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Abelian Solutions of the Soliton Equations
and Geometry of Abelian Varieties

I. Krichever and T. Shiota

Abstract. We introduce the notion of abelian solutions of the 2D Toda lattice
equations and the bilinear discrete Hirota equation, and show that all of them
are algebro-geometric.
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1. Introduction

The first goal of this paper is to extend the theory of abelian solutions of the
Kadomtsev-Petviashvili (KP) equation developed recently in [23] to the case of
the 2D Toda lattice

∂ξ∂ηϕn = eϕn−1−ϕn − eϕn−ϕn+1 . (1)

We call a solution ϕn(ξ, η) of the equation abelian if it is of the form

ϕn(ξ, η) = ln
τ((n+ 1)U + z, ξ, η)

τ(nU + z, ξ, η)
, (2)

where n ∈ Z, ξ, η ∈ C and z ∈ Cd are independent variables; for all ξ, η the
function τ(·, ξ, η) is a holomorphic section of a line bundle L = L(ξ, η) on an
abelian variety X = Cd/Λ, i.e., it satisfies the monodromy relations

τ(z + λ, ξ, η) = eaλ·z+bλτ(z, ξ, η) , λ ∈ Λ ,

for some aλ ∈ Cd, bλ = bλ(ξ, η) ∈ C; and U ∈ Cd, U /∈ Λ.
A concept of abelian solutions of soliton equations provides an unifying frame-

work for the theory of elliptic solutions of soliton equations and the theory of their
rank 1 algebro-geometric solutions. The former corresponds to the case when the
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τ -function is a section of line bundle on an elliptic curve (d = 1), and the latter
corresponds to the case when X is the Jacobian of an auxiliary algebraic curve
and τ is the corresponding Riemann theta function.

Theory of elliptic solutions of the KP equation goes back to the work [1],
where it was found that the dynamics of poles of an elliptic solution of the
Korteweg-de Vries equation can be described in terms of the elliptic Calogero-
Moser (CM) system with some conditions on the configuration of poles. In [14] it
was shown that when the conditions are removed this correspondence becomes a
full isomorphism between the solutions of the elliptic CM system and the elliptic
solutions of the KP equation.

Elliptic solutions of the 2D Toda lattice were considered in [24] where it was
shown that if τ(z, ξ, η) in (2) is an elliptic polynomial, i.e., if the τ -function of the
2D Toda lattice equation is of the form

τ(z, ξ, η) = c(ξ, η)
N∏

i=1

σ(z − xi(ξ, η)) ,

then its zeros as functions of the variables ξ and η satisfy the equations of motion
of the Ruijsenaars-Schneider (RS) system [27]:

ẍi =
∑
s�=i

ẋiẋs(V (xi − xs)− V (xs − xi)) , V (x) = ζ(x) − ζ(x + η) ,

which is a relativistic version of the elliptic CM system. Here and below σ(z) =
σ(z, 2ω, 2ω′) and ζ(z) = ζ(z, 2ω, 2ω′) are the Weierstrass σ- and ζ-functions, re-
spectively.

The correspondence between finite-dimensional integrable systems and pole
systems of various soliton equations has been extensively studied in [4, 17, 18,
22] (see [5, 10, 19] and references therein for connections with the Hitchin-type
systems).

A general scheme of constructing Lax representations with a spectral param-
eter, for systems using a specific inverse problem for linear equations with elliptic
coefficients, is presented in [17]. Roughly speaking, this inverse problem is the
problem of characterization of linear difference or differential equations with ellip-
tic coefficients having solutions that are meromorphic sections of some line bundle
on the corresponding elliptic curve (double-Bloch solutions).

Analogous problems for linear equations with coefficients that are meromor-
phic functions expressed in terms of the Riemann theta function of an indecom-
posable principally polarized abelian variety (ppav) X were a starting point in the
recent proof in [20, 21] of Welters’ remarkable trisecant conjecture: an indecom-
posable ppav X is the Jacobian of a curve if and only if there exists a trisecant of
its Kummer variety K(X).

Welters’ conjecture, first formulated in [30], was motivated by Gunning’s cel-
ebrated theorem [9] and by another famous conjecture: the Jacobians of curves are
exactly the indecomposable ppavs whose theta-functions provide explicit solutions
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of the KP equation. The latter was proposed earlier by Novikov and was unsettled
at the time of Welters’ work. It was proved later in [25].

Let B be an indecomposable symmetric matrix with positive definite imag-
inary part. It defines an indecomposable ppav X = Cg/Λ, where the lattice Λ is
generated by the basis vectors em = (δm,i) ∈ Cg and the column-vectors Bm of B.
The Riemann theta-function θ(z) corresponding to B is given by the formula

θ(z) = θ(z |B) =
∑

m∈Zg

e2πi(z,m)+πi(Bm,m), (z, m) = m1z1 + · · ·+mgzg .

The Kummer variety K(X) is an image of the Kummer map

K : X  Z �−→ (Θ[ε1, 0](Z) : · · · : Θ[ε2g , 0](Z)) ∈ CP2g−1 ,

where Θ[ε, 0](z) = θ[ε, 0](2z | 2B) are level two theta-functions with half-integer
characteristics ε.

A trisecant of the Kummer variety is a projective line which meets K(X) at
least at three points. Fay’s well-known trisecant formula [8] implies that if B is a
matrix of b-periods of normalized holomorphic differentials on a smooth genus g
algebraic curve Γ, then a set of three arbitrary distinct points on Γ defines a one-
parameter family of trisecants parameterized by a fourth point of the curve. In [9]
Gunning proved under certain non-degeneracy assumptions that the existence of
such a family of trisecants characterizes Jacobian varieties among indecomposable
ppavs.

Gunning’s geometric characterization of the Jacobian locus was extended by
Welters who proved that the Jacobian locus can be characterized by the existence
of a formal one-parameter family of flexes of the Kummer varieties [29, 30]. A flex
of the Kummer variety is a projective line which is tangent to K(X) at some point
up to order 2. It is a limiting case of trisecants when the three intersection points
come together.

In [2] Arbarello and De Concini showed that Welters’ characterization is
equivalent to an infinite system of partial differential equations representing the
KP hierarchy, and proved that only a finite number of these equations is sufficient.
Novikov’s conjecture that just the first equation of the hierarchy is sufficient for
the characterization of the Jacobians is much stronger. It is equivalent to the
statement that the Jacobians are characterized by the existence of length 3 formal
jet of flexes.

Welters’ conjecture that requires the existence of only one trisecant is the
strongest. In fact, there are three particular cases of Welters’ conjecture, which
are independent and have to be considered separately. They correspond to three
possible configurations of the intersection points (a, b, c) ofK(X) and the trisecant:
(i) all three points coincide;
(ii) two of them coincide;
(iii) all three intersection points are distinct.
In all of these cases the classical addition theorem for the Riemann theta-functions
directly imply that secancy conditions are equivalent to the existence of certain
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solutions for the auxiliary linear problems for the KP, the 2D Toda, and the
bilinear discrete Hirota equations (BDHE), respectively.

For example, one of the Lax equations for the 2D Toda equation (1) is the
differential-difference equation

∂tψn(t) = ψn+1(t)− un(t)ψn(t) (3)

with the potential u of the form

un(t) = ∂t ln τ(n, t)− ∂t ln τ(n+ 1, t) . (4)

Let us assume that
τ(n, t) = θ(nU + tV + z) , (5)

and equation (3) has a solution of the form

ψn(t) =
θ(A + nU + tV + z)

θ(nU + tV + z)
enp+tE , (6)

where p, E are constants and z is arbitrary. Then a direct substitution of (4), (5)
and (6) into (3) gives the equation

Eθ(A+z)θ(U+z)−epθ(A+U+z)θ(z) = ∂V θ(U+z)θ(A+z)−∂V θ(A+z)θ(U+z) ,
(7)

which is equivalent to the condition that the projective line passing through the
points {K((A±U)/2)} is tangent to the Kummer variety at the pointK((A−U)/2)
(the case (ii) above).

