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Abstract
We prove that Prym varieties are characterized geometrically by the existence of a
symmetric pair of quadrisecant planes of the associated Kummer variety. We also show
that Prym varieties are characterized by certain (new) theta-functional equations. For
this purpose we construct and study a difference-differential analog of the Novikov-
Veselov hierarchy.
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1. Introduction
The problem of characterizing the locus Pg of Prym varieties in the moduli space Ag

of all principally polarized abelian varieties (ppav’s) is well known and has attracted
a lot of interest over the years. Geometrically, Prym varieties may in some sense be
the easiest ppav to understand beyond Jacobians, and one could hope that studying
them would be a first step toward understanding the geometry of more general abelian
varieties as well.

DUKE MATHEMATICAL JOURNAL
Vol. 152, No. 2, c© 2010 DOI 10.1215/00127094-2010-014
Received 15 November 2007. Revision received 10 February 2009.
2000 Mathematics Subject Classification. Primary 14H40; Secondary 37K10.
Grushevsky’s work partially supported by National Science Foundation grant DMS-0555867.
Krichever’s work partially supported by National Science Foundation grant DMS-0405519.

317



318 GRUSHEVSKY and KRICHEVER

Recall that Fay’s trisecant formula [10] is the statement that the Kummer image
of a Jacobian variety of a curve admits a 4-dimensional family of trisecant lines.
In [12], Gunning obtained a solution to the classical Riemann-Schottky problem of
characterizing Jacobians among all ppav’s by showing that the existence of a 1-
dimensional family of trisecant lines of the Kummer variety characterizes Jacobians.
Gunning’s characterization of the Jacobian locus was extended by Welters, who proved
that the Jacobian locus can be characterized by the existence of a formal 1-parametric
family of flexes of the Kummer variety (see [32], [33]) (recall that a flex of a variety
is a line tangent to it with multiplicity 3). The flexes arise as the limiting case of the
trisecant when the three intersection points converge.

In [1], Arbarello and De Concini showed that Welters’s characterization is equiv-
alent to an infinite system of partial differential equations representing the so-called
Kadomtsev-Petvishvili (KP) hierarchy, and they proved that only a finite number
of these equations is sufficient. They thus established a relation of the geometric ap-
proach to the Schottky problem with the integrable systems approach, in which a much
stronger characterization of the Jacobian locus was earlier conjectured by Novikov
in the framework of the soliton theory, providing that Jacobians are characterized by
the property of their theta functions to provide explicit solutions of the KP equation.
Novikov’s conjecture is equivalent to the statement that the Jacobians are characterized
by the existence of a length 3 formal jet of flexes to the Kummer variety.

Welters, inspired by Gunning’s theorem and Novikov’s conjecture, proved later
by Shiota [28], formulated in [33] the following still stronger conjecture: that the
existence of one trisecant (or one flex, or one semidegenerate trisecant) in fact already
characterizes Jacobians. Welters’s conjecture was recently proved by Krichever in [18]
and [19].

Prym varieties possess generalizations of some properties of Jacobians. Beauville
and Debarre [3] and Fay [11] showed that the Kummer images of Prym varieties
admit a 4-dimensional family of quadrisecant planes (as opposed to a 4-dimensional
family of trisecant lines for Jacobians). Similarly to the case of Jacobians, it was then
shown by Debarre in [6] that the existence of a 1-dimensional family of quadrisecants
characterizes Prym varieties among all ppav’s. However, Beauville and Debarre in
[3] constructed a ppav that is not a Prym but such that its Kummer image has a
quadrisecant plane. Thus, no analog of the trisecant conjecture for Prym varieties was
conjectured, and the question of characterizing Prym varieties by a finite amount of
geometric data (i.e., by polynomial equations for theta functions at a finite number of
points) remained completely open.

From the point of view of integrable systems, attempts to prove the analog of
Novikov’s conjecture for the case of Prym varieties of algebraic curves with two
smooth fixed points of involution were made in [30], [29], and [3]. In [30] it was shown
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that the Novikov-Veselov (NV) equation provides a solution of the characterization
problem up to the possible existence of additional irreducible components. In [29]
and [3], the characterizations of Prym varieties in terms of BKP and NV equations
were proved only under certain additional assumptions. In [3], moreover, an example
of a ppav that is not a Prym, but for which the theta function gives a solution to the
BKP equation, was constructed, and thus no analog of Novikov’s conjecture for Prym
varieties was made. Recently, Krichever [17] proved that Prym varieties of algebraic
curves with two smooth fixed points of involution are characterized among all ppav’s
by the property of their theta functions to provide explicit formulas for solutions of
the integrable 2-dimensional Schrödinger equation.

