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Abstract

We prove Welters’ trisecant conjecture: an indecomposable principally polar-
ized abelian variety X is the Jacobian of a curve if and only if there exists a trisecant
of its Kummer variety K(X).

1. Introduction

Welters’ remarkable trisecant conjecture formulated first in [27] was moti-
vated by Gunning’s celebrated theorem ([8]) and by another famous conjecture: the
Jacobians of curves are exactly the indecomposable principally polarized abelian
varieties whose theta-functions provide explicit solutions of the so-called KP equa-
tion. The latter was proposed earlier by Novikov and was unsettled at the time
of the Welters” work. It was proved later by T. Shiota [25] and until recently has
remained the most effective solution of the classical Riemann-Schottky problem.

Let B be an indecomposable symmetric matrix with positive definite imagi-
nary part. It defines an indecomposable principally polarized abelian variety X =
C& /A, where the lattice A is generated by the basis vectors e, € C& and the
column-vectors By, of B. The Riemann theta-function 6(z) = 6(z|B) correspond-
ing to B is given by the formula

(1.1) 0(z) = Z e2riEmFri(Bmm) (2 iy = g2y +odmgzg.
mezs8

The Kummer variety K(X) is an image of the Kummer map
(1.2) K:ZeXr—{O[e1,01(Z):--: Olere,0](Z)} € CP¥ 1,

where Q[e, 0](z) = 6[e, 0](2z|2B) are level two theta-functions with half-integer
characteristics €.

A trisecant of the Kummer variety is a projective line which meets K(X) at
least at three points. Fay’s well-known trisecant formula [7] implies that if B is
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a matrix of b-periods of normalized holomorphic differentials on a smooth genus
g algebraic curve I', then a set of three arbitrary distinct points Ay, A2, A3 on
I" defines a one-parametric family of trisecants parametrized by a fourth point of
the curve A4 # A1, Az, A3. In [8] Gunning proved under certain nondegeneracy
assumptions that the existence of such a family of trisecants characterizes Jacobian
varieties among indecomposable principally polarized abelian varieties.

Gunning’s geometric characterization of the Jacobian locus was extended by
Welters who proved that the Jacobian locus can be characterized by the existence
of a formal one-parametric family of flexes of the Kummer varieties [26], [27]. A
flex of the Kummer variety is a projective line which is tangent to K(X) at some
point up to order 2. It is a limiting case of trisecants when the three intersection
points come together.

In [1] Arbarello and De Concini showed that the Welters’ characterization is
equivalent to an infinite system of partial differential equations representing the
so-called KP hierarchy, and proved that only a finite number of these equations is
sufficient. In fact, the KP theory and the earlier results of Burchnall, Chaundy and
the author [4], [5], [9], [10] imply that the Jacobian locus is characterized by the
first N = g + 1 equations of the KP hierarchy, only. Novikov’s conjecture that just
the first equation (N = 1!) of the hierarchy is sufficient for the characterization of
the Jacobians is much stronger. It is equivalent to the statement that the Jacobians
are characterized by the existence of length 3 formal jet of flexes.

In [27] Welters formulated the question: if the Kummer-Wirtinger variety
K(X) has one trisecant, does it follow that X is a Jacobian? In fact, there are
three particular cases of the Welters’ conjecture, which are independent and have
to be considered separately. They correspond to three possible configurations of
the intersection points (a, b, ¢) of K(X) and the trisecant:

(1) all three points coincide (a = b = ¢),

(ii) two of them coincide (a = b # ¢);

(iii) all three intersection points are distinct (a # b # ¢ # a).

The affirmative answer to the first particular case (i) of the Welters’ question
was obtained in the author’s previous work [16]. (Under various additional assump-
tions in various forms it was proved earlier in [3], [12], [21].) The aim of this paper
is to prove, using the approach proposed in [16], the two remaining cases of the
trisecant conjecture. It seems that the approach is very robust and can be applied to
the variety of Riemann-Schottky-type problems. For example, in [15] it was used
for the characterization of principally polarized Prym varieties of branched covers.

Our first main result is the following statement.

THEOREM 1.1. An indecomposable, principally polarized abelian variety (X, 6)
is the Jacobian of a smooth curve of genus g if and only if there exist nonzero
g-dimensional vectors U # A (mod A), V, such that one of the following equiva-
lent conditions holds:
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(A) The differential-difference equation
(1.3) O =T +u(x,t)¥(x,1)=0, T =e

is satisfied for

(1.4) u=(T—-1v(x,t), v=—0;In0(xU +1tV +Z)
and
05 yo QAT SUAIVAZ) i

OxU +1tV +Z) ’

where p, E are constants and Z is arbitrary.
(B) The equations
(1.6)
dyOe,01((A—U)/2) —e?Ole,01 ((A+ U)/2)+ EB[e,0] ((A—U)/2) =0

are satisfied for all € € %Zig . Here and below 0y is the constant vector field on C8
corresponding to the vector V.

(C) The equation
1.7
Wy [0(Z+U)08(Z-U)]dy0(Z)=[0(Z+U)60(Z—-U)] 8%,1,9(2) (mod 0)

is valid on the theta-divisor ® ={Z € X | 6(Z) = 0}.

Equation (1.3) is one of the two auxiliary linear problems for the 2D Toda
lattice equation, which can be regarded as a discretization of the KP equation. The
idea to use it for the characterization of Jacobians was motivated by ([16]), and
the author’s earlier work with Zabrodin ([20]), where a connection of the theory
of elliptic solutions of the 2D Toda lattice equations and the theory of the elliptic
Ruijsenaars-Schneider system was established. In fact, Theorem 1.1 in a slightly
different form was proved in ([20]) under the additional assumption that the vector
U spans an elliptic curve in X.

The equivalence of (A) and (B) is a direct corollary of the addition formula
for the theta-function. The statement (B) is the second particular case of the trise-
cant conjecture: the line in cp¥-1 passing through the points K((4—U)/2) and
K((A+U)/2) of the Kummer variety is tangent to K(X) at the point K((4A—U)/2).

The “only if” part of (A) follows from the author’s construction of solutions
of the 2D Toda lattice equations [13]. The statement (C) is actually what we use
for the proof of the theorem. It is stronger than (A). The implication (A) — (C)
does not require the explicit theta-functional formula for . It is enough to require
only that equation (1.3) with u as in (1.4) has local meromorphic in x solutions
which are holomorphic outside the divisor 8(Ux + Vit 4+ Z) = 0.

To put it more precisely, let 7(x, ¢) be a holomorphic function of x in some
domain %, where it has a simple root 7(¢). If T(n(¢) & 1,¢) # 0, then the condition
that equation (1.3) with u = (T — 1)v, where v(x,?)) = —0d;Int(x,?), has a
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meromorphic solution with the only pole in % at n implies

(1.8) ij=1[2vo(r)—v(n+1L.1)—v(n—1L1)],

where “dots” stands for the z-derivatives and vy is the coefficient of the Laurent
expansion of v(x,¢) at n, i.e.

(1.9) v(x, 1) = x—in+vo(t)+0((x—n)).

Formally, if we represent 7 as an infinite product,

(1.10) (1) =) [ —xi0)).

then equation (1.8) can be written as the infinite system of equations

(1.11) f=Y [ 2 1 1 }
| ) jaéiXIxj (xi—xj) (i—x;+1) (i—x;—1D]
If 7 is a rational, trigonometric or elliptic polynomial, then the system (1.11) co-
incides with the equations of motion for the rational, trigonometrical or elliptic
Ruijsenaars-Schneider systems, respectively. Equation (1.11) is analogues to the
equations derived in [3] and called in [16] the formal Calogero-Moser system.
Simple expansion of  at the points of its divisor Z € ® : 6(Z) = 0 shows
that for T = 8(Ux + Vt + Z) equation (1.8) is equivalent to (1.7).
The proof of the theorem goes along the same lines as the proof of Theorem 1.1
in [16]. In order to stress the similarity we almost literally copy some parts of [16].
At the beginning of the next section we derive equations (1.8) and show that they
are sufficient conditions for the local existence of formal wave solutions. The
formal wave solution of equation (1.3) is a solution of the form

o0
(1.12) v(x, 1, k) = k*ek? (1+Z§S(x,t)k‘s) .

s=1
The ultimate goal is to show the existence of the wave solutions such that coeffi-
cients of the series (1.12) have the form & = &(Ux + Vit 4+ Z), where

75(Z)

0(2) "

and 74(Z) is a holomorphic function. The functions & are defined recursively by
differential-difference equations (Ty — 1) £541 = Ay & + ués, where Ty = €U
and dy is a constant vector-field defined by the vector U.

In the case of differential equations the cohomological arguments, that are
due to Lee-Oda-Yukie, can be applied for an attempt to glue local solutions into
the global ones (see details in [2], [25]). These arguments were used in [25] and
revealed that the core of the problem in the proof of Novikov’s conjecture is a priori
nontrivial cohomological obstruction for the global solvability of the corresponding

(1.13) £s(Z) =
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equations. The hardest part of the Shiota’s work was the proof that the certain bad
locus ¥ C ©®, which controls the obstruction, is empty. !