The characterization of the Jacobian locus via (7) is the statement ([21]):
an indecomposable principally polarized abelian variety (X, θ) is the Jacobian of a
smooth curve of genus g if and only if there exist non-zero g-dimensional vectors
U �= A (mod Λ), V , such that equation (7) holds.

The “only if” part of the statement follows from the construction of solutions
of the 2D Toda lattice equations in [15], from which it also follows that the vector
A is a point of Γ ⊂ J(Γ), the vector U is of the form U = P−−P+, where P± ∈ Γ
are points on Γ (often called punctures, which define the 2D Toda flows), and the
vector V is a tangent vector to Γ at one of the punctures.

In geometric terms the spectral curves of the elliptic RS system, that give
elliptic solutions of (1), are singled out by the condition that there exist a pair of
punctures P± such that the corresponding vector U spans an elliptic curve in J(Γ).

For any curve Γ and any pair of points P± ∈ Γ the Zariski closure of the
group {Un | n ∈ Z, U = P− − P+} in J(Γ) is an abelian subvariety X ⊂ J(Γ).
When X is a proper subvariety, i.e., d := dimX < g = dimJ(Γ), the restrictions
of θ(tV + z) and θ(A+ tV + z) on the corresponding linear subspace

Cd :=
(
the component through the origin of π−1(X)

)
⊂ Cg,

where π : Cg → J(Γ) is the covering map, can be seen as sections τ(z, t), τA(z, t) of
some line bundles on X , i.e., they satisfy the monodromy properties with respect
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to the lattice Λ ⊂ Cd such that X = Cd/Λ:

τ(z+λ, t) = eaλ·z+bλτ(z, t) , τA(z+λ, t) = eaλ·z+cλτA(z, t) , λ ∈ Λ, z ∈ Cd (8)

for some aλ ∈ Cd, bλ = bλ(t), cλ = cλ(t) ∈ C.
Equation (7) restricted to z ∈ Cd takes the form

E τA(z, t) τ(U+z, t)−ep τA(U+z, t) τ(z, t) = τ̇(z+U, t) τA(z, t)−τ(z+U, t) τ̇A(z, t) .
(9)

Here and below “dot” stands for the derivative with respect to the variable t.
At first sight equation (9) considered as an equation for two unknown sections

τ(z, t) and τA(z, t) of some line bundles L(t) and LA(t) on an arbitrary abelian
variety X is not as restrictive as finite-dimensional equation (7). Nevertheless, our
first main result is that at least under certain genericity assumptions all the abelian
solutions of equation (9) arise in the way described above, i.e., they are rank one
algebro-geometric, and we have X ⊂ J(Γ) for some algebraic curve Γ, which in
general might be singular.

Theorem 1.1. Suppose that for some p, E ∈ C and 0 �= U ∈ Cd equation (9)
is satisfied by τ(z, t) and τA(z, t), which for all t are holomorphic functions in z
satisfying the monodromy properties (8). Assume, moreover, that

(i) Λ is maximal with this property, i.e., any λ ∈ Cd satisfying (8) for some
aλ ∈ Cd and bλ(t), cλ(t) ∈ C must belong to Λ;

(ii) for each t the divisor T t := {z ∈ X | τ(z, t) = 0} is reduced and irreducible;
(iii) the group {Un mod Λ | n ∈ Z} ⊂ X is Zariski dense in X.

Then there exist a unique irreducible algebraic curve Γ, smooth points P± ∈ Γ,
an injective homomorphism j0 : X → J(Γ) and a torsion-free rank 1 sheaf F ∈
Picg−1(Γ) of degree g − 1, where g = g(Γ) is the arithmetic genus of Γ, such that
setting j(z) = j0(z)⊗F we have

τ(Un+ z, t) = ρ(t) τ̂n(t, 0 |Γ, P±, j(z)) ,

where τ̂n(t+1 , t−1 |Γ, P±,F) is the 2D Toda τ-function defined by the data (Γ, P±,F).

Note that when Γ is smooth:

τ̂n(t+1 , t−1 |Γ, P, j(z)) = θ
(
nU + t+1 V+ + t−1 V− + j(z)

∣∣ B(Γ)
)
eQ(n,t+1 ,t−1 ) ,

where V± ∈ Cd, Q is a quadratic form, B(Γ) is the matrix of B-periods of Γ, and
θ is the Riemann theta function. Linearization in the Jacobian J(Γ) of nonlinear
t-dynamics for τ(z, t) provides some evidence that there might be underlying in-
tegrable systems on the spaces of higher level theta-functions on a ppav. The RS
system is an example of such a system for d = 1.

Almost till the very end the proof of Theorem 1.1 goes along the lines of
[21]. We would like to stress that the proof of the trisecant conjecture in [21] uses
none of the assumptions above. We include assumption (iii) in the statement of
the theorem only to avoid unnecessary analytical difficulties at this stage.
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The second goal of this paper, discussed in the last section, is to study abelian
solutions of the BDHE. The latter is a difference equation of the form

τn(l+1, m)τn(l, m+1)−τn(l, m)τn(l+1, m+1)+τn+1(l+1, m)τn−1(l, m+1) = 0 .

One of its auxiliary Lax equations is the two-dimensional linear difference equation

ψ(m, n+ 1) = ψ(m+ 1, n) + u(m, n)ψ(m, n)

with the potential u of the form

u(m, n) =
τ(n + 1, m+ 1) τ(n, m)
τ(n + 1, m) τ(n, m+ 1)

.

Under the light-cone change of variables

x = m− n, ν = m+ n , (10)

and under the assumption that τ(n, m) is of the form τ(Wx+z, ν) with z, W ∈ Cd,
equation (3) gets transformed to the difference-functional equation

ψ(z −W, ν) = ψ(z +W, ν) + uψ(z, ν − 1) , (11)

with

u(z, ν) =
τ(z, ν + 1) τ(z, ν − 1)

τ(z −W, ν) τ(z +W, ν)
. (12)

Equation (11) for ψ of the form

ψ(x, ν) =
τA(z, ν)
τ(z, ν)

ep·z+νE

is equivalent to the discrete analog of (9)

e−p·W τ(z +W, ν)τA(z −W, ν)

= ep·W τ(z −W, ν)τA(z +W, ν) + e−Eτ(z, ν + 1)τA(z, ν − 1) , (13)

where, as before, τ(z, ν) and τA(z, ν) are sections of some line bundles on X , i.e.,
they are holomorphic functions satisfying the monodromy properties

τ(z + λ, ν) = eaλ·z+bλ(ν)τ(z, ν) , τA(z + λ, ν) = eaλ·z+cλ(ν)τA(z, ν) , λ ∈ Λ,
(14)

with respect to the lattice Λ of an abelian variety X = Cd/Λ. If X is ppav and
τ(z, ν) = θ(z + V ν), τA(z, ν) = θ(A + z + V ν), then (13) is equivalent to the
trisecant equation

e−p·W θ(z+W )θ(z+A−W ) = ep·W θ(z+A+W )θ(z−W )+e−Eθ(z+V )θ(z+A−V ) .

