - n+1) + C( Xn+1 XL)}
KAt (3.18)

—th{ Xt —x}ﬁ)+C(xﬁ—x};)]

k#j

The second line in (3.18) is equal up to the sign to the sum of residues at xX, k # j, and

at xX_;, k # 1, of the elliptic function

Y (%, 1) = v (x, 1) [c(x;H —x) +(x— x;)].
Therefore, it equals to the sum of residues of this function at x! ,; and Xh. We have

res Vn(x,t) + res v (x,t) = (W, —hi ) (xbh, — %) + M), —

xt

n+1 Xh
—%h‘;&(xaﬂ _Xh) (3.19)
+ Z hl(wrl C(Xiwl - X}:Hrl )
kAL

Substitution of the right-hand side of the last equality into (3.18) implies (after the shift
n+1 —n) that
R, Kr(pi ok
hT =Yn—Yn-1+t Z ZhnC(Xn — Xn)
" kAt (3.20)

- Z {hﬁﬂ Clan —Xpa1) RN (e — thl)]'

k
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From (3.9), it follows that (3.20) can be rewritten in the form

o = 06 (1) + 4G (), (3.21)

where the function

_ 4k _ 4k
GL(X) =an + 11’1 <Hk G(X XTI+1)O_(X an

Hk#i o2 (X - Xlﬁ)

1)> y atan =Yn —¥Yn-1 (322)

depends on t through the dependence on t of x| and a,,, only. By the chain rule, we have

0y (G (xh)) = ¥h0uGh () + 0.GL (<), di= o (3.29)
Therefore,

g = (1 )26, () + (6L (<4) (3.20)
From (3.7), it follows that

Gr(xn) = GA(xh) =Gnlxn), 3Gy (xy) = —0xGh(xXA) = 0xGn(xn),
where

Gn(x) = an +In (G(X — Xnt1)0(x + x(:z?;)—(:(;cn; Xn—1)0(X +Xn_1) > . (3.25)
Therefore, for i = 1,2, (3.24) has the form

in == d(Gn(xn)) — (i — 1)0Gn(x2), (3.26)

Xn"i L= de (Gn(xn)) — (Xn + 1)0xGn (xn). (3.27)
Equations (3.26) and (3.27) are equivalent to the equations

%n = (%3 —1)0xGn(xn),  d¢(Gn(xn)) =d¢ln (x5 —1). (3.28)

The first among them coincides with (1.1) for x,,, and the second one (compare it with
(2.14)) is equivalent to the definition of y,, by (3.16). Lemma 3.1 and Theorem 3.1 are
proved. |

1T0Z ‘0z Iidy uo Areiqr] opeiojod N ¥e B10°S[euInolpIoyxo-uiwl woly papeojumoq


http://imrn.oxfordjournals.org/

Elliptic Analog of the Toda Lattice 397

4 Direct problem: Spectral curves
In this section we consider periodic n-solutions of (1.1).

Lemma 4.1. Let x,(t) = xn4nN(t) be a solution of (1.1). Then

N
[ H o(Xn — Xnt1)0(Xn +.2Xn+1)0(zxn —Xn-1)0(Xn +Xn-1) (4.1)
ool (X2 —1)0%(2xn)
is an integral of motion, I = const, and the monodromy matrix
N-1
T(t,z) = [[ La(t,2) (4.2)
n=0
satisfies the Lax equation
0+T = [M,o, T]. (4.3)
O

Proof. If x,(t) is periodic in n, then the corresponding matrix functions L, (t,z) and
M (t,z) defined by (3.15) satisfy the relations

I—nJrN =La, MnJrN =M, — dt(ln I) (4'4)

Therefore, (3.14) implies that
0+T =—d¢(In )T + [Mo, T]. (4.5)

Note that if 01 = 0, then (4.5) coincides with (4.3), and, therefore, the second statement
of the Lemma follows from the first one.

Equation (4.5) implies that the function

P(z) = I(t) (tr T(t,z)) (4.6)

is time-independent.