In the difference case there is no analog of the cohomological arguments and
we use a different approach. Instead of proving the global existence of solutions we,
to some extend, construct them by defining first their residue on the theta-divisor.
It turns out that the residue is regular on ® outside the singular locus ¥ which is
the maximal Ty -invariant subset of ©, i.e. ¥ =iz ng@.

As in [16], we do not prove directly that the bad locus is empty. Our first step is
to construct certain wave solutions outside the bad locus. We call them A-periodic
wave solutions. They are defined uniquely up to ¢-independent T -invariant factor.
Then we show that for each Z ¢ X the A-periodic wave solution is a common
eigenfunction of a commutative ring ¢ of ordinary difference operators. The
coefficients of these operators are independent of ambiguities in the construction
of . For the generic Z the ring A% is maximal and the corresponding spectral
curve I is Z-independent. The correspondence j : Z —> % and the results of
the works [22], [11], where a theory of rank 1 commutative rings of difference
operators was developed, allow us to make the next crucial step and prove the
global existence of the wave function. Namely, on (X \ ¥) the wave function
can be globally defined as the preimage j*¥p4 under j of the Baker-Akhiezer
function on I' and then can be extended on X by usual Hartogs’ arguments. The
global existence of the wave function implies that X contains an orbit of the KP
hierarchy, as an abelian subvariety. The orbit is isomorphic to the generalized
Jacobian J(I') = Pic®(T") of the spectral curve ([25]). Therefore, the generalized
Jacobian is compact. The compactness of J(I") implies that the spectral curve is
smooth and the correspondence j extends by linearity and defines the isomorphism
j:X—=J).

In the last section we present the proof of the last “fully discrete” case of the
trisecant conjecture.

THEOREM 1.2. An indecomposable, principally polarized abelian variety (X, 0)
is the Jacobian of a smooth curve of genus g if and only if there exist nonzero
g-dimensional vectors U # V # A % U (mod A) such that one of the following
equivalent conditions holds:

(A) The difference equation

(1.14) Y(m,n+1)=ym+1,n)+u(@m,n)y@m,n)
is satisfied for

O((m + DU + (n+ 1)V + Z) 0(mU +nV + Z)
OmU +(m+ 1)V + Z)0((m + 1)U +nV + Z)

(1.15) u(m,n) =

IThe author is grateful to Enrico Arbarello for an explanation of these deep ideas and a crucial
role of the singular locus ¥, which helped him to focus on the heart of the problem.
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and
O(A+mU +nV + Z)
1.16 , — mp-i—nE’
(1.16) vimn) = = U v +2) ¢
where p, E are constants and Z is arbitrary.
(B) The equations

(1.17)

A-U-V A4+U-V A+V-U
Ole, 0] | ———— | + 70O, 0] A+V -V = £ Qe 0] A+V-Y

2 2 2

are satisfied for all € € %Zg.
(C) The equation
(1.18)
0(Z4+U)0(Z-V) 8(Z-U+V)+0(Z-U)0(Z+V) 6(Z+U—-V)=0 (mod )

is valid on the theta-divisor ® ={Z € X | 6(Z) = 0}.

Equation (1.14) is one of the two auxiliary linear problems for the so-called bi-
linear discrete Hirota equation (BDHE). The “only if” part of (A) follows from the
author’s work [14]. Under the assumption that the vector U spans an elliptic curve
in X, theorem 1.2 was proved in [17], where the connection of the elliptic solutions
of BDHE and the so-called elliptic nested Bethe ansatz equations was established.

2. A-periodic wave solutions

To begin with, let us show that equations (1.8) are necessary for the existence
of a meromorphic solution of equation (1.3), which is holomorphic outside of the
theta-divisor.

Let 7(x,t) be a holomorphic function of the variable x in some translational
invariant domain 9 = T9% C C, where T : x — x + 1. We assume that 7 is a smooth
function of the parameter . Suppose that t in 9 has a simple root 7(¢) such that

2.1 t(n@)+1,0)t(n)—1,1) #0.

LEMMA 2.1. If equation (1.3) with the potential u = (T — 1)v, where v =
—d¢ Int(x,t) has a meromorphic in D solution (x,t), with the simple pole at
x =1, and regular at n — 1, then equation (1.8) holds.

Proof. Consider the Laurent expansions of ¢ and v in the neighborhood of
one of n:

2.2) v 4o+,
X—1

(2.3) Y= +B+....

xX—=n
(All coefficients in these expansions are smooth functions of the variable ¢.) Sub-
stitution of (2.2),(2.3) in (1.3) gives an infinite system of equations. We use only
the following three of them.



CHARACTERIZING JACOBIANS VIA TRISECANTS OF THE KUMMER VARIETY 491

The vanishing of the residue at n of the left-hand side of (1.3) implies
(2.4) a=nB+a(vg—v(n+1,1)).

The vanishing of the residue and the constant terms of the Laurent expansion of
(1.3) at n — 1 are equivalent to the equations

(2.5) a=ny(n—-11),
(2.6) Iey(n—1.0)=p+[v(n—1,1) =vol(n—1,1).

Taking the ¢-derivative of (2.5) and using equations (2.4), (2.6) we get (1.8).

Let us show that equations (1.8) are sufficient for the existence of local mero-
morphic wave solutions which are holomorphic outside of the zeros of 7. In the
difference case a notion of local solutions needs some clarification.

In the lemma below we assume that a translational invariant domain % is a
disconnected union of small discs, i.e.

(2.7) P = Ujez T' Dy, Do ={x €C|x—xo| <1/2}.

LEMMA 2.2. Suppose that t©(x,t) is holomorphic in a domain 9 of the form
(2.7) where it has simple zeros, for which condition (2.1) and equation (1.8) hold.
Then there exist meromorphic wave solutions of equation (1.3) that have simple
poles at zeros of T and are holomorphic everywhere else.

Proof. Substitution of (1.12) into (1.3) gives a recurrent system of equations

(2.8) (T = Dés41 =& + ués.

Under the assumption that & is a disconnected union of small disks, &1 can be
defined as an arbitrary meromorphic function in Dg and then extended on & with
the help of (2.8). If n is a zero of 7, then in this way we get a meromorphic function
£s+1, which a priori has poles at the points n; = n— k for all nonnegative k. Our
goal is to prove by induction that in fact (2.8) has meromorphic solutions with
simple poles only at the zeros of 7.

Suppose that & has a simple pole at x = 7

(2.9) §s=xr—_sn+rso+rs1(x—n)+-~.

The condition that £x41 has no pole at n — 1 is equivalent to the equation
(2.10) Ry = nEs(n—1.1),

where by definition

(2.11) Ry =rs(v(n+1,1) —vo) + rso —rs .

Equation (2.10) with R given by (2.11) is our induction assumption. We need to
show that the next equation holds also. From (2.8) it follows that

(2.12) rs+1 = nés(n—1,1),
2.13) &= 1.0 —rsr10 = —Es(n— LM —1.1) —vo)és(n—1.1).



492 IGOR KRICHEVER

These equations imply

214) Rs+1="nEs+1(n=1L )= +nn+1.1)+v(n—1,1)=2v0))§s(n—1.7)

and the lemma is proved.

If & g 1 18 a particular solution of (2.8), then the general solution is of the form
Es+1(x,1) = cs+1(x, 1)+ S;)_H (x,1) where cs+1(x,¢) is a T-invariant function of
the variable x, and an arbitrary function of the variable 7. Our next goal is to fix a
translation-invariant normalization of &;.

Let us show that in the periodic case v(x + N,t) = v(x,t) = —d;7(x,1),
N € Z, the periodicity condition for &s41(x + N,t) = &s4+1(x,¢) uniquely de-
fines 7-dependence of the functions cs(x, ) (compare with the normalization of
the Bloch solutions of differential equations used in [19]). Assume that £_; is
known and satisfies the condition that there exists a periodic solution Sg of the
corresponding equation. Let £, ; be a solution of (2.8) for f;‘;). Then the function

SH = é;"H + xdscs + c5v is a solution of (2.8) for & = E? + ¢5. A choice
of T-invariant function c¢g(x, ¢) does not affect the periodicity property of &g, but
it does affect the periodicity in x of the function E;’ +1(x, 7). In order to make
Sg +1(x, 7) periodic, the function cs(x, 7) should satisfy the linear differential equa-
tion

(2.15) Nores(x, 1)+ &5 (x+ N, 1) —&7 1 (x,1) =0.

That defines cg(x, ¢) uniquely up to a ¢-independent T -invariant function of the
variable x.

In the general case, when U is not a point of finite order in X, the solution of
the normalization problem for the coefficients of the wave solutions requires the
global existence of these coefficients along certain affine subspaces.