We conjecture that under the assumption that τ(z, ν), τA(z, ν) are meromorphic
quasiperiodic functions of the variable ν all the abelian solutions of equation (13)
are rank one algebro-geometric, and we have X ⊂ J(Γ) for some algebraic curve
Γ, (which in general might be singular). The main result of the last section is a
proof of this conjecture in the case when τ(z, ν) is periodic in the variable ν with
some sufficiently large prime period N . More precisely,
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Theorem 1.2. Suppose that the equation (13) with some p, E ∈ C and 0 �= W ∈ Cd,
is satisfied with τ(z, ν), τA(z, ν), such that for all ν the functions τA(z, ν) and
τ(z, ν) are holomorphic functions satisfying the monodromy properties (14) with
respect to the lattice Λ of an abelian variety X = Cd/Λ. Assume, moreover, that
(i) Λ is maximal with this property, i.e., any λ ∈ Cd satisfying (14) for some

aλ ∈ Cd and bλ(ν), cλ(ν) ∈ C must belong to Λ, and that
(ii) for each ν the divisor T ν := {z ∈ X | τ(z, ν) = 0} is reduced and irreducible;
(iii) the Zariski closure of the group {2Wm mod Λ | m ∈ Z} in X coincides with

X;
(iv) the functions τ(z, ν), τA(z, ν) are meromorphic functions of the variable ν ∈

C and τ(z, ν) is a quasiperiodic function of ν, satisfying the monodromy
relation

τ(z, ν +N) = ea·z+c ντ(z, ν) (15)
with an integer prime period N > dimH0(T ν) and with some a ∈ Cd, c ∈ C.

Then there exist a unique irreducible algebraic curve Γ, smooth points P0, P1,
P2 ∈ Γ, an injective homomorphism j0 : X → J(Γ) and a torsion-free rank 1 sheaf
F ∈ Picg−1(Γ) of degree g − 1, where g = g(Γ) is the arithmetic genus of Γ, such
that setting j(z) = j0(z)⊗F we have

τ(Wx + z, ν) = ρ(ν) τ̂ (x, ν, 0, . . . | Γ, Pi, j(z)) ,

where τ̂ (t1, t2, t3, . . . | Γ, Pi,F) is the BDHE τ-function defined by the data
(Γ, Pi,F).

2. Construction of the wave function

Equation (9) is equivalent to equation (3) with

un = −∂t ln
τ((n + 1)U + z, t)

τ(nU + z, t)
, ψn =

τA(nU + z, t)
τ(nU + z, t)

eP ·z+Et, (16)

where P ∈ Cd is a vector such that P ·U = p. In the core of the proof of Theorem
is the construction of quasiperiodic wave function as in (23), (24) below, which
contains much more information than the function ψ in (16) having no spectral
parameter. We would like to emphasize once again that the construction of wave
function follows closely the argument from the beginning of Section 2 in [21] but
is drastically simplified by assumption (ii) in the statement of the theorem.

The construction is presented in two steps. First we show that the existence
of a holomorphic solutions of equation (9) implies certain relations on the tau
divisor T t.

Lemma 2.1. If equation (9) has holomorphic solutions whose divisors have no
common components (or if the τ-divisor is irreducible), then the equation

∂2
t τ(z, t) τ(z + U, t) τ(z − U, t) = ∂tτ(z, t) ∂t (τ(z + U, t) τ(z − U, t)) (17)

is valid on the divisor T t = {z ∈ Cd | τ(z, t) = 0}.
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In [21] equation (17) was derived with the help of pure local consideration.
Let us show that they can be easily obtained globally.
Proof. The evaluations of (9) on the divisors T t and T t − U give

(τ̇A(z) + EτA(z))τ(z + U) = τ̇ (z + U)τA(z), z ∈ T t, (18)

τA(z)τ(z − U) + τ̇ (z)τA(z − U)e−p = 0, z ∈ T t . (19)

Here and below for brevity we omit the notations for explicit dependence of func-
tions on the variable t, thus τ(z) = τ(z, t), τA(z) = τA(z, t).

Evaluating the derivative of (9) on T t − U gives another equation

(EτA(z)+ τ̇A(z))τ(z−U)+ τ̇ (z−U)τA(z)+ τ̈ (z)τA(z−U)ep = 0, z ∈ T t . (20)

Eliminating τA(z − U) and τ̇A(z) from (18)–(20) we obtain the equation

[τ̈ (z) τ(z + U) τ(z − U)− τ̇ (z, t) ∂t (τ(z + U) τ(z − U))] τA(z) = 0, z ∈ T t,

which implies (17) due to the assumption that the divisors of τ and τA have no
common components (or under the assumption that T t is irreducible).

In [21] it was shown that equation (17) is sufficient for the existence of local
meromorphic wave solutions of (3) which are holomorphic outside the zeros of
τ . Let us show that in a global setting they are sufficient for the existence of
quasi-periodic wave solutions of the differential-functional equation:

∂tψ(z, t) = ψ(z + U, t)− u(z, t)ψ(z, t) (21)

with
u = ∂t ln τ(z, t)− ∂t ln τ(z + U, t) , (22)

which restricted to the points z + Un takes the form (3).
The wave solution of (21) is a formal solution of the form

ψ = kl·zektφ(z, t, k) , (23)

where l is a vector l ∈ Cd such that l · U = 1 and φ is a formal series

φ(z, t, k) = ebt

(
1 +

∞∑
s=1

ξs(z, t) k−s

)
. (24)

Lemma 2.2. Let equation (17) for τ(z, t) hold, and let λ1, . . . , λd be a set of C-
linearly independent vectors in the lattice Λ. Then equation (21) with u as in (22)
has a unique, up to a z-independent factor, wave solution such that:

(i) the coefficients ξs(z, t) of the formal series (24) are meromorphic functions
of the variable z ∈ Cd with a simple pole at the divisor T t, i.e.,

ξs(z, t) =
τs(z, t)
τ(z, t)

,

and τs(z, t) is a holomorphic function of z;
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(ii) φ(z, t, k) is quasi-periodic with respect to the lattice Λ:

φ(z + λ, t, k) = φ(z, t, k)B λ(k), λ ∈ Λ , (25)

and is periodic with respect to the vectors λ1, . . . , λd, i.e.,

B λi(k) = 1, i = 1, . . . , d . (26)

Proof. The functions ξs(z) are defined recursively by the equations

ΔU ξs+1 = ξ̇s + (u+ b) ξs . (27)

Here and below ΔU stands for the difference derivative

ΔU = e∂U − 1.

The quasi-periodicity conditions (25) for φ are equivalent to the equations

ξs(z + λ, t)− ξs(z, t) =
s∑

i=1

B λ
i ξs−i(z, t) , ξ0 = 1 . (28)

The general quasi-periodic solution of the first equation ΔU ξ1 = u+ b is given by
the formula

ξ1 = −∂t ln τ + l1(z, t) b+ c1(t),

where l1(z, t) is a linear form on Cd such that l1(U, t) = 1. It satisfies the mon-
odromy relations (28) with

Bλ
1 = l1(λ) b− ∂t ln τ(z + λ, t) + ∂t ln τ(z, t) = l1(λ, t) b− ḃλ(t) ,

where bλ = bλ(t) are defined in (8). The normalizing conditions Bλi
1 = 0, i =

1, . . . , d uniquely define the constant b and the linear form l1(z).
Let us assume that the coefficient ξs−1 of the series (24) is known, and that

there exists a solution ξ0
s of the next equation, which is holomorphic outside of the

divisor T t, and which satisfies the quasi-periodicity conditions (28) with B
λj
s = 0

and possibly t-dependent coefficient Bλ
s (t), for λ �= λj , i.e.,

ξs(z + λ, t)− ξs(z, t) = Bλ
s (t) +

s−1∑
i=1

B λ
i ξs−i(z, t), Bλj

s = 0 .

We assume also that ξ0
s is unique up to the transformation ξs = ξ0

s + cs(t), where
cs(t) is a time-dependent constant.

Let us define a function τ0
s+1(z) on T t with the help of the formula

τ0
s+1 = −∂tτs(z, t)− bτs(z, t) +

∂tτ(z + U, t)
τ(z + U, t)

τs(z, t), z ∈ T t. (29)

Let us show that the formula (29) can be written also in the alternative form:

τ0
s+1 = −∂tτ(z, t)

τs(z − U, t)
τ(z − U, t)

, z ∈ T t. (30)
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By the induction assumption, ξs = (τs/τ) is a solution of (27) for s − 1, i.e., the
function τs satisfies the equation

[τ̇s−1(z−U)+τs(z−U)+bτs−1(z−U)] τ(z) = τs(z)τ(z−U)+τ̇(z) τs−1(z−U), (31)

where once again we omit notations for explicit dependence of all the functions on
the variable t.