Matrix entries of L,, are double-periodic functions that are holomorphic on Iy
except at z = 0. Therefore, (trT) is also double-periodic and holomorphic on Iy outside
z = 0. In order to prove that this function is meromorphic on Iy, it is enough to note that
L, has the form

Ln(t,2) = gni1lngn’, (4.7)
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exnt(z) 0
9n = 0 e—xnl(2) |

From (3.2), it follows that in the neighborhood of z = 0,

where

Lh=(2) "% + L +0(2), (4.8)
where
t?l:l 1_):(71-4—1 1_7:(n+1 (4.9)
2 \14%ns1 1+%nm
and
’1;11 _ 1 1 —Xnq1 0 _C(XnJrl _Xn) _C(XTI+1 +Xn) . (4‘10)
2 0 1+ Xn+1 C(Xn-ﬁ-l + Xn) C(Xn+1 - Xn)
Therefore,
N-1
trT:tr<H Ln(t,z)> =z N(1+0(2)). (4.11)
n=0

The last equality shows that (trT) is a monic elliptic polynomial P8 (z). Therefore, at
z = 0, we have P(z) = I(t)z N(1 + 0(z)). Hence, I(t) is an integral of (1.1) because P(z)
does not depend on z. Lemma 4.1 is proved. |

Due to (4.3) the spectral curve I'" defined by the characteristic equation
R(w,z) =det (w—T(t,z)) =w® — (trT)w+ det T =0 (4.12)

is time-independent.
Lemma 4.2. The characteristic equation (4.12) has the form (1.3). O

Proof. We have already proved that (tr T) has the form (1.5). The relation ®(x, z)®(—x, z) =
©(z) — p(x), which is equivalent to the addition formula for the Weierstrass o-function,

implies that

detLn(t,z) =2 2(x%,; — 1) [p(xn+1 —Xn) — (%41 + Xn)]. (4.13)
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Therefore, although L, (t,z) depends on z, its determinant does not depend on z. Hence,
(detT) is also z-independent. As it does not depend on t, we identify A?N in (1.6) with

N-1

AN =detT(t,z) =27N J] (&4 — 1) (90cn —xn-1) — 9(xn +%n 1))
n=0
=27 2NH (4.14)
where H is the Hamiltonian of system (1.1). Lemma 4.2 is proved. [ |

For a generic point Q of the spectral curve I that is, for a pair (w, z) that satisfies
(4.12), there exists a unique solution C, = (ci (t,Q)) of the equations

Cnr1(t, Q) =La(t,2)Cn(t,Q),  9:Cn(t, Q) = Mn(t,z) (4.15)
such that
Chin (t> Q) = Wcﬂ(t> Q) (416)

and the unique solution C,, = (c},(t,Q)) is normalized by the condition

c6(0,Q)®( —x0(0),z) + c3(0,Q)®@(x0(0),z) = 1. (4.17)

Remark. Normalization (4.17) corresponds to a usual normalization ¥,(0,0,Q) = 1 of
the solution ¥, (x, t, Q) of (3.5) defined by (3.8).

Theorem 4.1. The coordinates c!, (t, Q) of the vector-valued function C, (t, Q) are mero-
morphic functions on I" except at the preimages P1 of z = 0. Their poles y1,...,Yn+1 do

not depend on n and t. The projections z(ys) of these poles on I satisfy the constraint

N+1
D z(ys) =0. (4.18)
s=1

In the neighborhoods of P, the coordinates of C,,(t, Q) have the form

ch(t,Q) = 2F"xh, L (t, z)eE xn (= (4.19)

—1

ch(t, Q) =27 L (t,z)eFt Tz (4.20)

where x}, . (t,z) are regular functions of z:

Xnt(62) =2x0 () +0(2%), X _(t2) =x (1) +2xw— (1) + O(2%)  (4.21)
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such that the leading coefficients of their expansions have the form

Xt (D) =c(t)1—%n),  Xa () =ct)(I+%n), c(0)=1, (4.22)
Xn—(t) =sn(t), X3, _(t) =—sn(t), (4.23)
where functions s, satisfy the relation
2

Snt+1 = 272 (kn+1 - 1) [p(xn-H - Xn) —(Xn+1 + Xn)] Sn. (4'24)

Proof. Vector-columns Sﬁll) and sf) of the matrix-function

n—1
Séj = dij, Sn(tz) = H Lin(t,z), mn>0, (4.25)
m=0
are holomorphic functions on Iy except at z = 0. They satisfy the equation S:)H = LnS&) .