The main goal of this article is to prove that Prym varieties are characterized
among all ppav’s by the property of their Kummer images admitting a symmetric pair
of quadrisecant 2-planes (see the statement of Corollary 1.2 for a precise formulation).
That there exists such a symmetric pair of quadrisecant planes for the Kummer image
of a Prym variety can be deduced from the description of the 4-dimensional family
of quadrisecants, using the natural involution on the Abel-Prym curve. However, the
statement that a symmetric pair of quadrisecants in fact characterizes Pryms seems
completely unexpected.

Our geometric characterization of Prym varieties follows from a characterization
of Prym varieties among all ppav’s by some theta-functional equations (see the state-
ment of Theorem 1.1 for a precise formulation), which, by using Riemann’s bilinear
addition theorem, can be shown to be equivalent to the existence of a symmetric pair
of quadrisecant planes. In order to obtain such a characterization of Prym varieties,
we introduce, develop, and study a new hierarchy of difference equations, starting
from a discrete version of the Schrödinger equation. The hierarchy we construct can
be thought of as a discrete analog of the Novikov-Veselov hierarchy.

The structure of this article is as follows. In Section 2, we give a brief overview of
notation and of the main results. In Section 3, we give an analytic proof (not using the
results of Beauville-Debarre and Fay) of the fact that Kummer images of Prym varieties
admit a symmetric pair of quadrisecant planes. This is done by constructing (using
algebro-geometric techniques) new difference potential Schrödinger operators that
play a crucial role in all our further considerations. Our construction is a discrete ver-
sion of the well-known Novikov-Veselov construction [31] of potential 2-dimensional
Schrödinger operators (the latter is a reduction of a more general construction of
Schrödinger operators in a magnetic field first proposed in [9]). In Section 4, we
introduce a discrete analog of the Novikov-Veselov hierarchy and study its properties.
It is a set of difference-differential equations describing integrable deformations of
potential difference Schrödinger operators.
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In Section 5, we construct a wave solution of the discrete hierarchy constructed
in Section 4. While the idea of constructing such a solution is in a way inspired by
the success of constructions in [17], [18], and [19], there is no a priori reason why
such a solution of the discrete Schrödinger hierarchy can be constructed assuming
only the existence of a symmetric pair of quadrisecant planes as the first step. The
hierarchy we consider involves essentially a pair of functions and is thus essentially
a matrix hierarchy, unlike the scalar hierarchy arising for the trisecant case. The
argument is very delicate, and involves using the pair of quadrisecant conditions to
recursively construct a pair of auxiliary solutions (essentially corresponding to the
two components of the kernel, only one of which is the Prym).

In Section 6, we finish the proof of our main result on the characterization of
the Prym varieties associated to unramified double covers. One very important detail
here is that, unlike the Jacobian case, the Prym variety remains compact under certain
degenerations of the curve. No characterization of Prym varieties given in terms of
the period matrix of the Prym differentials can single out the possibility of such
degenerations, and thus our characterization is of the closure Pg in Ag of the locus
Pg of Pryms, not only of Pg itself (see Remark 3.10 for more details).

2. Statement of results
Let B be an indecomposable complex symmetric matrix with positive definite imagi-
nary part. It defines an indecomposable ppav X := Cg/�, where � := Zg + BZg ⊂
Cg . The Riemann theta function is given by the formula

θ(B, z) :=
∑
m∈Zg

e2πi(z,m)+πi(Bm,m), (z, m) = m1z1 + · · · + mgzg

for z ∈ Cg . The theta functions of the second order are defined by the formula

�[ε](B, z) :=
∑
m∈Zg

e2πi(2m+ε,z)+πi(2m+ε,B(m+ε/2))

for ε ∈ (Z/2Z)g . The Kummer variety K(X) is then defined as the image of the
Kummer map

K : z �−→ {
�[ε](z)

}
all ε∈(Z/2Z)g

∈ P
2g−1.

A projective (m − 2)-dimensional plane Pm−2 ⊂ P2g−1 intersecting K(X) in at least
m points is called an m-secant of the Kummer variety.