Let Yy be the Zariski closure of the group {Uk | k € Z} in X. As an abelian
subvariety, it is generated by its irreducible component Y9, containing 0, and by
the point Uy of finite order in X, such that U — Uy € Y((J), NUp = Ao € A. Shifting
Z if needed, we may assume, without loss of generality, that 0 is not in the singular
locus Ty X = X C ©. Then Yy N X = &, because any Ty -invariant set is Zariski
dense in Y. Note that for sufficiently small t the affine subvariety Yy + V't does
not intersect >, as well.

Consider the restriction of the theta-function onto the subspace 6 + V¢ C C8:

(2.16) (z,t) =0(z+ V1), z €.

Here and below € is a union of affine subspaces, € = U, ¢z (Cd +rUp), where cd
is a linear subspace that is the irreducible component of 7~ (Y((}), and 7 : C¢ —
X = C& /A is the universal cover of X.

The restriction of equation (1.7) onto Yy gives the equation
(2.17)
At (t(z+ U, t)t(z=U,¢t)) 0st(z,t)=1(z+ U, t)1(z=U, 1) B%tt(z, t) (mod ),
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which is valid on the divisor ' = {z € 6 | 7(z, 1) = 0}. For fixed ¢, the function
u(z,t) has simple poles on the divisors J* and T4, = J' —U.

LEMMA 2.3. Let equation (2.17) for t(z,t) holds and let A1, ..., Az be a set
of linear independent vectors of the sublattice A?J = ANCY? C C8. Then for
sufficiently small t, equation (1.3) with the potential u(Ux + z,t), restricted to
X =n € Z, has a unique, up to a z-independent factor, wave solution of the form

U =k*ekt p(Ux + z, 1, k) such that:
(1) the coefficients £5(z, t) of the formal series

(2.18) P(z.t. k) = e (1 +Z§s(z,t)k_s)

s=1

are meromorphic functions of the variable z € C4 with a simple pole at the divi-
sor Jt,

rS (Zv Z)
w(z.1)
(ii) ¢ (z,t, k) is quasi-periodic with respect to the lattice Ay

(2.20) d(z+A.t.k)=¢(z.t.k)B*(k), LeAy

(2.19) Es(z,t) =

and is periodic with respect to the vectors Ay, A1, ..., g; Le.,
(2.21) BY(k)=1, i =0,....d.
Proof. The functions £;(z) are defined recursively by the equations

(2.22) Ay Es41 = & + (u +b) &.

Here and below Ay stands for the difference derivative e?? — 1. The quasi-
periodicity conditions (2.20) for ¢ are equivalent to the equations

(223) ES(Z+Avt)_§S(Z’t) = ZBI'ASS—Z'(ZJ‘)v EO =1.

i=1
A particular solution of the first equation Ay &, = u + b is given by the formula
(2.24) £)=—0yInd+1,(2)b,

where [ (z) is a linear form on 6 such that /; (U) = 1. It satisfies the monodromy
relations (2.23) with

(2.25) B} =1,(M)b—dy Inf(z + 1)+ dy In6(z).

If Up # 0, then the space of linear forms on 4 is (d + 1)-dimensional. Therefore, the
equation /1 (U) = 1 and (d + 1) normalization conditions B%" =1,i=0,1,...,d,
define uniquely the constant b, the form [/, and then the constants B{k for all
A € Ay. Note that if Uy = 0, then the space of linear forms on Cqisd -dimensional,
but the normalization condition Bf ° becomes trivial.
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Let us assume that the coefficient £_; of the series (2.18) is known, and that
there exists a solution S? of the next equation, which is holomorphic outside of the
divisor I, and which satisfies the quasi-periodicity conditions (2.23). We assume
also that £2 is unique up to the transformation & = £0 + c;(¢), where cs(¢) is a
time-dependent constant. As it was shown above, the induction assumption holds
for s = 1.

Let us define a function r +1(z)onJ g! with the help of the formula

0;t(z+ U, 1)

(2.26) rsOH = —0:15(z, 1) —btg(z,t) + T(TU,;)TS(Z’ t), zeJ'

where 75 = 0(Ux + V't + z)&;. Note that the restriction of 75 on I does not depend
on cg(t). Simple expansion of 7 and 7, at the generic point of J° shows that the
residue in U-line of the right-hand side of (2.26) is equal to R4, where Ry is
defined by (2.11). The induction assumption (2.10) of Lemma 2.2 is equivalent to
the statement: if & is a solution of equation (2.22) for s — 1, then the function rso 1
given by (2.26) is equal to

(2.27) . =—0,1(z, )“((ZZ_—;]J:)) zeJ’.

Let us show that tsO 1 18 holomorphic on J J'. Equations (2.26) and (2.27) imply
that ° o1 is regular on J T\ Zs, where Ty = T N ng N gt_U. Let zo be a point
of . By the assumption, Yy does not intersect X. Hence, I, for sufficiently
small z, does not intersect X, as well. Therefore, there exists an integer k£ > 0 such
that zx = zo — kU is in J7, and 7(zx41,1) # 0. Then, from equation (2.27) it
follows that t° 1 is regular at the point z = z;. Using equation (2.26) for z = z,
we get that 0;7(z_1,1)Ts (zk t) = 0. The last equality and the equation (2 27)
for z = z;_; imply that t +1 is regular at the point z;_;. Regularity of ¢ +1 at
Zr—1 and equation (2.26) for z = zj_ 1mply 0:T(zg—2,1)T5(z—1,t) = 0. Then
equation (2.27) for z = zj_, implies that +1 is regular at the point zj_,. By
continuing these steps we get finally that ° s.1 1s regular at z = zo. Therefore, 7 +1
is regular on J°.

Recall that an analytic function on an analytic divisor in C? has a holomorphic
extension onto C? ([24]). The space € is a union of affine subspaces. Therefore,
there exists a holomorphic function t*(z,7),z € €, such that 7 ilge = rso 1
Consider the function y, | = 75, | /7. It is holomorphic outside of the divisor g,
From (2.23) it follows that it satisfies the relations

(2.28) o1z +A) —xs1(2) = fs/}l—l(z) + Z Blesi1-i(z,1),
i=1

where fs'}H (z) is a holomorphic function of z € €. It satisfies the twisted homo-
morphism relations

(2.29) A = fA G+ + @),
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i.e., it defines an element of the first cohomology group of Ay with coefficients
in the sheaf of holomorphic functions, f € H é} ~(Ay, H°(6,0)). The same argu-
ments, as that used in the proof of the part (b) of the Lemma 12 in [25], show that
there exists a holomorphic function /541 (z) such that

(2.30) f81) = hep1(z +2) —hs1(2) + B, |,

where §?+1 is a constant. Hence, the function ys4+1 = xg, + & has the following
monodromy properties

S
231) e+ = xe11(@0) =Bl + ) Bz,

i=1

Let us try to find a solution of (2.22) in the form £, ; = xs+1 + {s+1. That gives
us the equation

(2.32) Aylst1 = gs.
where
(2.33) gs = —Au fs11 +EQ+ w4+ b)EX + dres + (u 4 b)cs.

From (2.23), (2.31) it follows that g5 is periodic with respect to the lattice Ay, i.e.,
it is a function on Yy . Equation (2.28) and the statement of Lemma 2.2 implies that
it is a holomorphic function. Therefore, g is constant on each of the irreducible
components of €:

(2.34) gs(zo+rUp) =g\, zpeCé cee.

Hence, the general solution of equation (2.32), such that the corresponding solution
£s41 of (2.22) satisfies the quasi-periodicity conditions, is given by the formula

r—1

(2.35) Cs+1(zo +1Up) = ls4+1(20) + Z(g(si) —ds) + Cs+1,
i=0

where I54+1(z¢) is a linear form on C4; the constant ag equals ag = l54+1(U — Up).
The normalization condition (2.21) for B? jrl =1,i =0,...,d defines uniquely
ls+1 and d;cg, i.e. the time-dependence of ¢4 (¢). The induction step is completed
and thus the lemma is proven.

Note that a simple shift z — z + Z, where Z ¢ X, gives A-periodic wave
solutions with meromorphic coefficients along the affine subspaces Z + 6. These
wave solutions are related to each other by constant factors. Therefore choosing,
in the neighborhood of any Z ¢ X, a hyperplane orthogonal to the vector U and
fixing initial data on this hyperplane at # = 0, we define the corresponding series
¢(z + Z,t,k) as a local meromorphic function of Z and the global meromorphic
function of z € 6.
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3. Commuting difference operators

In this section we show that A-periodic wave solutions of equation (1.3), con-
structed in the previous section, are common eigenfunctions of rings of commuting
difference operators.

LEMMA 3.1. Let the assumptions of Theorem 1.1 hold. Then, there is a unique
pseudo-difference operator

3.1 KZ) =T+ w(Z)T™*
s=0

such that

(3.2) PUx+VI+Z)y =k,

where = kXK' ¢(Ux + Z,t,k) is a A-periodic wave solution of (1.3). The
coefficients ws(Z) of ¥ are meromorphic functions on the abelian variety X with
poles along the divisors TJ’ O=0—-iU,i<s.