Therefore, the Bloch solution C,, of (4.15) has the form

Cn(t> Q) =h (Q)Sg) (t» Z) + hZ(Q)SErf) (t) Z)» (4'26)

where hi(Q),Q = (w,z) € T, are the coordinates of the normalized eigenvector of the

monodromy matrix T(z), corresponding to the eigenvalue w. They are equal to

1

h(Q) = r(Q)TIZ(Z), h2(Q) = Q) (w—T"(2)), (4.27)
where TY(z) are entries of the monodromy matrix and the normalization constant r(Q)
equals

Q) =T (2)®@(—x0(0),2) + (W —T" (2)) @ (x0(0), ). (4.28)

The function r(Q) has the pole of degree N + 1 at P, and the pole of degree N at P_.
Therefore, it has 2N + 1 zeros.

Let us show that N of these zeros are situated over roots of the equation T'2 (z) = 0
on one of the sheets of I'. Indeed, if T!2(z) = 0, then eigenvalues w(z) of the monodromy
matrix are equal to T!! (z) or T*?(z). Therefore, r = 0 at the points Q = (T'!(z),z). Equa-
tions (4.27) imply that C, has no poles at these points. The poles ys of C,(t,Q) on I’
outside the punctures Py are the other zeros of r(Q) and do not depend on n and t. Let

us now prove that they satisfy (4.18).
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The function v (z) = r(Q)r(Q°) with 0: Q — QF as a permutation of sheets of T
is a well-defined function on Iy with the pole of degree 2N + 1 at z = 0. As it was shown
above, it is divisible by T'2 (z). Therefore, the ratio r*(z)/T!?(z) is an elliptic function with
the pole of degree N+ 1 at z = 0 and zeros at the points z(y;). Divisors of zeros and poles
of an elliptic function are equivalent. Therefore, (4.18) is proved.

From (4.7), it follows that the vector-function C, = g;;!C,, is a Bloch solution of
the equation énﬂ = inén. Let us first consider the neighborhood of the puncture P,
which corresponds to the branch w = z7N(1 + O(z)) of the eigenvalue of the monodromy
matrix.

The vector-function X,, (t) with the coordinates given by (4.22) satisfies the equa-
tion Xn41 = L2X,,, where L2 is defined in (4.8). That implies that, in the neighborhood
of P, the vector-function C,(t,Q) has the form stated in the theorem up to a time-
dependent factor f, (t,z). Substitution of (4.19), (4.20) into 9:C,, = M, C,, shows that
0¢f = O(z). Therefore, the analytical properties of C,, near P, are established.

Now we prove by induction that at P_ equalities (4.19), (4.20), and (4.23) hold.
For n = 0, they are fulfilled by the normalization conditions. Let us first prove that if
(4.19), (4.20), and (4.23) hold for n’ < n, then

2Kn = (C(Xn+1 + Xn) — C(Xn+1 — Xn))Sn + X.}l‘)l_ =+ X_}I‘YZ_ =0. (429)

Indeed, C,,y; = L, C,, implies that 6n+1 at P_ has the form

~ n ((l_kn+l)Kn

Cny1 =2 . +0(z™). (4.30)
(1 +Xn+1)Kn

Hence,

~ = ~ ot (1 =%0)kn -
CN_< 1T Lm> Cnpp =22 N1 ( . >+o(z2“ M. (4.31)

m=n-+1 (1 +X0)Kn

If k,, # 0, then the last equality contradicts the monodromy property Cn =wCo = o(zM).
Therefore, k, = 0, and then (4.30) shows that Enﬂ has zero of order n+1 at P_. Therefore,
a step of induction for equalities (4.19), (4.20) is proved. The same arguments show that
if (4.23) does not hold, then the vector Cn has zero of order (2n — N), which again
contradicts the relation Cn = O(zN).

Equalities (4.19), (4.20) near P_ are proved, possibly up to a time-dependent fac-
tor f_(t, z). Their substitution into 9;C,, = M,,C,, shows that 0,f_ = O(z) and completes
a proof of (4.19), (4.20), and (4.23).
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Let €, (z) be a matrix formed by the vectors Cy(t, Qi(z)), corresponding to two
different sheets Qi(z) = (wi(z),z) of . This matrix is defined up to a permutation of
sheets. From (4.19)-(4.23), it follows that in the neighborhood of z = 0,

exné() 0 (1—%n)C  Sn
Cn(z) = eni(®) ) + 0(z)
0 e *ntlz (1+%xn)c —sn

(4.32)
z—n+1 etC(z) 0
X .
0 e t(2)
Therefore,
det C,, = —2csnz + 0(z?), (4.33)
and from the definition of C,, we have C,,,; = L,,C,,. Hence,
Snt1 = Sndetly, (4.34)
which coincides with (4.24). Theorem 4.1 is proved. [ ]

The correspondence that assigns a set of algebro-geometric data {I; D} to each
solution x, (t) = xn4n(t) of (1.1), is a direct spectral transform. The following statement

shows that the results of Section 2 can be seen as the inverse spectral transform.