From (31) it follows that

τs(z)τ(z − U) + τ̇ (z) τs−1(z − U) = 0, z ∈ T t . (32)

The evaluation of the derivative of (31) at T t implies

(τs(z−U)+bτs−1(z−U)) τ̇(z) = τ̇s(z) τ(z−U)+τs(z) τ̇(z−U)+τ̈(z)τs−1(z−U) ,

z ∈ T t.

Then, using (17) and (32) we obtain the equation

τ̇ (z)τs(z − U)
τ(z − U)

= bτs(z) + τ̇s(z)−
τ̇ (z + U)τs(z)

τ(z + U)
. (33)

Hence the expressions (29) and (30) do coincide.
The expression (29) is certainly holomorphic when τ(z +U) is non-zero, i.e.,

is holomorphic outside of T t ∩ (T t−U). Similarly from (30) we see that τ0
s+1(z, t)

is holomorphic away from T t ∩ (T t + U).
We claim that τ0

s+1(z, t) is holomorphic everywhere on T t. Indeed, by as-
sumption (iii) in Theorem 1.1 the abelian subgroup generated by U is Zariski
dense in X . Therefore, for any point z0 ∈ T t there exists an integer k ≥ 0 such
that zk = z0− kU is in T t, and τ(zk+1, t) �= 0. Then, from equation (30) it follows
that τ0

s+1 is regular at the point z = zk. Using equation (29) for z = zk, we get
that ∂tτ(zk−1, t)τs(zk, t) = 0. The last equality and the equation (30) for z = zk−1

imply that τ0
s+1 is regular at the point zk−1. Regularity of τ0

s+1 at zk−1 and equa-
tion (29) for z = zk−1 imply ∂tτ(zk−2, t)τs(zk−1, t) = 0. Then equation (30) for
z = zk−2 implies that τ0

s+1 is regular at the point zk−2. By continuing these steps
we get finally that τ0

s+1 is regular at z = z0. Therefore, τ0
s+1 is regular on T t.

Recall, that an analytic function on an analytic divisor in Cd has a holo-
morphic extension onto Cd ([28]). Therefore, there exists a holomorphic function
τ̃ (z, t) such that τ̃s+1|T t = τ0

s+1. Consider the function χs+1 = τ̃s+1/τ . It is holo-
morphic outside of the divisor T t. From (28) and (30) it follows that the function
fλ

s+1(z) defined by the equation

χs+1(z + λ)− χs+1(z) = fλ
s+1(z) +

s∑
i=1

B λ
i ξs+1−i(z) ,

has no pole at T t, i.e., it is a holomorphic function of z ∈ Cd. It satisfies the
twisted homomorphism relations

fλ+μ
s+1 (z) = fλ

s+1(z + μ) + fμ
s+1(z) ,
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i.e., it defines an element of the first cohomology group of Λ with coefficients in
the sheaf of holomorphic functions, f ∈ H1

gr(Λ, H0(Cd,O)). The same arguments,
as that used in the proof of the part (b) of Lemma 12 in [25], show that there
exists a holomorphic function hs+1(z) such that

fλ
s+1(z) = hs+1(z + λ)− hs+1(z) + B̃λ

s+1,

where B̃λ
s+1 = B̃λ

s+1(t) is a time-dependent constant. Hence the function ζs+1 =
χs+1 + hs+1 has the following monodromy properties

ζs+1(z + λ)− ζs+1(z) = B̃λ
s+1 +

s∑
i=1

B λ
i ξs+1−i(z) , (34)

Let us consider the function

Rs+1 = ζs+1(z + U)− ζs+1(z)− ξ̇s(z)− (u(z) + b) ξs(z) .

From equation (29), (30) it follows that it has not poles at T t and T t−U , respec-
tively. Hence Rs+1(z) is a holomorphic function.

From (34) it follows that it satisfies the following monodromy properties

Rs+1(z + λ) = Rs+1(z)− Ḃλ
s .

Recall, that by the induction assumption B
λj
s = 0, where λj , j = 1, . . . , d, are

linear independent. Therefore, Rs+1 is a constant (z-independent) and Bλ
s for all

λ are in fact t-independent.
The function

ξ̃s+1(z, t) = ζs+1(z, t) + ls+1(z, t) + cs+1(t) ,

where ls+1 is a linear form such that

ls+1(U, t) = −Rs+1(t) ,

is a solution of (27).
Under the transformation ξs �−→ ξs(z, t) + cs(t) which does not change the

monodromy properties of ξs, the solution ξ̃s+1 gets transformed to

ξs+1 = ξ̃s+1 + ċs(t)l1(z, t) + cs(t)ξ1(z, t) ,

where l1(z, t) is the linear form defined above in the initial step of the induction.
The new solution ξs+1 satisfies the monodromy relations (28) with constant Bλ

i

for i ≤ s and with t-dependent coefficient

B λ
s+1(t) = B̃ λ

s+1(t) + ls+1(λ, t) + ċs(t)l1(λ, t) + cs(t)Bλ
1 .

The normalization condition (26) for Bλi
s+1 = 1, i = 0, . . . , d defines uniquely ls+1

and ∂tcs, i.e., the time-dependence of cs(t). The induction step is completed.
Note that the remaining ambiguity in the definition of ξs on each step is the

choice of a time-independent constant cs. That corresponds to the multiplication
of ψ by a constant formal series and thus the lemma is proven.
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3. Commuting difference operators

Our next goal is to construct rings Az of commuting difference operators parame-
terized by points z ∈ X . In fact the construction of such operators completes the
proof of Theorem 1.1 because as shown in [26, 13] there is a natural correspondence

A ←→ (Γ, P±,F) (35)

between commutative rings A of ordinary linear difference operators containing
a pair of monic operators of co-prime orders, and sets of algebro-geometric data
(Γ, P±, [k−1]1,F), where Γ is an algebraic curve with a fixed first jet [k−1]1 of a
local coordinate k−1 in the neighborhood of a smooth point P+ ∈ Γ and F is a
torsion-free rank 1 sheaf on Γ such that

h0(Γ,F(nP+ − nP−)) = h1(Γ,F(nP+ − nP−)) = 0 . (36)

The correspondence becomes one-to-one if the rings A are considered modulo
conjugation A′ = g(x)Ag−1(x).

The construction of the correspondence (35) depends on a choice of initial
point x0 = 0. The spectral curve and the sheaf F are defined by the evaluations of
the coefficients of generators of A at a finite number of points of the form x0 + n.
In fact, the spectral curve is independent on the choice of x0, but the sheaf does
depend on it, i.e., F = Fx0 .

Using the shift of the initial point it is easy to show that the correspondence
(35) extends to the commutative rings of operators whose coefficients are mero-
morphic functions of x. The rings of operators having poles at x = 0 correspond
to sheaves for which the condition (36) for n = 0 is violated.

The algebraic curve Γ is called the spectral curve of A. The ring A is isomor-
phic to the ring A(Γ, P+, P−) of meromorphic functions on Γ with the only pole at
the point P+ and which vanish at P−. The isomorphism is defined by the equation

Laψ0 = aψ0, La ∈ A, a ∈ A(Γ, P+, P−) .

Here ψ0 is a common eigenfunction of the commuting operators. At x = 0 it is a
section of the sheaf F ⊗O(P+).

Let
T = e∂U .