We now recall the definition of Prym varieties. Indeed, an involution σ : � −→ �

of a smooth algebraic curve � induces an involution σ ∗ : J (�) −→ J (�) of the
Jacobian. The kernel of the map 1 + σ ∗ on J (�) is the sum of a lower-dimensional
abelian variety, called the Prym variety (the connected component of zero in the
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kernel), and a finite group. The Prym variety naturally has a polarization induced by
the principal polarization on J (�). However, this polarization is not principal, and the
Prym variety admits a natural principal polarization if and only if σ has at most two
fixed points on �. This is the case we concentrate on.

THEOREM 2.1 (Main theorem)
An indecomposable principally polarized abelian variety (X, θ) ∈ Ag lies in the
closure of the locus Pg of Prym varieties of unramified double covers if and only
if there exist vectors A, U, V, W ∈ Cg representing distinct points in X, none of
them points of order 2, and constants c1, c2, c3, w1, w2, w3 ∈ C such that one of the
following equivalent conditions holds.

(A) The difference 2-dimensional Schrödinger equation

ψn+1,m+1 − un,m(ψn+1,m − ψn,m+1) − ψn,m = 0 (2.1)

with

un,m :

= Cnm

θ((n+1)U+mV +νnmW+Z) θ(nU+(m+1)V +νnmW+Z)

θ((n+1)U+(m+1)V +(1−νnm)W+Z) θ(nU + mV + (1 − νnm)W + Z)
,

(2.2)

where

2νnm := 1 + (−1)n+m+1, Cnm := c3

(
c2n+1

2 c2m+1
1

)1−2νnm
, (2.3)

and where

ψn,m := θ(A + nU + mV + νnmW + Z)

θ(nU + mV + (1 − νnm)W + Z)
wn

1w
m
2 w

νnm

3

(
cm

1 cn
2

)1−2νnm (2.4)

is satisfied for all Z ∈ X.

(B) We have the identity

w1w2(c1c2)±1K̃
(A + U + V ∓ W

2

)
− w1c3(w3c1)±1K̃

(A + U − V ± W

2

)
+w2c3(w3c2)±1K̃

(A + V − U ± W

2

)
− K̃

(A − U − V ∓ W

2

)
= 0, (2.5)

where K̃ : Cg → C2g

is the lifting of the Kummer map to the universal cover.



322 GRUSHEVSKY and KRICHEVER

(C) The two equations (one for the top choice of signs everywhere and one for the
bottom)

c∓2
1 c2

3 θ(Z + U − V ) θ(Z − U ± W ) θ(Z + V ± W )

+ c∓2
2 c2

3 θ(Z − U + V ) θ(Z + U ± W ) θ(Z − V ± W )

= c∓2
1 c∓2

2 θ(Z − U − V ) θ(Z + U ± W ) θ(Z + V ± W )

+ θ(Z + U + V ) θ(Z − U ± W ) θ(Z − V ± W ) (2.6)

are valid on the theta divisor {Z ∈ X : θ(Z) = 0}.

A purely geometric restatement of part (B) of this result is as follows.

COROLLARY 2.2 (Geometric characterization of Pryms)
A ppav (X, θ) ∈ Ag lies in the closure of the locus of Prym varieties of unramified
(étale) double covers if and only there exist four distinct points p1, p2, p3, p4 ∈ X,
none of them points of order 2, such that the following two quadruples of points on
the Kummer variety of X,

K(p1+p2+p3+p4), K(p1+p2−p3−p4), K(p1+p3−p2−p4), K(p1+p4−p2−p3)

and

K(p1−p2−p3−p4), K(p1−p2+p3+p4), K(p1−p3+p2+p4), K(p1−p4+p2+p3),

are linearly dependent.
Equivalently, this can be stated as saying that (X, θ) lies in the closure of the

Prym locus if and only if there exists a pair of symmetric (under the z �→ 2p1 − z

involution) quadrisecants of K(X).