Corollary 4.1. The solution

Yo (x,t,Q) = ch(t, Q)@ (x — xn(t),t) + cA(t, Q)D (x + xn (t), ) (4.35)

of (3.5) is equal to W, (x,t, Q) = c(t)Pn(x,t, Q), where P, (x,t,Q) is the Baker-Akhiezer
function corresponding to I and the divisor D of the poles of C,; the factor c(t) is defined
in (4.22).

All the solutions x,, (t) of (1.1) have the form x,, = (1/2)(x}, —x?2), where x! (t) are

roots of
O(nU+ x5 (t)V+Wt+2Z) =0. (4.36)

Here 0(z) is the Riemann theta-function corresponding to I'; vectors U, V, W are defined

by (2.8), (2.9); vector Z corresponds to the divisor D via the Abel transform. O

As follows from the Theorem 4.1, the function ¥,, defined by (4.35) has the same
analytical properties on I' as the function c(t){,. Therefore, they coincide. Equation
(4.36) immediately follows from (2.10) for {,.
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5 Action-angle variables

Until now we have not used the Hamiltonian structure of (1.1). Moreover, a priori, it is
not clear why a system that has arisen as a pole system of elliptic solutions of the 2-
dimensional Toda lattice is Hamiltonian. The general algebro-geometric approach, which
allows us to derive a Hamiltonian structure starting from the Lax representation, was
proposed and developed in [28], [29], and [25].

The main goal of this section is to construct action-angle variables for (1.1). First
of all, let us summarize the necessary results of the previous sections. A point (pn,xn)

of the phase space M of the system defines a matrix function L,,(z) with the help of the

formulae
LY =27 Tht, o (xi,, —x,2), (5.1)
1 Pn
Xyllzxn» Xﬁ:_xnv hixzhﬂ_l’ hgl:_h/“_l’ hn:%'
(5.2)

This function defines the spectral curve I' (with the help of (4.12)) and the divisor D of
poles v1,...,yn1 of the Baker-Akhiezer function C,,(Q) = (c}(Q),c%(Q)):

n n

Chi1(Q) =La(2)Cn(Q),  Cn(Q) =wCo(Q), Q=(w,z) €l (5.3)

normalized by the condition

¢ (0, Q)@ (—xo,2) + c5(Q)D(x0,2z) = 1. (5.4)

The divisor D satisfies (4.18), that is, it defines a point of an odd part of the Jacobian
JET(I) € J(T), which is defined as a fiber of the projection

iy} €100 = 20d = 3 z(vs) €T, (5.5)
s=1
corresponding to ¢, = 0. All the fibers are equivalent and can be identified with the
Prym variety of I'. Note that a shift of ¢ corresponds to the shift x — x + a for the
solution (1.8) of a 2-dimensional Toda lattice.

The correspondence

(Pn,Xn) € M+— {[,D € J**(I)} (5.6)

is an isomorphism. The coefficients (ui, A) of (1.6) are integrals of the Hamiltonian sys-
tem (1.1). Equations (1.1) on a fiber over I' of the map (5.6) are linearized by the Abel

transform (2.6).
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The main goal of this section is to construct the action variables that are canon-
ically conjugated to the coordinates ¢y,...,dn_1,d_:

N+1

dr = Z Ax(vs), b =dn — dnya, (5.7)
s=1

on the Prymmian J**(T'). Note that ¢, = ¢pn + Oni-

Theorem 5.1. The transformation

(Xﬂv-pn)’_)(Cbla-'-yd)N—lad)—;Ily---IN)a (58)

where I are a-periods of the differential dS = In(A~Nw) dz:
I :jﬁ In (A" Nw) dz, (5.9)
ak

is a canonical transformation, that is,

N N—-1
D> dpnAdxn =) (8L Addr) +8In ASd_. (5.10)
n=1 k=1 O

Proof. First of all, following the approach proposed in [28], we define a symplectic struc-
ture on M in terms of the Lax operator and its eigenfunctions. After that, we calculate it
in two different ways, which immediately imply (5.10).