In order to construct rings of commutative operators we first introduce a unique
pseudo-difference operator

L(z, t) = T +
∞∑

s=0

ws(z, t)T−s,

such that the equation
L(z, t)ψ(z, t) = kψ(z, t) , (37)

with ψ given by (23), holds. The coefficients ws(z, t) of L are difference polynomials
of the coefficients ξs of φ. Due to the quasiperiodicity of ψ they are meromorphic
functions on the abelian variety X .
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Let Lm
+ be the strictly positive difference part of the operator Lm, so that

Lm
− = Lm − Lm

+ = Fm +
∞∑

s=1

F s
mT−s.

By definition the leading coefficient Fm of Lm
− is the residue of Lm:

Fm = resT Lm, F 1
m = resT Lm T.

From (21) and (37) it follows that [∂t − T + u,Ln] = 0. Hence

[∂t − T + u,Lm
+ ] = −[∂t − T + u,Lm

− ] = (ΔUFm)T. (38)

Indeed, the left-hand side of (38) is a difference operator with non-vanishing co-
efficients only at the positive powers of T , while the second member of (38) is
at most of order 1. Therefore, it has the form fmT . The coefficient fm is easily
expressed in terms of the leading coefficient of Lm

− . Note that the vanishing of the
coefficients of T 0 and T−1 implies the equation

ΔU F 1
m = ∂tFm , (39)

ΔU F 2
m = ∂tF

1
m + uF1 − F1(T−1u) , (40)

which we will use later.
The functions Fm(z) are difference polynomials in the coefficients ws of L.

Hence Fm(z) are meromorphic functions on X .

Lemma 3.1. There exist holomorphic functions qm(z, t) such that the equality

Fm =
qm(z + U, t)
τ(z + U, t)

− qm(z, t)
τ(z, t)

(41)

holds.

Proof. If ψ is the wave solution as in (21)–(24), then there exists a unique pseudo-
difference operator Φ such that

ψ = ΦkP ·zekt, Φ = 1 +
∞∑

s=1

ϕs(s, t)T−s.

The coefficients ϕs of Φ are universal difference polynomials of the coefficients ξs

of φ. Therefore, ϕs(z, t) is a meromorphic function of z. Note that (37) implies
L = ΦTΦ−1.

The right action of a pseudo-difference operator is the formal adjoint action
under which T acts on a function f as the opposite shift: (fT ) = T−1f . Consider
the dual wave function defined by the right action of the operator Φ−1:

ψ+ =
(
k−P ·ze−kt

)
Φ−1.

If ψ is a formal wave solution of (21), then ψ+ is a solution of the adjoint equation

(−∂t − T−1 + u)ψ+ = 0 .

If ψ is as in Lemma 2.2, then the dual wave solution is of the form

ψ+ = k−P ·ze−ktφ+(Ux+ z, t, k),
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where, as before, due to (17) the coefficients ξ+
s (z, t) of

φ+(z, t, k) = e−bt

(
1 +

∞∑
s=1

ξ+
s (z, t) k−s

)
have simple poles along the divisor T t − U .

The ambiguity in the definition of ψ does not affect the product

ψ+ψ =
(
k−xe−ktΦ−1

) (
Φkxekt

)
. (42)

Therefore, the coefficients Js of the product

ψ+ψ = φ+(z, t, k)φ(z, t, k) = 1 +
∞∑

s=1

Js(z, t) k−s (43)

are meromorphic functions on X . The factors in the left-hand side of (43) have
the simple poles on T t and T t − U . Hence Js(z) is a meromorphic function on
X with the simple poles at T t and T t − U . Moreover, the left and right actions
of pseudo-difference operators are formally adjoint, i.e., for any two operators D1,
D2 the equality (k−xD1) (D2k

x) = k−x (D1D2k
x) + (T − 1) (k−x (D3k

x)) holds for
some pseudo-difference operator D3 whose coefficients are difference polynomials
in the coefficients of D1 and D2. Therefore, from (42) it follows that

ψ+ψ = 1 +
∞∑

s=1

Jsk
−s = 1 +ΔU

( ∞∑
s=2

Qsk
−s

)
. (44)

The coefficients of the series Q are difference polynomials in the coefficients ϕs of
the wave operator Φ. Therefore, they are meromorphic functions of z with poles
on T t, i.e., Qs = qs/τ .

From the definition of L it follows that

resk
(
ψ+(Lnψ)

)
k−1dk = resk

(
ψ+knψ

)
k−1dk = Jn .

On the other hand, using the identity

resk
(
k−xD1

)
(D2k

x) k−1dk = resT (D2D1) , (45)

we get

resk(ψ+Lnψ)k−1dk = resk
(
k−xΦ−1

)
(LnΦkx) k−1dk = resT Ln = Fn .

Therefore, Fn = Jn and the lemma is proved.

Important remark. In [21] the statement that Fm has poles only along T t and
T t−U was crucial for the proof of the existence of commuting difference operators
associated with u. Namely, it implies that for all but a finite number of positive
integers i /∈ A there exist constants cn,α such that

Fi(z, t)−
∑
α∈A

ci,αFα(z, t) = 0 ,

hence (38) would imply that the corresponding linear combinations Li := Li
+ −∑

ci,αLα
+ commutes with P := ∂t−T −u. Not so: since these constants ci,α might
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depend on t, we might not have [P, Ln] = 0, and we cannot immediately make the
next step and claim the existence of commuting operators (!).

So our next goal is to show that these constants in fact are t-independent.
For that let us consider the functions F 1

i (z, t). From (39) and (41) it follows that

F 1
i = ∂t

(
qi(z, t)
τ(z, t)

)
. (46)

Let {F 1
α | α ∈ A}, for finite set A, be a basis of the space F(t) spanned by {F 1

m}.
Then for all n /∈ A there exist constants cn,α(t) such that

F 1
n(z, t) =

∑
α∈A

cn,α(t)F 1
α(z, t) . (47)

Due to (46) it is equivalent to the equations

qn(z, t) =
∑

α

cn,α(t)qα(z, t) , z ∈ T t,

q̇1
n(z, t) =

∑
α

cn,α(t)q̇1
α(z, t) , z ∈ T t ,

from which we get ∑
α

(ċn,α)qα(z, t) = 0 , z ∈ T t.

From (40) we obtain

ΔU

(
F 2

n −
∑
α∈A

cn,α(t)F 2
α(z, t)

)
= ċn,αF 1

α .

The left-hand side is ΔU derivative of a meromorphic function. The right-hand
side has pole only at T t. Therefore, both sides of the equation must vanish. Then
the assumption that the set F 1

α is minimal imply ċn,α = 0.

Lemma 3.2. Let ψ be a wave function corresponding to u, and let Li, i /∈ A be the
difference operator given by the formula

Li = Li
+ −

∑
α∈A

ci,αLα
+, i /∈ A ,

where the constants ci,α are defined by equations (47).
Then the equation

Li ψ = ai(k)ψ, ai(k) = ki +
∞∑

s=1

as,ik
n−s , (48)

where as,i are constants, hold.

Proof. First note that from (38) it follows that

[∂t − T − u, Li] = 0 .
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Hence, if ψ is the wave solution of (3), then Liψ is also a wave solution of the
same equation. By uniqueness of the wave function up to a constant in z-factor
we get (48) and thus the lemma is proven.

The operator Li can be regarded as a z-parametric family of ordinary differ-
ence operators Lz

i .

Corollary 3.1. The operators Lz
i commute with each other,

[Lz
i , L

z
j ] = 0 . (49)

From (48) it follows that [Lz
i , L

z
j ]ψ = 0. The commutator is an ordinary

difference operator. Hence the last equation implies (49).

4. The fully discrete case

The main goal of this section is to characterize under some nondegeneracy as-
sumptions all the abelian solutions of equation (13). As above we begin with the
construction of the corresponding quasiperiodic wave function. We would like to
emphasize once again that the construction of wave function follows closely the ar-
gument from the beginning of Section 5 in [21] but is simplified by the assumption
(iii) in the formulation of Theorem 1.2.