Proof. The construction of & is standard for the theory of 2D Toda lattice
equations. First we define & as a pseudo-difference operator with coefficients
ws(Z, t), which are functions of Z and ¢.

Let ¥ be a A-periodic wave solution. The substitution of (2.18) in (3.2) gives
a system of equations that recursively define ws(Z, t), as difference polynomials
in the coefficients of ¥r. The coefficients of ¥ are local meromorphic functions of
Z, but the coefficients of & are well-defined global meromorphic functions of on
C#& \ Z, because different A-periodic wave solutions are related to each other by a
factor, which does not affect £. The singular locus is of codimension > 2. Then
Hartogs’” holomorphic extension theorem implies that ws(Z, ¢) can be extended to
a global meromorphic function on C&.

The translational invariance of u implies the translational invariance of .
Indeed, for any constant s the series ¢ (Vs + Z,t —s,k) and ¢(Z, ¢, k) correspond
to A-periodic solutions of the same equation. Therefore, they coincide up to a Ty -
invariant factor. This factor does not affect £. Hence, ws(Z,t) = ws(Vt + Z).

For any A’ € A, the A-periodic wave functions corresponding to Z and Z + A’
are also related to each other by a Ty -invariant factor. Hence, wy are periodic with
respect to A, and therefore, are meromorphic functions on the abelian variety X.
The lemma is proved.

Consider now the strictly positive difference parts of the operators £™. Let
™ be the difference operator such that £ = $" —$™ = F,, + Fp T~ + O(T72).
By definition the leading coefficient Fy, of £™ is the residue of £™:

(3.3) Fp =rtesy $™, F) =resy " T.
From the construction of & it follows that [0; — T + u, "] = 0. Hence,

(3.4) [0, =T +u, &™) = —[8, — T +u, £"] = (Ay Fm) T.
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Indeed, the left-hand side of (3.4) shows that the right-hand side is a difference
operator with nonvanishing coefficients only at the positive powers of 7. The
intermediate equality shows that this operator is at most of order 1. Therefore, it
has the form f;,T. The coefficient f;, is easy expressed in terms of the leading
coefficient £™. Note that the vanishing of the coefficient at 7% implies the equation

(3.5) dy Fm = Ay F),

which we will use later.

The functions F,,(Z) are difference polynomials in the coefficients wy of £.
Hence, Fy,(Z) are meromorphic functions on X. Next statement is crucial for the
proof of the existence of commuting differential operators associated with u.

LEMMA 3.2. The abelian functions Fy, have at most simple poles on the divi-
sors ® and Oy.

Proof. We need a few more standard constructions from 2D Toda theory. If v
is as in Lemma 3.1, then there exists a unique pseudo-difference operator ® such
that

o0
(3.6) Y=0k¥eM, d=1+) ¢;(Ux+Z.0)T".
s=1
The coefficients of ® are universal difference polynomials in &. Therefore,
ps(z + Z, 1) is a global meromorphic function of z € € and a local meromorphic
function of Z ¢ X. Note that £ = d TP~ 1.
Consider the dual wave function defined by the left action of the operator ®~!:

Ut = (k_"e_k ! ) ®~!. Recall that the left action of a pseudo-difference operator

is the formal adjoint action under which the left action of T on a function f is
(fT)=T"!f.If ¢ is a formal wave solution of (1.3), then ¥ T is a solution of
the adjoint equation

(3.7) (=0, —T'+uwyyt =0

The same arguments, as before, prove that if equations (1.8) for poles of v hold
then ;" have simple poles at the poles of Tv. Therefore, if ¥ is as in Lemma 2.3,
then the dual wave solution is of the form T = kX't (Ux + Z, 1, k), where
the coefficients £;F (z + Z, t) of the formal series

(3.8) Y+ Z. 1. k)y=e? (1+Z$j‘(z+Z,t)k‘s)
s=1

are A-periodic meromorphic functions of the variable z € 6 with the simple pole
at the divisor T 19",
The ambiguity in the definition of i does not affect the product

(3.9) g = (k—xe—’“qu) (@kxe’“) .



498 IGOR KRICHEVER

Therefore, although each factor is only a local meromorphic function on C8 \ X,
the coefficients J of the product

o0
(3.10) vy =N (Z. k) ¢(Z. k) =1+ J(Z.1)k™*

s=1
are global meromorphic functions of Z. Moreover, the translational invariance of
u implies that they have the form Js(Z,t) = Jg(Z + V't). The factors in the left-
hand side of (3.10) have the simple poles on ® — V¢ and ® —U — V't. Hence, J5(Z)
is a meromorphic function on X with the simple poles at ® and Ty, 1o =0y.

From the definition of & it follows that

(3.11) resg (W (L") k™ dk =res (Y Tk"y) k™ dk = J,.
On the other hand, using the identity
(3.12) resg (k™*D1) (D2k%) k~1dk = resy (22%1),

we get
(3.13)
res (WL Yk dk =resg (kX071 (L DkY) kT dk =resp £ = F.

Therefore, F,, = J, and the lemma is proved.

Let F be a linear space generated by {Fy,, m = 1,...}. It is a subspace of the
28 -dimensional space of the abelian functions that have at most simple poles at ®
and Oy . Therefore, for all but & = dim F positive integers 7, there exist constants
¢in such that

n—1

(3.14) Fa(Z)+ ) cinFi(Z)=0.
i=1
Let I denote the subset of integers n for which there are no such constants. We
call this subset the gap sequence.
LEMMA 3.3. Let & be the pseudo-difference operator corresponding to a
A-periodic wave function W constructed above. Then, for the difference operators

n—1

(3.15) Ly =%+ cin®i =0 n¢l.
i=1
the equations
o0
(3.16) Loy =an(k) ¥, an(k) =k"+ ag.k"",

s=1

where ag , are constants, hold.
Proof. First note that from (3.4) it follows that
(3.17) [0; — T +u,L,]=0.
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Hence, if  is a A-periodic wave solution of (1.3) corresponding to Z ¢ X, then
Ly, is also a A-periodic solution of the same equation. That implies the equation
Ln¥ = an(Z, k)Y, where a is Ty-invariant. The ambiguity in the definition of
¥ does not affect a,. Therefore, the coefficients of a, are well-defined global
meromorphic functions on C& \ . The dy - invariance of a, implies that a,, as a
function of Z, is holomorphic outside of the locus. Hence it has an extension to a
holomorphic function on C#. It is periodic with respect to the lattice A. Hence aj
is Z-independent. Note that a5, = ¢5,4, s < n. The lemma is proved.

The operator L, restricted to the points x = n can be regarded as a Z-para-
metric family of ordinary difference operators L,,Z1, whose coefficients have the
form

m—1
(3.18) LE=T"+Y uimUn+2)T"" m¢l.
i=1

COROLLARY 3.1. The operators LZ commute with each other,

(3.19) [LZ LZ]=0, Z¢%.

From (3.16) it follows that [L,% , L,%]lﬁ = 0. The commutator is an ordinary
difference operator. Hence, the last equation implies (3.19).

4. The spectral curve

A theory of commuting difference operators containing a pair of operators
of co-prime orders was developed in ([11], [22]). It is analogous to the theory
of rank 1 commuting differential operators ([4], [5], [9], [10], [22]). (Relatively
recently this theory was generalized to the case of commuting difference operators
of arbitrary rank in [18].)

LEMMA 4.1. Let A%, Z ¢ X, be a commutative ring of ordinary difference
operators spanned by the operators L,% . Then there is an irreducible algebraic
curve T of arithmetic genus g = dim F, such that for a generic Z the ring 1%
is isomorphic to the ring A(T', P+, P_) of the meromorphic functions on I" with
the only pole at a smooth point P, vanishing at another smooth point P_. The
correspondence Z — A% defines a holomorphic map of X \ X to the space of
torsion-free rank 1 sheaves & on I’

4.1) j: X\X — Pic(T).
Proof. As shown in ([22], [11]) there is a natural correspondence
4.2) A<«—{T, PL,F}

between commutative rings & of ordinary linear difference operators containing a
pair of monic operators of co-prime orders, and sets of algebraic-geometrical data
(T, P+, [k~ 1]y, %}, where T is an algebraic curve with a fixed first jet [k~!]; of
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a local coordinate k~! in the neighborhood of a smooth point Py € I" and % is a
torsion-free rank 1 sheaf on I' such that

(4.3) WO, F(nPy —nP_)) =h (T, FnPy —nP_)=0.

The correspondence becomes one-to-one if the rings « are considered modulo
conjugation i’ = g(x)slg~1(x).

The construction of the correspondence (4.2) depends on a choice of initial
point xo = 0. The spectral curve and the sheaf ¥ are defined by the evaluations of
the coefficients of generators of o at a finite number of points of the form xg + 7.
In fact, the spectral curve is independent on the choice of xg, but the sheaf does
depend on it, i.e. F = Fy,.