Proof
Indeed, statement (B) gives the two linear dependencies for the Kummer images of the
two quadruples of point. The six coefficients of linear dependence appearing in these
two equations depend on six parameters ci, wi and are independent (since all ci, wi

can be recovered from the six coefficients); thus (B) says that any ppav admitting a
symmetric pair of quadrisecants is in the closure of the Prym locus. �

The equivalence of (A) and (B) is a direct corollary of the addition formula for the
theta function. The only if part of (A) is what we prove in section 2. The statement (C)
is actually what we use for the proof of the if part of the theorem. The characteriza-
tion of Pryms by (C) is stronger than the characterization by (A). The implication
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(A) ⇒ (C) does not require the explicit theta-functional formula for ψ . It is enough
to require only that equation (2.1) with u as in (2.2) has local meromorphic solutions
which are holomorphic outside the divisor θ(Un + V m + Z) = 0 (see Lemma 5.1).

It would be interesting to try to apply our geometric characterization of Pryms
to studying other aspects of Prym geometry and of the geometry of the Prym lo-
cus, including the Torelli problem for Pryms, higher-dimensional secancy condi-
tions, representability of homology classes in Pryms, and so on. It is also tempt-
ing to ask whether a similar characterization of Prym-Tyurin varieties of higher
order may be obtained, or whether one could use secancy conditions to geometri-
cally stratify the moduli space of ppav’s. We hope to pursue these questions in the
future.

3. Potential reduction of the algebro-geometric 2-dimensional difference
Schrödinger operators

To begin with, let us recall a construction of algebro-geometric difference Schrödinger
operators proposed in [16] (see details in [22]).

General notation, Baker-Akhiezer functions
Let � be a smooth algebraic curve of genus ĝ. Fix four points P ±

1 , P ±
2 ∈ �, and let

D̂ = γ1 +· · ·+γĝ be a generic effective divisor on � of degree ĝ. We denote by B the
period matrix of the curve � (the integrals of a basis of the space of abelian differentials
on � over the b-cycles, once the integrals over the a-cycles are normalized), we denote
by J (�) = Cĝ/Zĝ + BZĝ the Jacobian variety of �, and we denote by Â : � ↪→
J (�) the Abel-Jacobi embedding of the curve into its Jacobian. We further denote
by

θ̂(z) := θ(B, z)

the Riemann theta function of the variable z ∈ Cĝ .
By the Riemann-Roch theorem, one computes h0(D̂ + n(P +

1 − P −
1 ) + m(P +

2 −
P −

2 )) = 1, for any n, m ∈ Z, and for D̂ generic. We denote by ψ̂n,m(P ), P ∈ � the
unique section of this bundle. This means that ψ̂n,m is the unique (up to a constant
factor) meromorphic function such that (away from the marked points P ±

i ) it has poles
only at γs , of multiplicity not greater than the multiplicity of γs in D̂, while at points
P +

1 , P +
2 (resp., P −

1 , P −
2 ) the function ψ̂n,m has poles (resp., zeros) of orders n and m.

If we fix local coordinates k−1 in the neighborhoods of marked points (it is
customary in the subject to think of marked points as punctures, and thus it is common
to use coordinates such that k at the marked point is infinite rather than zero), then the
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Laurent series for ψn,m(P ), for P ∈ � near a marked point, has the form

ψ̂n,m = k±n
( ∞∑

s=0

ξ ±
s (n, m)k−s

)
, k = k(P ), P → P ±

1 , (3.1)

ψ̂n,m = k±m
( ∞∑

s=0

χ ±
s (n, m)k−s

)
, k = k(P ), P → P ±

2 . (3.2)

Any meromorphic function on a Riemann surface can be expressed in terms of theta
functions, but it is easier to write an expression for ψ̂n,m using both theta functions and
differentials of the third kind. Indeed, for i = 1, 2 let d�̂i ∈ H 0(K� + P +

i + P −
i ) be

the differential of the third kind, normalized to have residues ∓1 at P ±
i and with zero

integrals over all the a-cycles, and let �̂i be the corresponding abelian integral (i.e.,
the function on the Riemann surface obtained by integrating d�̂i from some fixed
starting point to the variable point). Then we have the expression

ψ̂n,m(P ) = rnm

θ̂(Â(P ) + nÛ + mV̂ + Ẑ)

θ̂(Â(P ) + Ẑ)
en�̂1(P )+m�̂2(P ), (3.3)

where rnm is some constant, Û = Â(P −
1 ) − Â(P +

1 ), V̂ = Â(P −
2 ) − Â(P +

2 ), and

Ẑ = −
∑

s

Â(γs) + κ̂, (3.4)

where κ̂ is the vector of Riemann constants. Indeed, to prove that such an expression
for ψ̂n,m is valid, one only needs to verify that both sides have the same zeros and
poles, which is clear by construction.