4.1. Construction of the wave function

First let us show that the existence of a holomorphic solutions of equation (13)
implies certain relations on T ν .

Lemma 4.1 ([21]). If equation (13) has holomorphic solutions, then the equation

τ(z +W, ν + 1) τ(z − 2W, ν) τ(z +W, ν − 1)
τ(z −W, ν + 1) τ(z + 2W, ν) τ(z −W, ν − 1)

= −1 (50)

is valid on the divisor T ν = { z ∈ Cd | τ(z, ν) = 0}.

Proof. The evaluations of (13) at the divisors T ν±W give two different expressions
for the restriction of τA(z, ν) on T ν :

τA(z, ν) = ep·W−E τ(z +W, ν + 1) τA(z +W, ν − 1)
τ(z + 2W, ν)

, z ∈ T ν , (51)

τA(z, ν) = −e−p·W−E τ(z −W, ν + 1) τA(z −W, ν − 1)
τ(z − 2W, ν)

, z ∈ T ν . (52)

The evaluation of equation (13) for ν − 1 at T ν implies

e−p·W τ(z+W, ν−1) τA(z−W, ν−1) = ep·W τ(z−W, ν−1)τA(z+W, ν−1), z ∈ T ν .
(53)

Taking the ratio of (51), (52) and using (53) we get (50). The lemma is proved.
Equation (50) is all what we need for the rest.
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Lemma 4.2. Let τ(z, ν) be a sequence of non-trivial quasiperiodic holomorphic
functions on Cd. Suppose that the group {2Wν| ν ∈ Z} is Zariski dense in X and
equation (50) holds. Then there exist wave solutions ψ(z, ν, k) = kνφ(z, ν, k) of the
equation (11) with u as in (12) such that:
(i) the coefficients ξs(z, ν) of the formal series

φ(z, ν, k) = ξ0(ν) +
∞∑

s=1

ξs(z, ν) k−s

are meromorphic functions of the variable z ∈ Cd with simple poles at the
divisor T ν , i.e.,

ξs(z, ν) =
τs(z, ν)
τ(z, ν)

, (54)

where τs(z, ν) is now a holomorphic function;
(ii) ξs(z, ν) satisfy the following monodromy properties

ξs(z + λ, ν) − ξs(z, ν) =
s∑

i=1

B λ
i, ν−s+i ξs−i(z, ν) , λ ∈ Λ , (55)

where B λ
i, ν are z-independent.

Proof. The functions ξs(z, ν) are defined recursively by the equations

ξs+1(z −W, ν)− ξs+1(z +W, ν) = u(z, ν) ξs(z, ν − 1). (56)

The first equation for s = −1 is satisfied by an arbitrary z-independent function
ξ0 = ξ0(ν). In what follows it will be assumed that ξ0(ν) �= 0.

We will now prove lemma by induction in s. Let us assume inductively that
for r ≤ s the functions ξr are known and satisfy (55). Note, that the evaluation of
(56) for s− 1 and ν − 1 at the divisor T ν gives the equation

τs(z −W )τ(z +W ) = τs(z +W )τ(z −W ) , z ∈ T ν . (57)

From (50) and (57) it follows that the two formulae by which we define the residue
of ξs+1 on T ν

τ0
s+1(z, ν) =

τ(z +W, ν + 1) τs(z +W, ν − 1)
τ(z + 2W, ν)

, z ∈ T ν , (58)

−τ0
s+1(z, ν) =

τ(z −W, ν + 1) τs(z −W, ν − 1)
τ(z − 2W, ν)

, z ∈ T ν , (59)

do coincide.
The expression (58) is certainly holomorphic when τ(z + 2W ) is non-zero,

i.e., is holomorphic outside of T ν ∩ (T ν − 2W ). Similarly from (59) we see that
τ0
s+1(z, ν) is holomorphic away from T ν ∩ (T ν + 2W ).

We claim that τ0
s+1(z, ν) is holomorphic everywhere on T ν . Indeed, by as-

sumption the closure of the abelian subgroup generated by 2W is everywhere dense.
Thus for any z ∈ T ν there must exist some N ∈ N such that z−2(N +1)W �∈ T ν ;
let N moreover be the minimal such N . From (59) it then follows that τ0

s+1(z, ν)
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can be extended holomorphically to the point z − 2NW . Thus expression (58)
must also be holomorphic at z − 2NW ; since its denominator there vanishes, it
means that the numerator must also vanish. But this expression is equal to the
numerator of (59) at z − 2(N − 1)W ; thus τ0

s+1 defined from (59) is also holo-
morphic at z − 2(N − 1)W (the numerator vanishes, and the vanishing order of
the denominator is one, since we are talking exactly about points on its vanishing
divisor). Note that we did not quite need the fact z − 2(N + 1)W �∈ T ν itself, but
the consequences of the minimality of N , i.e., z− 2kW ∈ T ν , 0 ≤ k ≤ N , and the
holomorphicity of τ0

s+1(z, ν) at z−2NW . Therefore, in the same way, by replacing
N by N − 1, we can then deduce holomorphicity τ0

s+1(z, ν) at z− 2(N − 2)W and,
repeating the process N times, at z.

Recall that an analytic function on an analytic divisor in Cd has a holo-
morphic extension to all of Cd ([28]). Therefore, there exists a holomorphic func-
tion τ̃s+1(z, ν) extending the τ0

s+1(z, ν). Consider then the function χs+1(z, ν) =
τ̃s+1(z, ν)/τ(z, ν), holomorphic outside of T ν .

From (55) and (58) it follows that the function

fλ
s+1(z, ν) = χs+1(z + λ, ν)− χs+1(z, ν)−

s∑
i=1

B λ
i, ν−1−s+i ξs+1−i(z, ν)

has no pole at the divisor T ν . Hence it is a holomorphic function. It satisfies the
twisted homomorphism relations

fλ+μ
s+1 (z, ν) = fλ

s+1(z + μ, ν) + fμ
s+1(z, ν) ,

i.e., it defines an element of the first cohomology group of Λ with coefficients in
the sheaf of holomorphic functions, f ∈ H1

gr(Λ, H0(Cd,O)). Once again using the
same arguments, as that used in the proof of the part (b) of the Lemma 12 in [25],
we get that there exists a holomorphic function hs+1(z, ν) such that

fλ
s+1(z, ν) = hs+1(z + λ, ν) − hs+1(z, ν) + B̃λ

s+1, νξ0(ν) ,

where B̃λ,
s+1, ν is z-independent. Hence the function ζs+1 = χs+1 + hs+1 has the

following monodromy properties

ζs+1(z + λ, ν) − ζs+1(z, ν) = B̃λ
s+1,ν ξ0(ν) +

s∑
i=1

B λ
i, ν−1−s+i ξs+1−i(z, ν) . (60)

Let us consider the function Rs+1 defined by the equation

Rs+1 = ζs+1(z −W, ν)− ζs+1(z +W, ν)− u(z, ν) ξs(z, ν − 1) . (61)

Equation (58) and (59) imply that the right-hand side of (61) has no pole at
T ν ± W . Hence Rs+1(z, ν) is a holomorphic function of z. From (55), (60) it
follows that it is periodic with respect to the lattice Λ, i.e., it is a function on X .
Therefore, Rs+1 is a constant.

Hence the function

ξs+1(z, ν) = ζs+1(z, ν) + ls+1(z, ν)ξ0(ν) + cs+1(ν)ξ0(ν) ,
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where cs+1(ν) is a constant, and ls+1 is a linear form such that

ls+1(2W, ν)ξ0(ν) = −Rs+1(ν) ,

is a solution of (56). It satisfies the monodromy relations (55) with

B λ
s+1, ν = B̃ λ

s+1, ν + ls+1(λ, ν) .