Using the shift of the initial point it is easy to show that the correspondence
(4.2) extends to the commutative rings of operators whose coefficients are mero-
morphic functions of x. The rings of operators having poles at x = 0 correspond
to sheaves for which the condition (4.3) for n = 0 is violated.

The algebraic curve I' is called the spectral curve of &. The ring  is isomor-
phic to the ring A(T", P4+, P—) of meromorphic functions on I" with the only pole
at the puncture P4 and which vanish at P_. The isomorphism is defined by the
equation

(4.4) Layo=avo, Lgesd, ae A, Py, Po).

Here v is a common eigenfunction of the commuting operators. At x = 0 it is a
section of the sheaf ¥ ® O(P+).

Let I'Z be the spectral curve corresponding to <. It is well-defined for all
Z ¢ X. The eigenvalues a, (k) of the operators L,% defined in (3.16) coincide
with the Laurent expansions at Py of the meromorphic functions a, € A(I'Z, P+).
They are Z-independent. Hence, the spectral curve is Z-independent, as well,
I' = I'Z. The first statement of the lemma is thus proven.

The construction of the correspondence (4.2) implies that if the coefficients of
operators &§ holomorphically depend on parameters then the algebraic-geometrical
spectral data are also holomorphic functions of the parameters. Hence j is holo-
morphic away of ®. Then using the shift of the initial point and the fact, that %y,
holomorphically depends on xg, we get that j holomorphically extends on ® \ X,
as well. The lemma is proved.

Remark. Recall, that a commutative ring & of linear ordinary difference op-
erators is called maximal if it is not contained in any bigger commutative ring. As
in the differential case (see details in [16]), it is easy to show that for the generic
Z the ring A% is maximal.

Our next goal is to finally prove the global existence of the wave function.

LEMMA 4.2. Let the assumptions of the Theorem 1.1 hold. Then there exists
a common eigenfunction of the operators Lf of the form ¥ = e¥*¢p(Ux + Z, k)
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such that the coefficients of the formal series
o0

4.5) $(Zh)=1+) &2k
s=1

are global meromorphic functions with a simple pole at ©.

Proof. 1t is instructive to consider first the case when the spectral curve I
of the rings s¢Z is smooth. Then, as shown in ([11]), the corresponding common
eigenfunction of the commuting differential operators (the Baker-Akhiezer func-
tion), normalized by the condition ¥o|x=¢ = 1, is of the form

- OAP)+Ux+2)0(Z) 0% QUP)

(4.6) 0= 7= = =
O(Ux+2Z)0(AP)+ Z)

Here 9(2 ) is the Riemann theta-function constructed with the help of the matrix
of b-periods of normalized holomorphic differentials on I'; A:T—J (T") is the
Abel map; €2 is the abelian integral corresponding to the third kind meromorphic
differential d 2 with the residues +1 at the punctures Py and 27 U is the vector
of its h-periods.

Remark. Let us emphasize that the formula (4.6) is not the result of a solution
of some difference equations. It is a direct corollary of analytic properties of the
Baker-Akhiezer function 1}0 (x, P) on the spectral curve:

(1) 1/70 is a meromorphic function on the universal cover G of {T'\ P} with the
monodromy around P+ equals eT2™*; the pole divisor of 1/70 is of degree g and is
x-independent. It is nonspecial, if the operators are regular at the normalization
point x = 0;

(i1) in the neighborhood of Py the function {0\0 has the form (1.12) (with t = 0).

From the Riemann-Rokh theorem it follows that, if @0 exists, then it is unique.
It is easy to check that the function 1}0 given by (4.6) has all the desired properties.

The last factors in the numerator and the denominator of (4.6) are x-independent.
Therefore, the function

. é(/f(AP)f l7xA+ Z) < 2AP)
OUx+2Z)

is also a common eigenfunction of the commuting operators.

In the neighborhood of P the function &B 4 has the form

4.7)

00 A A
~ Z+U
48) pa=k (145 BEHT0 ) o
= 0Ux+2)
where T (2 ) are global holomorphic functions.
According to Lemma 4.1, we have a holomorphic map Z = j(Z) of X \ X
into J(I"). Consider the formal series ¥ = j*{g4. It is globally well-defined out

of 2. If Z ¢ ©, then j(Z) ¢ © (which is the divisor on which the condition (4.3)
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is violated). Hence, the coefficients of ¢ are regular out of ®. The singular locus
is at least of codimension 2. Hence, using once again Hartogs’ arguments we can
extend ¥ on X.

If the spectral curve is singular, we can proceed along the same lines using
a proper generalization of (4.7). Note that in ([16]) we used the generalization
of (4.7) given by the theory of Sato r-function ([23]). In fact, the general theory
of the tau-function is not needed for our purposes. It is enough to consider only
algebro-geometric points of the Sato Grassmanian.

Let p: G —> T be the normalization map, i.e. a regular map of a smooth
genus g algebraic curve G to the spectral curve I' which is one-to-one outside
the preimages gy of singular points I". The normalized common eigenfunction 1}0
of commuting operators can be regarded as a multi-valued meromorphic function
on G \ P+ with the monodromy e*27* around the punctures P.. The divisor
D =) ys of the poles of Vo is of degree g +d < g, where ¢ is the arithmetic
genus of I'. The expansions of 1/A/ at the points §; are in some linear subspace
of codimension d in the space @ 0y, . If we fix local coordinates zj in the
neighborhoods of g, then the latter condition can be written as a system of n
linear constraints

(4.9) > e85, Volg, =0, i=1.....d.
k’j

Al ‘e Al i’ ni
The constants Cp; are defined up to the transformations Crs ™ > 8 Cs® where

gf "isa nondegenerate matrix.
The analytical properties of the function /¢ imply that it can be represented

in the form
OAP)+Ux+2i) o)
O(A(P)+ Zi)

d
(4.10) Yo=Y ri(x.D)
i=0

Here Z; = Z, — /f(yg,Jri), where Z, = R — Zf:_ll ff(ys) and R is the vector of
the Riemann constants.

The coefficients r; in (4.10) are defined by the linear equations (4.9) and the
normalization of the leading term in the expansion (1.12) of 1}0 at P;. Keeping
track of the x-dependent terms one can write the eigenfunction of the commuting
operators in the form

n
A.11) Va=» RiO(AP)+Ux+Z)).

i=0
where the coefficients R; depend on x, but are P-independent. The equations (4.9)
imply

n
(4.12) > M;R; =0,
j=0
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where the entries of the (d x (d + 1))-dimensional matrix M;; are equal to

(4.13) My =" Cf 35 0(AP () + Ux + Zj) |z =o.
k,s

The coefficients C k/ s In (4.13) can be expressed in terms of D and the coefficients
c;'c  1n (4.9). They and the divisor D can be regarded as parameters defining the
sheaf & in (4.2).
Let us define a function 7 (x, P; %) as the determinant of the (d + 1) x(d 4+ 1)-

dimensional matrix

O(AP)+Ux+Zo) -+ B(A(P)+Ux+Zy)
(4.14) t(x, P;F) = det Mo Mi.a
My 0 e Mg q
Then, the common eigenfunction of the commuting operators can be represented
in the form

~ T(x, P s GJ;) Q(P
4.15 = T NP
4.15) VB4 . P )
The rest of the arguments proving the lemma are the same, as in the smooth case.

LEMMA 4.3. There exist g-dimensional vectors Vi, = {Vy, x} and constants
U such that the abelian functions Fy, = resy ™ are equal to

(4.16) Fin(Z) =vm+ Ay (dv,, In6(2)) .
where 0v,, =Y % _, Vinxc0z.

Proof. The proof is identical to that of Lemma 3.6 in [16]. Recall that the
functions Fj, are abelian functions with simple poles at the divisors ® and O . In
order to prove the statement of the lemma it is enough to show that F,, = Ay Q,,
where 0, is a meromorphic function with a pole along ®. Indeed, if O, exists,
then, for any vector A in the period lattice, we have Q,(Z + 1) = Qu(Z) + ¢y 2.
There is no abelian function with a simple pole on ®. Hence, there exists a constant
grn and two g-dimensional vectors I,,, Vy,, such that Q,, =g, + (I, Z) + (V, h(Z)),
where h(Z) is a vector with the coordinates d;; In 6. Therefore, Fy, = (I, U) +
(Va, Ap)h.

Let ¥ (x, Z, k) be the formal Baker-Akhiezer function defined in the previous
lemma. Then the coefficients ¢;(Z) of the corresponding wave operator ® are
global meromorphic functions with poles on ©.