The external differential 6L,,(z) can be seen as an operator-valued 1-form on M.
Canonically normalized eigenfunction C,,(Q) of L.(z) is the vector-valued function on

M. Hence, its differential is a vector-valued 1-form. Let us define a 2-form w on M by the

formula
1
w—E(rPefQ—l—rPeisQ), (5.11)
where
Q = (C5,1(Q)8Ln(z) A5Cn(Q)) dz. (5.12)

Here and below, () stands for the sum over a period of a periodic in n function, that is,

N—1
<fn> = Z fn;
n=0
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Cx(Q) is the dual Baker-Akhiezer function, which is defined as a covector (row-vector)
solution of the equation

Chi1(QLa(2) =CL(Q),  CR(Q) =w ' C5(Q), (5.13)

normalized by the condition

C5(Q)Co(Q) =1 (5.14)

The form w can be rewritten as
1
W=7 rgs’[‘r((@;}rl (2)0Ln(2) A 8Cw(2))) dz, (5.15)

where €, (z) is a matrix with the columns C,(Q;(z)), Qj(z) = (z,wj) corresponding to
different sheets of T.

Note that C(Q) are rows of the matrix €, !(z). This implies that C}(Q) as a
function on the spectral curve is meromorphic outside the punctures, has poles at the
branching points of the spectral curve, and has zeros at the poles ys of C(Q). These

analytical properties are used in the proof of the following lemma.

Lemma 5.1. The 2-form w equals

N+1
w= Z dz(vs) A dInw(ys). (5.16)
s=1 O

The meaning of the right-hand side of this formula is as follows. The spectral
curve by definition arises with the meromorphic function w(Q) and the multi-valued
holomorphic function z(Q). Their evaluations w(ys),z(ys) at the points v, define func-

tions on M, and the wedge product of their external differentials is a 2-form on M.

Proof. The differential Q, defined by (5.12),is a meromorphic differential on the spectral
curve. (The essential singularities of the factors cancel each other at the punctures.)
Therefore, the sum of its residues at the punctures is equal to the sum of other residues
with negative sign. There are poles of two types.

First of all, Q) has poles at the poles v, of C,,. Note that 6C,, has the pole of the
second order at y,. Taking into account that C}, has zero at v, we obtain

res O = (C5 ;8L Cn) Adz(ys). (5.17)

Vs
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From (5.3) and (5.13), it follows that

N—1 n—1
(Cr 18l Cn) = <C*N ( 11 Lm> 5Ly, <H Lm> C0> = (CK8TCo), (5.18)
m=0

m=n-+1

where T is the monodromy matrix. Using the standard formula for the variation of the
eigenvalue of an operator 6w = C{6TCq, we obtain that

resQ =dInw(ys) A dz(ys). (56.19)
’yS

The second set of poles of Q) is a set of branching points q; of the cover. The pole of C}
at q; cancels with the zero of the differential dz, dz(qi) = 0, considered as differential
on I'. The vector-function C,, is holomorphic at q;. If we take an expansion of C,, in the
local coordinate (z — z(q;))'/? (in general position when the branching point is simple)

and consider its variation, we get

5C = —dd%“zs.z(qi) +0(1). (5.20)

Therefore, 5C,, has a simple pole at g;. In a similar way, we obtain

dw
= ——52(q1). 21
Sw 3 0z(ay) (5.21)

Equalities (5.20) and (5.21) imply that

dwd
res Q = res [(C;HéLndcnw\ w Z}. (5.22)
di qi
At qi, we have dL,,(qi) = 0. Therefore, in a way similar to (5.18), we get
dwdz
Q= C{8TdCy) A . 5.23
[< NOTdCo) A =50 } (5.23)

Due to skew-symmetry of the wedge product, we may replace 5T in (5.23) by (8T — éw).
Then using identities C¥ (8T —dw) = 6C{(w—T) and (w—T)dCy = (dT—dw)Cy, we obtain

res O = —res (5CY Co) A dwdz =res (Cx5Co) Adwdz. (5.24)
qi qdi qi

Note that the dT does not contribute to the residue, because dT(q;) = 0.
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Expansions (4.19), (4.20) near the punctures imply that

res (CN8Co) Adwdz =0. (5.25)
+
Therefore,
N1
; res (C{8Co) Adwdz = — ; res (Cx8Co) Adwdz
N+1
= Z dlnw(ys) A dz(ys). (5.26)

s=1
The sum of (5.19) and (5.26) gives (5.16), because
N+1
2w =— S; res Q- ; Tes Q. (5.27)
Our next goal is to prove the following statement.