The induction step is completed and thus the lemma is proven.
On each step the ambiguity in the construction of ξs+1 is a choice of linear

form ls+1(z, ν) and constants cs+1(ν). As in Section 2, we would like to fix this
ambiguity by normalizing monodromy coefficients Bλ

i, ν for a set of linear indepen-
dent vectors λ1, . . . , λd ∈ Λ. As it was revealed in [21] in the fully discrete case
there is an obstruction for that. This obstruction is a possibility of the existence
of periodic solutions of (56), ξs+1(z + λ, ν) = ξs+1(z, ν), λ ∈ Λ, for 0 ≤ s ≤ r− 1.

Note, that there are no periodic solutions of (56) for all s. Indeed, the func-
tions ξs(z, ν) as solutions of non-homogeneous equations are linear independent.
Suppose not. Take a smallest nontrivial linear relation among ξs(z, ν), and apply
(5.24) to obtain a smaller linear relation. The space of meromorphic functions on
X with simple pole at T ν is finite-dimensional. Hence there exists minimal r such
that equation (56) for s = r has no periodic solutions.

Let λ1, . . . , λd be a set of linear independent vectors in Λ. Without loss of
generality throughout the rest of the paper it will be assumed that there is no
linear form l(z), z ∈ Cd, with l(λj) = 1 and l(2W ) = 0.

Lemma 4.3. Suppose equations (56) has periodic solutions for s < r and has a
quasi-periodic solution ξr whose monodromy relations for λj have the form

ξr(z + λj , ν)− ξr(z, ν) = b ξ0(ν) , j = 1, . . . , d ,

where b �= 0 is a constant. Then for all s equations (56) has solutions of the form
(54) satisfying (55) with B

λj

i, ν = b δi,r, i.e.,

ξs(z + λj , ν)− ξs(z, ν) = b ξs−r(z, ν) .

Proof. We will now prove the lemma by induction in s ≥ r. Let us assume induc-
tively that ξs−r is known, and for 1 ≤ i ≤ r there are solutions ξ̃s−r+i of (56)
satisfying (55) with B

λj

i, ν = b δi,r. Then, according to the previous lemma, there
exists a solution ξ̃s+1 of (56) having the form (54) and satisfying monodromy
relations (55), which for λj have the form

ξ̃s+1(z + λj , ν)− ξ̃s+1(z, ν) = b ξ̃s−r+1(z, ν) +B
λj

s+1, νξ0(ν) .

If ξs−r is fixed, then the general quasi-periodic solution ξs−r+1 with the normalized
monodromy relations is of the form

ξs−r+1(z, ν) = ξ̃s−r+1(z, ν) + cs−r+1(ν)ξ0(ν) . (62)

It is easy to see that under the transformation (62) the functions ξ̃s−r+i get trans-
formed to

ξs−r+i(z, ν) = ξ̃s−r+i(z, ν) + cs−r+1(ν − i+ 1) ξi−1(z, ν) .
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This transformation does not change the monodromy properties of ξs−r+i for i ≤ r,
but changes the monodromy property of ξs+1:

ξs+1(z + λj , ν)− ξs+1(z, ν)

= b ξs−r+1(z, ν) +B
λj

s+1, ν ξ0(ν) + b (cs−r+1(ν − r)− cs−r+1(ν)) ξ0(ν) .

Recall, that ξ̃s+1 was defined up to a linear form ls+1(z, ν) which vanishes on 2W .
Therefore the normalization of the monodromy relations for ξs+1 uniquely defines
this form and the differences (cs−r+1(ν − r) − cs−r+1(ν)). The induction step is
completed and the lemma is thus proven.

Note, the following important fact: if ξs−r is fixed then ξs−r+1, such that
there exists quasi-periodic solution ξs+1 with normalized monodromy properties,
is defined uniquely up to the transformation:

ξs−r+1(z, ν) �−→ ξs−r+1(z, ν)+ cs−r+1(ν)ξ0(ν), cs−r+1(ν+ r) = cs−r+1(ν) . (63)

Our next goal is to show that the assumption of Lemma 4.3 holds for some r, and
then to fix the remaining ambiguity (63) in the definition of the wave function.
At this moment we are going to use for the first time the assumption that τ is a
meromorphic periodic function of the variable ν.

Let r be the minimal integer such that there exist solutions ξ0
0 = 1, ξ0

1 , . . . ,
ξ0
r−1 of (56) that are periodic functions of z with respect to Λ, and there is no
periodic solution ξr of (56). As it was noted above, the functions τs are linear
independent. Hence r ≤ h0(Y, θ|Y ).

If ξ0
r−1 is periodic, then the monodromy relation for ξr has the form

ξ0
r (z + λ, ν)− ξ0

r (z, ν) = B λ
r (z, ν) , λ ∈ Λ . (64)

The function Bλ
r is independent of the ambiguities in the definition of ξi, i < r,

and therefore, it is a well-defined holomorphic function of z ∈ X . Hence it is z-
independent,Bλ

r (z, ν) = Bλ
r (ν). The function ξ0

r is defined up to addition of a linear
form lr(z, ν) such that l(2W, ν) = 0. Therefore, there exist the solution ξ0

r such
that B

λj
r (ν) = Br(ν). There is no ξ0

r which is periodic for all ν. Hence Br(ν) �= 0 at
least for one value of ν. By assumption the function τ is a meromorphic function of
ν. Therefore, Br(ν) is a meromorphic function of ν. Shifting ν → ν+ ν0 if needed,
we may assume without loss of generality that Br(ν) �= 0 for all ν ∈ Z. From (15)
it follows that u(z, ν +N) = u(z, ν). Hence Br(ν) is a periodic function of ν, i.e.,

Br(ν +N) = Br(ν) .

Under the transformation
ξ0
0 = 1 �−→ ξ0(ν)

the solutions ξ0
r get transformed to

ξs(z, ν) = ξ0
s(z, ν) ξ0(ν − s) .

From (64) it follows that the transformed function ξr satisfies the relations

ξr(z + λ, ν) − ξr(z, ν) = B λ
r (ν)ξ0(z, ν − r) , λ ∈ Λ .
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The equation

b ξ0(ν) = Br(ν)ξ0(ν − r), ξ0(ν +N) = ξ0(ν) . (65)

restricted to the space of periodic functions ξ0 can be regarded as a finite-dimen-
sional linear equation. The vanishing of the determinant of this equation defines
the constant b. With b fixed equation (65) defines ξ0 uniquely up to multiplication
by a function c0(ν) such that c0(ν+N) = c0(ν+ r) = c0(ν). By the assumption of
Theorem 1.2 the period N is prime and N > H0(T ν). As it was mentioned above
r ≤ H0(T ν). Hence two periods of c0 are coprime, i.e., (r, N) = 1. Therefore, ξ0

is defined uniquely up to a constant factor.

Lemma 4.4. Suppose that the assumptions of Theorem 1.2 hold. Then there exists
a formal solution

φ = ξ0(ν) +
∞∑

s=1

ξs(z, ν) k−s

of the equation

kφ(z −W, ν, k) = kφ(z +W, ν, k) + u(z, ν)φ(z, ν − 1, k) , (66)

with u as in (12) such that:

(i) the coefficients ξs of the formal series φ are of the form ξs = τs/θ, where
τs(z) are holomorphic functions;

(ii) φ(z, ν, k) is quasi-periodic with respect to the lattice Λ and for the basis vectors
λj in Cd its monodromy relations have the form

φ(z + λj , ν, k) = (1 + b k−r)φ(z, ν, k), j = 1, . . . , d ,

where b are constants defined by (65);
(iii) φ(z, ν, k) is a quasi-periodic function of the variable ν, i.e.,

φ(z, ν +N, k) = φ(z, ν, k)μ(k) ; (67)

(iv) φ is unique up to the multiplication by a constant in z factor ρ(k).