The left and right action of pseudo-difference operators are formally adjoint,
i.e., for any two operators the equality

(k7*D1) (D2k™) = k™ (D1D2k™) + (T — 1) (kK (D3k7))

holds. Here 93 is a pseudo-difference operator whose coefficients are difference
polynomials in the coefficients of %; and %,. Therefore, from (3.9)—(3.13) it
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follows that

o0 o0
(4.17) Yy =14 Fak*=1+A (Z st—S).

s=2 s=2
The coefficients of the series Q are difference polynomials in the coefficients ¢
of the wave operator. Therefore, they are global meromorphic functions of Z with
poles on ®. The lemma is proved.

In order to complete the proof of our main result we need one more standard
fact of the 2D Toda lattice theory: flows of the 2D Toda lattice hierarchy define
deformations of the commutative rings & of ordinary linear difference operators.
The spectral curve is invariant under these flows. There are two sets of 2D Toda
hierarchy flows. Each of them is isomorphic to the KP hierarchy. For a given
spectral curve I' the orbits of the KP hierarchy are isomorphic to the generalized
Jacobian J(I") = Pic®(I"), which is the equivalence classes of zero degree divisors
on the spectral curve. (see [25], [20], [11], [23]).

The part of 2D hierarchy we are going to use is a system of commuting
differential equation for a pseudo-difference operator &

(4.18) 0, L =L + F. & = —[L2 - F,, 4]

The coefficient wg of &£ in (3.1) equals

(4.19) wo = —Ayé = —u.

Therefore, (4.18) and equations (3.5), (4.16) imply

(4.20) d,u=—AyFl=—0yF, = -dy[Aydy, n0(Z),

where V}, is the vector defined in (4.16).

Equation (4.20) identifies the tangent vector d;, to the orbit of the KP hier-
archy with the tangent vector dy,, to the abelian variety X. Hence, for a generic
Z ¢ %, the orbit of the KP flows of the ring s¢Z is in X, i.e. it defines an holomor-
phic imbedding:

4.21) iz J(T)— X.

From (4.21) it follows that J(I") is compact.

The generalized Jacobian of an algebraic curve is compact if and only if the
curve is smooth ([6]). On a smooth algebraic curve a torsion-free rank 1 sheaf is
a line bundle, i.e. Pic(I") = J(T'). Then (4.1) and the dimension arguments imply
that iz is an isomorphism and the map j is inverse to iz. Theorem 1.1 is proved.

5. Fully discrete case

In this section we present the proof of Theorem 1.2. As above, we begin with
the proof of the implication (A) —> (C). We would like to mention that equation
(1.18) can be derived as a necessary condition for the existence of a solution of
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(1.14), which is meromorphic in any of the variables m, n or in their linear combi-
nations. For further use, let us introduce the variables

(5.1) x=m-n, v=m-+n—1.
In these variables equation (1.14) takes the form
(5.2) vx—1Lv)=v(x+1Lv)+ulx,v)yx,v-1).

Let 7(x, v) be a holomorphic function of the variable x in some translational in-
variant domain 9 = T% € C, where T : x — x 4+ 1. Suppose that for each v the
function 7 in @ has a simple root 7(v) such that

(5.3) tmw)+L,v=1Dz(n(v)—1,v—=1)#0.
LEMMA 5.1. If equation (5.2) with the potential

T, v+ Dr(x,v—1)
T t(x—1Lv)t(x+1,v)

5.4

has a meromorphic in @ solution ¥ (x, v) such that it has a simple pole at n(v),
and regular at n(v + 1) — 1, n(v + 1) + 1, then the equation
th+1Lv+Dt(n—-2,v)t(n+1,v—1)

(5-5) tp—Lv+D)t(n+2,v)t(n—1,v—1)

=1, n=n()
holds.

Proof. The substitution in (5.2) of the Laurent expansion (2.3) for ¥ (with
coefficients depending on v), and the expansion

(5.6) (x,v) = vo(v) (x = (1) + O((x = 1(1))?)

give the following system of equations.
From the vanishing of the residues at n + 1 and n — 1 of the left-hand side of
(5.2) we get

_tn+Lv+Dt(n+1,v-1)

B t(n+2,v)vo(v)

tp—Lv+Dt(n—1,v—1)
t(n—2,v)vo(v)

The evaluation of (5.2) at x = (v + 1) gives the equation

(5.9 v(pv+1)—1Lv)y=v(lv+1)+1,v).

Equations (5.7), (5.8), and (5.9) directly imply (5.5). The lemma is proved.
Equation (5.5) for 7 of the form 8(mU + nV + Z) coincides with (1.18), i.e.,
the implication (A) — (C) is proved.
The next step is to show that equations (5.5) are sufficient for local existence
of wave solutions with coefficients having poles only at zeros of t. The wave

(5.7) a(v) v(n+1,v-1),

(5.8) —a(v) =

v(n—1,v—1).
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solutions of (5.2) are solutions of the form
o

(5.10) V(x,v, k) =k’ <1+Z§s(x,v)k_s) .
s=1

LEMMA 5.2. Suppose that t(x, v) is holomorphic in a domain D of the form
(2.7) where it has simple zeros, for which condition (5.3) and equation (5.5) hold.
Then there exist meromorphic wave solutions of equation (5.2) that have simple
poles at zeros of T and are holomorphic everywhere else.

Proof. Substitution of (5.10) into (5.2) gives a recurrent system of equations

(5.11) Es+1(x —Lv) =Esp1(x + L) =ulx,v) &(x, v -1).

Under the assumption that 9 is a disconnected union of small disks, £541 can be
defined as an arbitrary meromorphic function in D¢ and then extended on % with
the help of (5.11). Our goal is to prove by induction that (5.11) has meromorphic
solutions with simple poles only at the zeros of 7.

Suppose that £s(x, v) has a simple pole at x = n(v) =7

r
(512) ES = s +rs0+... .
xX—=n

The condition that 541 (x, v) has no pole at n + 1 is equivalent to the equation

+1,v+1 +1,v—1
(5.13) resr(v) = 2 v"of(n)j(z” 5 VD e =1y,

The condition that 541 (x, v) has no pole at n — 1 is equivalent to the equation

-1, 1 —1,v—1
Gl —ri) = ;’;(n)f(z" 5 L en—1.v-1).

Using (5.11) for s — 1, and the equation u(n,v —1) = 0, we get
(5.15) E(m—1Lv=1)=&Mm+1,v-1).

Then, equation (5.5) implies that the two different expressions for 754 (v) obtained
from (5.13) and (5.14) do in fact coincide. The lemma is proved.

Normalization problem. As before, our goal is to show that wave solutions
can be defined uniquely up to a constant factor with the help of certain quasi-
periodicity conditions. That requires the global existence of the wave functions
along certain affine subspaces. In what follows we use affine subspaces in the
direction of the vector 2W = U — V. The singular locus ¥, which controls the
obstruction for the global existence of the wave solution on X, is the maximal
Ty —y-invariant subset of the theta-divisor, and which is not Ty or Ty -invariant

9%@#40+Z)_0 Ok(U—-V)+2Z)
0 Z+U) 7 0(Z+V)

(5%)2:{2‘ —0 Vkez! .
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Surprisingly it turns out that in the fully discrete case the proof of the statement
that the singular locus is in fact empty can be obtained at much earlier stage than
in the continuous or semi-continuous cases.

Let Y = ((U — V) k) be the Zariski closure of the group {(U — V) k | k € Z}
in X. It is generated by its irreducible component Y °, containing 0, and by the
point Wy of finite order in X, such that 2W — Wy € YO, NWo= Ao €A. Shifting
Z if needed, we may assume, without loss of generality, that 0 is not in the singular
locus. Then Y N X = &.

Let t(z, v) be a function defined by the formula

(5.17) r(z,v)=9(z+%(U+V)), zee.

Here and below € is a union of affine subspaces, which are preimages of irreducible
components of Y under the projection 7 : C& — X = C& /A.

The restriction of equation (1.18) onto Y gives the equation
tz+Wov+Dtz-2W,v)t(z+W,v—1)
=W+ D)t@+2Wv)t(z—W,v—1)
which is valid on the divisor 7% = {z € € | t(z,v) = 0}.

The function

(5.18) -1,

t(z,v+1Dt(z,v—1)
u =
t(z=W,v)t(z+ W,v)
is periodic with respect to the lattice Ay = A N 6. The latter is generated by the
sublattice A(IZV = ANC?, where C¢ is a linear subspace in C#, that is preimage of

YI/(I)/’ and the vector A9 = N Wy € A. For fixed v, the function u(z, ¢) has simple
poles on the divisors IV + W.

(5.19)

LEMMA 5.3. Let t(z,Vv) be a sequence of nontrivial holomorphic functions
on 6 such that u(z, v) given by (5.19) is periodic with respect to Aw. Suppose that
equation (5.18) holds. Then there exist wave solutions ¥ (z,v, k) = kV¢(z,v, k)
of the equation

(5.20) YvEz—Wov,k)y=v(+W,v,k)+u(z,v)¥(z,v—1,k),
such that:
(1) the coefficients £5(z, v) of the formal series
(5.21) pzv. k) =1+ &z )k
s=1

are meromorphic functions of the variable z € € with simple poles at the divisor
IV ie.