Lemma 5.2. The symplectic form given by (5.11) coincides with the canonical symplectic

structure
N+1
w = Z Opn A Oxn. (5.28)
n=0 |

Proof. Using the gauge transformation (4.7)

~ 1 . exni(2) 0
L, = 9n+1]-ng—r_1 y e'n = gne; On = 2z y
we obtain

1 - - - - - -
w =  resTr <e;1+1 (2)8L0(2) A5Cn (2) + €L, 510 ABFnCr

' ) (5.29)
— 8L (81 ASLn + 81 ATndf) 80 ) dz,

where §f, = 8gn g, . From (4.32), using the equality

(C(XTLJrl +xn) = C(Xn+1 — Xn))ésn + 6()(111',1— + X}{?-)
= 5n6<c(xn+1 —Xn) — C(Xnt1 + Xn))»
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which follows from (4.28), we obtain that the first term in (5.29)

J, = rgs< (€1, (2)80n(2) Aéén(z))> dz

is equal to

J; = <2 Shng1 AS(C(xn — Xn+1) + C(Xn+1 "‘Xn))> ‘
Sn+1

Equation (4.34) implies that

Iy = <25hn+1 A X1 20hn 41 A\ dxn <@(Xn —Xnt1) T 9Xn +Xni1)
L= _
hY

hszrl h’121+1 -1 (Xn —Xn+1) — ®(n + Xn+1)

The second term in (5.29) is equal to
J2 = (resTr (€1, 800 A 8FnCn) ) dz = (resTr (L8600 ASFn) ) dz

From definition (5.1) of L,,, by direct calculations, we obtain that

Jp = <25hn+1 N\ Oxn ([Q(Xn - Xn+1) + ZQ(Xn + Xn+1)>>
2 — .

hiJrl p(xn _Xn+l) _p(xn +Xn+l)

At last, the third term in (5.29) is equal to

Js = —< resTr (€}, 81 A zsinén)> dz
= (resTr ((8Ln) L' A8Fni) ) dz,

because

I4z<rgsTr((? 5fn i1 A Lndfn)Cn >dz:0

n+1

In order to prove (5.33), let us note that at z =0,

n 0
fu(z) =210 +0(2%), 0 = (X ) .

0 —xn

Therefore,

Ja = (TesTr (€,1,8%% 1 ALndf%)Cn )o(2) dz

< resTr (€1 50, A Lnsfg)en>p(z) dz.

n+1

)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)
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The last term in (5.35) is equal to the sum of residues at the punctures P of the differ-
ential

(Cr 160 11 ALndfoCr)p(z) dz,

which is holomorphic on I' outside the punctures. Hence, J, = 0.

From (5.32), by direct calculations, we obtain that

2 ™ n
I3 = < 5hh2+1 A&t > (5.36)
n+1 1
Equations (5.30), (5.31), and (5.36) imply (5.28). Lemma 5.2 is proved. [ |

Now we are ready to complete the proof of Theorem 5.1. Equations (5.16) and
(2.14) imply that

“5ln (A Nw) dz. (5.37)

Indeed, we have

N+1 N-+1
Sou= Y &lnw(ys) Adz(ys) —NSIDAAS Y z(ve). (5.38)

s=1 s=1

The last term in (5.38) equals zero on the fibers ¢ = const of the map (5.5).

The differential dS = In(A~Nw) dz is multivalued on T, but following the argu-
ments of [28], we can show that its derivatives with respect to Iy,k = 1,...,N (which
can be considered as coordinates on a space of curves given by (1.6)) are holomorphic
differentials. The differential dS is odd with respect to the permutation of sheets of T.

Therefore, In;+1 = —In and the definition of Iy implies that
0 h 0 h h
adS:ko, k=1,...,N—1, mdS:dQN—dQNH. (56.39)

Equations (5.7) and (2.6) imply that
N—1
a= > ($dL) + d_3ln, (5.40)

k=1

and using (5.37), we finally obtain (5.10). Theorem 5.1 is proved. [ |
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