Proof. We prove the lemma by induction in s. Let us assume inductively that ξs−r

is known. As shown above the normalization of the relations for ξs+1 uniquely
defines ξs−r+1 up to the transformation (63), i.e., up to a r-periodic function
cs−r+1(ν+ r) = cs−r+1(ν). The quasiperiodicity condition (iii) is equivalent to the
condition that this function of cs−r+1 is N -periodic. As it was mentioned above
the periods r and N are coprime. Hence on each step ξs−r+1 is defined up to
the additive constant. This ambiguity corresponds to the multiplication of φ be a
constant factor ρ(k), and thus the lemma is proven.

4.2. Commuting difference operators

As in Section 3 we are now going to construct rings Az of commuting difference
operators. First we introduce pseudo-difference operator in one of the original
variables m depending on the second variable n and a point z ∈ Cd. Recall that
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the variables n, m are related to x, ν via (10). In what follows we will denote

T = e∂m , T1 = e∂n , Δ = T − 1 , Δ1 = T1 − 1 , Δ0 = T1 − T .

The formal series φ(z, ν, k) defines a unique pseudo-difference operator

L(z, ν) = w0(ν)T +
∞∑

s=0

ws+1(z, ν)T−s,

such that the equation(
w0(m+ n)T +

∞∑
s=0

ws(z + (m− n)W, (m+ n))T−s

)
ψ = kψ (68)

holds. Here ψ = kn+mφ(z + (m − n)W, (m+ n), k). The coefficients ws(z, ν) of L
are difference polynomials in terms of the coefficients of φ. Due to quasiperiodicity
of ψ they are meromorphic functions on the abelian variety X .

From equations (66), (68) it follows that(
(Δ1Li)T1 − (ΔLi)T − [u,Li]

)
ψ = 0 ,

where Δ1Li and ΔLi are pseudo-difference operator in T , whose coefficients are
difference derivatives of the coefficients of Li in the variables n and m respectively.
Using the equation (T1 − T − u)ψ = 0, we get((

Δ1Li
)
T −

(
ΔLi

)
T +

(
Δ1Li

)
u− [u,Li]

)
ψ = 0 . (69)

The operator in the left-hand side of (69) is a pseudo-difference operator in the
variable m. Therefore, it has to be equal to zero. Hence we have the equation(

Δ0Li
)
T +

(
Δ1Li

)
u− [u,Li] = 0 .

Let Li
+ be the strictly positive difference part of the operator Li, i.e.,

Li = Li
+ + Li

− = Li
+ +

∞∑
s=0

Fi,sT
−s . (70)

Then(
Δ0Li

+

)
T +

(
Δ1Li

+

)
u− [u,Li

+] = −
(
Δ0Li

−
)
T −

(
Δ1Li

−
)
u+ [u,Li

−] . (71)

The left-hand side of (71) is a difference operator with non-vanishing coefficients
only at the positive powers of T . The right-hand side is a pseudo-difference operator
of order 1. Therefore, it has the form fiT . The coefficient fi is easily expressed in
terms of the leading coefficient Li

−. Finally we get the equation(
Δ0Li

+

)
T +

(
Δ1Li

+

)
u− [u,Li

+] = −(Δ0Fi)T , (72)

where Fi = Fi = res Li.
By definition of L we have that the functions Fi in (70) are of the form

Fi = resT Li = Fi(z + (m− n)W, (m+ n)) ,

where for each ν the functions Fi(z, ν) are abelian functions, i.e., periodic functions
of the variable z ∈ Cd.
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Lemma 4.5. The abelian functions Fi have the form

Fi(z, ν) =
qi(z +W, ν + 1)
τ(z +W, ν + 1)

− qi(z, ν)
τ(z, ν)

, (73)

where qi(z, ν) are holomorphic functions of the variable z ∈ Cd.

Proof. The wave solution ψ defines a unique operator Φ such that

ψ = Φkn+m, Φ = 1 +
∞∑

s=1

ϕs

(
(m− n)W + z, m+ n

)
T−s ,

where ϕs(z, ν) are meromorphic functions of z ∈ Cd. The dual wave function

ψ+ = k−n−m

(
1 +

∞∑
s=1

ξ+
s

(
(n−m)W + z, n+m

)
k−s

)
is defined by the formula

ψ+ = k−n−m T1Φ−1 T−1
1 .

It satisfies the equation

(T−1
1 − T−1 − u)ψ+ = 0 ,

which implies that the functions ξ+
s have the form ξ+

s (z, ν) = τ+
s (z, ν)/θ(z + W,

ν+1), where τ+
s (z, ν) are holomorphic functions of z ∈ Cd. Therefore, the functions

Js(z, ν) such that

(ψ+T1)ψ = k +
∞∑

s=1

Js((n−m)W + z, (n+m)) k−s+1

are meromorphic function on X with the simple poles at T ν and T ν+1 −W .
The same arguments as that used for the proof of (44) show that

(ψ+T1)ψ = (k−xT1Φ−1)(Φkx) = k + (ΔQ) ,

where the coefficients of the series Q are of the form

Q =
∞∑

s=0

Qs

(
(n−m)W + z, n+m

)
k−s ,

and the functions Qs(z, ν) are difference polynomials in the coefficients ϕs of the
wave operator. Therefore, they are well-defined meromorphic functions of z. As
shown above, the functions

Js(z, ν) = Qs(z +W, ν + 1)−Qs(z, ν) (74)

have simple poles at T ν and T ν+1−W . Hence Qs(z, ν) has poles only at T ν , i.e.,

Qs =
qs(z, ν)
τ(z, ν)

, (75)

where qs(z, ν) are holomorphic functions of z.
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From the definition of L it follows that

resk
(
(ψ+T1) (Liψ)

)
k−2dk = resk

(
(ψ+ T1)ψ

)
ki−2dk = Ji . (76)

On the other hand, using (45) we get

resk(ψ+ T1) (Liψ) k−2dk = resk
(
k−n−mΦ−1

) (
LiΦkn+m

)
k−1dk = resT Li = Fi .

(77)
Equation (73) is a direct corollary of (74)–(77). The lemma is proved.

The function ψ is quasiperiodic function of the variable ν. Then, from the
definition of ψ+ it follows that

φ+(z, ν +N, k) = φ+(z, ν, k)μ−1(k) ,

where μ(k) is defined in (67). Therefore, the functions Js are periodic functions of
ν. Hence

Fi(z, ν +N) = Fi(z, ν) .
For each ν the space of functions spanned by the abelian functions Fi(z, ν) is finite-
dimensional. Due to periodicity of Fi in ν the total space F spanned by sequences
Fi(z, ν) is also finite-dimensional. Let {Fα | α ∈ A}, for finite set A, be a basis of
the factor- space of F modulo z-independent sequences. Then for all i /∈ A there
exist constants ci,α, di(ν) such that

Fi(z, ν)−
∑
α∈A

ci,αFα(z, ν) = di(ν) . (78)

The rest of the proof of Theorem 1.2 is identical to that in the proof of Theorem
1.1. Namely,

Lemma 4.6. Let ψ be a wave function corresponding to u, and let Li, i /∈ A, be the
difference operator given by the formula

Li = Li
+ −

∑
α∈A

ci,αLα
+ , i /∈ A ,

where the constants ci,α are defined by equations (78).
Then the equations

Li ψ = ai(k)ψ, ai(k) = ki +
∞∑

s=1

as,ik
n−s ,

where as,i are constants, hold.

Proof. From (72) it follows that

[T1 − T − u, Li] = 0 .

Hence, if ψ is the wave solution of (11), then Liψ is also a wave solution of the
same equation. By uniqueness of the wave function up to a constant in z-factor
we get (48) and thus the lemma is proven.

Corollary 4.1. The operators Lz
i commute with each other,

[Lz
i , L

z
j ] = 0 .
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