75(z,v)

(z,v)

(5.22) &(z,v) =

where t5(z, v) is now a holomorphic function;
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(ii) &5 (z, v) satisfy the following monodromy properties
N
(5.23) Es(z+A,v)—&(z,v) = Z Bifhv_sﬁ Es—i(z,v), AeAw,
i=1

where Bilv are z-independent.

Proof. The functions &;(z, v) are defined recursively by the equations
(5.24) Es+1(z=Wv) =1z +Wov) =u(z,v) &(z, v —1).

We will now prove lemma by induction in s. Let us assume inductively that for
r < the functions &, are known and satisfy (5.23). Then, we define the residue
of £&4+1 on IV by formulae

tz4+Wov+D(z+W,v—1)

5.25 O (z,v) = , z€JY,
(5.25) Ts41(2,V) (z +2W,v) z

0 tz—Wov+1D)t(z—W,v—1)
(5.26) —Toyq(z,v) = G _2Wr) , z€TY,

which, as follows from (5.13) and (5.14), coincide. The expression (5.25) is cer-
tainly holomorphic when t(z 4+ 2W) is nonzero, i.e. is holomorphic outside of
J¥N(FY —2W). Similarly from (5.26) we see that rso '+ 1(z,v) is holomorphic
away from IV N (TV +2W).

We claim that T;) +1(2,v) is holomorphic everywhere on 7. Indeed, by defini-
tion of Y, the closure of the abelian subgroup generated by 2W is everywhere dense.
Thus for any z € 7Y there must exist some N € N such that z—2(N + )W €TV let
N moreover be the minimal such N. From (5.26) it then follows that rsO +1(z,v) can
be extended holomorphically to the point z —2N W. Thus expression (5.25) must
also be holomorphic at z — 2N W; since its denominator vanishes there, it means
that the numerator must also vanish. But this expression is equal to the numerator
of (5.26) at z —2(N — 1)W; thus ISO 1 defined from (5.26) is also holomorphic at
z—2(N —1)W (the numerator vanishes, and the vanishing order of the denominator
is one, since we are exactly talking about points on its vanishing divisor). Note that
we did not quite need the fact z —2(N + 1)W & TV itself, but the consequences
of the minimality of N, i.e.,z—2kW € J¥, 0 <k < N, and the holomorphicity
of rso +1(z,v) at z—2N W. Therefore, in the same way, by replacing N by N —1,
we can then deduce holomorphicity 72 +1(z,v) at z —2(N —2)W and, repeating
the process N times, at z.

Recall once again that an analytic function on an analytic divisor in C? has
a holomorphic extension to all of cA ([24]). Therefore, there exists a holomor-
phic function 7g4+(z, v) extending the rso +1(z,v). Consider then the function
Xs+1(2,v) = Ts4+1(z,v)/7(2,v), holomorphic outside of TV .
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From (5.23) and (5.25) it follows that the function

N
A A
(527) fs—i—l(z» U) = XS+1(Z +A" V) _XS+1(Z? U)_Z Bi,v—]—s+i $S+1—l' (Z, U)
i=1
vanishes at the divisor 7”. Hence, it is a holomorphic function. It satisfies the
twisted homomorphism relations

A
(528) f:g.:iu(zﬁv):f_;A-FI(Z+MaU)+stiLF1(ZaU)7
i.e., it defines an element of the first cohomology group of A¢ with coefficients in
the sheaf of holomorphic functions, f € H glr(Ao, H°(C%,0)). Once again using
the same arguments, as that used in the proof of the part (b) of the Lemma 12 in
[25], we get that there exists a holomorphic function /441(z, v) such that

(5.29) A1) =hep1(z +A,0) —hgpr(zv) + Bl

where §SA+1 , is z-independent. Hence, the function {541 = ys+1 + hs+1 has the
following monodromy properties

s
(5.30) Csr1(z+A,v)=Cs41(z,v) = B?—l—l,v + Z Bi’ky_l—s-ki Es+1-i(z.v).
i=1

Let us consider the function R4 defined by the equation
(5.31) Ret1=C+1z—W,v)=Cp1(z+ W, v)—u(z,v) &(z,v—1).

Equations (5.25) and (5.26) imply that the right-hand side of (5.31) has no pole at
JY £ W.Hence, Rs+1(z,v) is a holomorphic function of z. From (5.23) and (5.30)
it follows that it is periodic with respect to the lattice A, i.e., it is a function
on Y. Therefore, Ry is a constant (z-independent) on each of the connected
components of 6.

Hence, the function

(5.32) Esr1(z,v) =812, v) + ls41(2,v) + 541 (),

where c¢541(v) is a constant, and /541 is a linear form such that
Ls+12W,v) = —Rs41(v)

is a solution of (5.24). It satisfies the monodromy relations (5.23) with
(5.33) Bl , =Bl +l1(A).

The induction step is completed and thus the lemma is proven.

On each step the ambiguity in the construction of &4 is a choice of linear
form /51 1(z,v) and constants ¢g41(v). As in Section 2, we would like to fix
this ambiguity by normalizing monodromy coefficients Bi)’“u for a set of linear
independent vectors Ag, A1, ..., A4 € Aw. It turns out that in the fully discrete case
there is an obstruction for that. This obstruction is a possibility of the existence of
periodic solutions of (5.24), £&s+1(z4+A,v) =&41(z,v), A€ Ay, forO0<s <r—1.
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Note that there are no periodic solutions of (5.24) for all s. Indeed, the func-
tions £5(z, v) as solutions of nonhomogeneous equations are linear independent.
Suppose not. Take a smallest nontrivial linear relation among £;(z, v), and apply
(5.24) to obtain a smaller linear relation. The space of meromorphic functions on
Y with simple pole at I is finite-dimensional. Hence, there exists minimal 7 such
that equation (5.24) for s = r has no periodic solutions.

LEMMA 5.4. Let Ao, A1, ..., Az be a set of linear independent vectors in Ayy.
Suppose equation (5.24) has periodic solutions for s < r and has a quasi-periodic
solution & whose monodromy relations for A; have the form

(5.34) E(Z+A ) —E(Ev)=bY, j=0,....d,

where b*i are constants such that there is no linear form [(z) on' Y with (A i) =
b* and [(2W) = 0. Then for all s, equation (5.24) has solutions of the form (5.22)
satisfying (5.23) with Bl'l’v = bri Sir, e,

(5.35) Ss(z—i-)tj,v)—%‘s(z,v):bkf'&‘s_,(z,v).

Proof. We will now prove the lemma by induction in s > r. Let us assume
inductively that &_, is known, and for 1 <i <r there are solutions &s—,4+; of (5.24)
satisfying (5.23) with Bi)L ’v = bt 8; r. Then, according to the previous lemma, there

exists a solution § s+1 of (5.24) having the form (5.22) and satisfying monodromy
relations (5.23), which for A; have the form

~ ~ L~ /1.
(5.36) 1z + A v) —Esr1(zv) =Y E 1 (zv)+ By,

If &5 is fixed, then the general quasi-periodic solution £, 41 with the normalized
monodromy relations is of the form

(5.37) Es—r+1(2,v) = gs—r-f-l (z,v)+cs—ry1(v),

where cs—, 41 are constants on each component of 6. It is easy to see that under
the transformation (5.37) the functions &, 4; get transformed to

(5.38) Esmrti(2,0) = Es—rpi (2,0) F Csmrp1 (V=i + D &1 (2, 0) .

This transformation does not change the monodromy properties of &, 4; fori <r,
but changes the monodromy property of &5 1:

(539) SS+1(Z+AJ'3U)_ES+1(Z’V)
=DMy 1 (2.0) + BV (i1 (0 —1) = ey ) + BLL, .

Recall that §s+1 was defined up to a linear form /541 (z, v) which vanishes on 2W.
Therefore the normalization of the monodromy relations for &4 uniquely defines
this form and the differences (cs—y+1(v —7) — cs—r+1(v)). The induction step is
completed and the lemma is thus proven.
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Note the following important fact: if &_, is fixed then &_, 41, such that
there exists quasi-periodic solution &1 with normalized monodromy properties,
is defined uniquely up to the transformation:

(5.40) &s—r41(z, V) = Es—r+1(2, V) HCs—r41(V), Cs—r1(V+T) =Cs—r41(V).

Our next goal is to show that the assumption of Lemma 5.4 holds for some r, and
then to prove that the singular locus ¥ is in fact empty.

Shifting z — Z + z, we get, as a direct corollary of Lemma 5.3, that: if
Z ¢ Uf;l (Xo—iV), where g = () gez T(]j-_V(@, then there exist holomorphic
functions t5(Z + z), which are local functions of the variable Z € C& and global
function of the variable z € €, such that the equations

W(Z) w(Z+U-V) 0Z+U)t(Z—V)
0(Z) O6Z+U-V)  0Z2)0(Z+U-V)

(5.41)

hold, and the functions & = /6 satisfy the monodromy relations

(542)  E&(Z+z+0)-E(Z+2)=) BN & i(Z+2). LreAw.

i=1

If &5 is fixed then & is unique up to the transformations
(5.43) Es(Z+2) = 5&(Z+2)+1(Z,2) + ¢s(2),

where /; is a linear form in z such that I[(Z,U — V) = 0, and ¢s(Z) are z-
independent.

Let r be the minimal integer such that &1, ..., &,_; are periodic functions of
z with respect to A, and there is no periodic solution & of (5.41). As it was
noted above, the functions 7 are linear independent. Hence, r < ho(Y, Oly).

If £, is periodic, then the monodromy relation for &, has the form

(5.44) E(Z+z+0)—&(Z+2)=BNZ). reAw.

The function BZ‘ is independent of the ambiguities in the definition of §;, i <r,
and therefore, it is a well-defined holomorphic function of Z € X outside of the set
ur ;% (X —1iV). The latter is of codimension at least 2. Hence, by Hartogs’ theorem
Bf(Z ) extends to a holomorphic function on X. Hence, it is a constant Bf (Z2) =
b*. We supposed that the function &, can not be made periodic by transformation
(5.43). Therefore, there is no linear form on € such that /(1) = b*, (U —V) =0,

and the initial assumption of Lemma 5.4 is proved.

LEMMA 5.5. If equation (1.18) is satisfied, then the singular locus ¥ € © is
empry.

Proof. The functions 71(Z + z) are defined as solutions of (5.41) along 6.
The restriction of 71(Z) on ® is given by the formulae (5.25), (5.26) for s = 0.
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That is,

(5.45) _0Z+U)0Z-V) _ 0Z-U)0(Z+V)
' T Tezru—v) Z-U+V)

Let us first show that ¥ is invariant under the shift by »V (or equivalently
by rU), where r is defined above (minimal integer such that there is no periodic
solution &, of (5.41)). The functions t;(Z + z) are defined as solutions of (5.41)
along 6, and a priori there are no relations between 7; defined for Z and its trans-
lates Z —i V. As shown in Lemma 5.4, the requirement that there exists &4 with
normalized monodromy relations, defines 71 uniquely, up to the transformations
(5.43) with /1 =0 and with rV -periodic ¢y, i.e., c1(Z) =c1(Z+rU) =c1(Z+rV).

Let Z be in X and Z + rV is not. Then t; can be defined as a holomorphic
function in the whole neighborhood of (Z + rV'). Therefore, 71(Z) can be defined
as a single-valued holomorphic function of Z outside of 3. Hence, by Hartogs’
arguments it can be extended across X. The contradiction proves that ¥ = X 4 rV.

By definition, ¥ is not invariant under the shift by V. Hence, it is empty
orr > 1. Let Z € X, then the r.h.s of equation (5.41) for 7;1(Z + V') vanishes.
Therefore, £ is a constant along ¥ + V. Using the transformation (5.43) we can
make it be equal to zeroon X+ V, 711(Z 4+ V) =0, Z € X. The same arguments
applied consecutively show that we may assume that 7; (Z +iV) =0, i <r-—2.
For i = r — 1, using in addition the equation 8(Z + rU) = 0 (which is due to the
fact ¥ = X + rU), we get that, up to the transformation (5.43), the function &_;
has vanishing order on X + (» — 1)V such that the right-hand side of equation for
& on X + rV is zero. Hence, &, can be defined as holomorphic function in the
neighborhood of ¥ + rV, and restricted on X + rV is a constant. That contradicts
the assumption b* = 0, and thus the lemma is proven.

As shown above, if X is empty, then the functions tg can be defined as global
holomorphic functions of Z € C&. Then, as a corollary of the previous lemmas we
get the following statement.

LEMMA 5.6. Let equation (1.18) for 6(Z) holds. Then there exists a formal
solution

(5.46) p=1+) E(2)k™*

s=1

of the equation
(5.47) kp(Z+ V. k)=k¢p(Z+U,k)+u(Z)$p(Z.k),

with
_AZ+U+V)O(2)
S AZ+U)Z+V)

(5.48) u(Z)

such that:
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(i) the coefficients & of the formal series ¢ are of the form & = t5/6, where
t5(Z) are holomorphic functions;

(i) ¢(Z, k) is quasi-periodic with respect to the lattice A and for the basis
vectors Aj in C& its monodromy relations have the form

(5.49) PZ+r) =0+ k" HYe(Z, k), j=1.....g
where b*/ are constants such that there is no linear form on C& vanishing at A;

andU =V ,i.e,l(Aj)) =AU -V)=0;
(iii) ¢ is unique up to the multiplication by a constant in Z factor.

Commuting difference operators. The formal series ¢ (Z, k) defines a unique
pseudo-difference operator

o0
(5.50) KZ)=T+Y w(Z) T, T=e",
s=0
such that the equation

N
(5.51) (T—i—Zws(Z—l—mU +nV) T_s) v =ky

s=0

holds. Here ¥ = k"™™¢(nV + mU + Z,k). The coefficients ws(Z) of £
are meromorphic functions on the abelian variety X with poles along the divisors
T7'®=0—iU, i <s+]1.

From equations (5.47) and (5.51) it follows that

(5.52) ((Alifi) Ty — (AT —[u, :el']) W =0,

where A1 ¥’ and AL’ are pseudo-difference operator in 7', whose coefficients are
difference derivatives of the coefficients of &' in the variables 7 and m respectively.
Using the equation (77 — T —u) ¢ = 0, we get

(5.53) ((Aliﬁi)T—(Aﬂji)T+(A1§Ei)u—[u,££i])w:0.
The operator in the left-hand side of (5.53) is a pseudo-difference operator in the
variable m. Therefore, it has to be equal to zero. Hence, we have the equation

(5.54) (Aosgl’) T + (Ayéﬁi) U—[u, F] =0, Ag= e — e

As before, we denote by ENP’;F the strictly positive difference part of the operator &' .
Then,
(5.55)

(Aosgq) T+ (Aysgﬁr) w—fu, ) =— (Aosgl’_) T— (Aysgl'_) A+ u, F.
The left-hand side of (5.55) is a difference operator with nonvanishing coefficients

only at the positive powers of 7. The right-hand side is a pseudo-difference opera-
tor of order 1. Therefore, it has the form f; 7. The coefficient f; is easy expressed
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in terms of the leading coefficient ' . Finally we get the equation

(5.56) (Aoseq) T+ (Ayﬁﬁﬂr) u—[u, %] =—(AgF) T,

where F; = res $'. The vanishing of the coefficient at 7% in the right-hand side
of (5.55) implies the equation

(5.57) AoF!' =—(AyF)u, Fl=res¥'T,

analogous to (3.5).

LEMMA 5.7. The abelian functions F; have at most simple poles on the divi-
sors © and O.

The wave solution ¥ defines the unique operator ® such that

o0
(5.58) Y=0k"" d=1+) oUm+Vn+2Z)T .

s=1

The dual wave function

(5.59) Yyt =k (1 + > & UM+ Vn + Z) k—S)

s=1

is defined by the formula
(5.60) yt =k "ot
It satisfies the equation
(5.61) (7' =1 —wyyt =0,
which implies that the functions &;7 (Z) have the form
§ @) =" @/0z+U+V),

where tF

.7 are holomorphic functions. Therefore, the functions Js(Z) such that

(5.62) WY =k+ Y Js(Um+Vn+ Z)k—+!

s=1

are meromorphic function on X with the simple poles at © and Ty, 1o =0yp.
From the definition of & it follows that

(5.63)  resg (W) (")) k2dk =resg (YT T) ) k" 2dk = Jy.

On the other hand, using the identity (3.12) we get

(5.64) resg (1 T1) L") k2dk =resg (k"0 (L"0k" ™)k dk
=rest¥" = F,.

Therefore, F,, = J, and the lemma is proved.
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The rest of the proof of Theorem 1.2 is identical to that in the proof of The-
orem 1.1. Namely: Lemma 5.7 directly implies that for the generic Z € X linear
combinations of operators §Eﬂr span commutative rings s¢Z of ordinary difference
operators. They define a spectral curve I" with two smooth points PL and a map
(4.1). The global existence of the wave function implies equations (4.16).

Equation (4.18) defines the KP hierarchy deformations of these rings. From
(4.18), (4.19), and equation (5.24) for s = 0 we get

(5.65) 3, wo = Ay F,), wo=—Ayér, u= Aok .
Then, (4.16) and (5.57) imply
(5.66) 04, Inu = Ay Ay (dy, In0).

By definition, u is given by the formula (1.15), i.e., Inu = Ay Ay In 6. Therefore,
equation (5.66) identifies d,, with dy, . Hence, the orbit of the KP flows is in X.
Hence the generalized Jacobian J(I") of the spectral curve is compact and the
spectral curve is smooth. As in the previous case these arguments complete the
proof of the theorem.
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