Notation
For the remainder of this article, it is useful to think of n and m as discrete variables,
which are shifted by the shift operators that we denote T1 : n �→ n + 1 and T2 :
m �→ m + 1, respectively. To emphasize the difference between the operator and its
action, for a function f = f (n, m) we write tμf := Tμ ◦ f , so that, for example,
T1(f · g) = t1f · t1g. We also denote by H := T1T2 − u(T1 − T2) − 1 (where u is a
function of the same variables as f, g) the difference operator that is very important
for what follows.

THEOREM 3.1 (see [16])
The Baker-Akhiezer function ψ̂n,m given by formula (3.3) satisfies the following dif-
ference equation:

ψ̂n+1,m+1 − an,mψ̂n+1,m − bn,mψ̂n,m+1 + cn,mψ̂n,m = 0, (3.5)
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where we let

an,m := ξ+
0 (n + 1, m + 1)

ξ+
0 (n + 1, m)

, bn,m := χ+
0 (n + 1, m + 1)

χ+
0 (n, m + 1)

, (3.6)

cn,m := bn,m

ξ−(n, m + 1)

ξ−
0 (n, m)

= ξ−(n, m + 1) χ+
0 (n + 1, m + 1)

ξ−
0 (n, m) χ+

0 (n, m + 1)
. (3.7)

Explicit theta-functional formulas for the coefficients follow from equation (3.3),
which implies that

ξ ±
0 = rnm

θ̂ (Â(P ±
1 ) + nÛ + mV̂ + Ẑ)

θ̂ (Â(P ±
1 ) + Ẑ)

enα ±
1 +mα ±

2 , (3.8)

χ ±
0 = rnm

θ̂(Â(P ±
2 ) + nÛ + mV̂ + Ẑ)

θ̂(Â(P ±
2 ) + Ẑ)

enβ ±
1 +mβ ±

2 . (3.9)

The constants α ±
i , β ±

i are defined by the formulas

α±
2 = �2(P ±

1 ); �1 = ± ln k + α ±
1 + O(k−1), P → P ±

1 , (3.10)

β±
1 = �1(P ±

2 ); �2 = ± ln k + β ±
2 + O(k−1), P → P ±

2 . (3.11)

Setup for the Prym construction
We now assume that the curve � is an algebraic curve endowed with an involution
σ without fixed points; then � is an unramified double cover � −→ �0, where
�0 = �/σ . If � is of genus ĝ = 2g + 1, then by Riemann-Hurwitz the genus of �0

is g + 1. For the remainder of this article, we assume that g > 0 and thus that ĝ > 1.
On � one can choose a basis of cycles ai, bi with the canonical matrix of intersections
ai · aj = bi · bj = 0, ai · bj = δij , 0 ≤ i, j ≤ 2g, such that under the involution σ

we have σ (a0) = a0, σ (b0) = b0, σ (aj ) = ag+j , σ (bj ) = bg+j , 1 ≤ j ≤ g. If dωi

are normalized holomorphic differentials on � dual to this choice of a-cycles, then
the differentials duj = dωj − dωg+j , for j = 1, . . . , g are odd; that is, they satisfy
σ ∗(duk) = −duk , and we call them normalized holomorphic Prym differentials. The
matrix of their b-periods

�kj =
∮

bk

duj , 1 ≤ k, j ≤ g (3.12)

is symmetric, has positive definite imaginary part, and defines the Prym variety

P (�) := C
g/Zg + �Z

g
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and the corresponding Prym theta function

θ(z) := θ(�, z)

for z ∈ Cg . We assume that the marked points P ±
1 , P ±

2 on � are permuted by the
involution; that is, P +

i = σ (P −
i ). For further use, let us fix in addition a third pair of

points P ±
3 such that P −

3 = σ (P +
3 ).

The Abel-Jacobi map � ↪→ J (�) induces the Abel-Prym map A : � −→ P (�)
(this is the composition of the Abel-Jacobi map Â : γ ↪→ J (�) with the projection
J (�) → P (�)). Since one may choose the base point involved in defining the Abel-
Jacobi map, and thus the Abel-Prym map, let us choose this base point (unique up to
a point of order 2 in P (�)) in such a way that

A(P ) = −A
(
σ (P )

)
. (3.13)

Admissible divisors. An effective divisor on � of degree ĝ −1 = 2g, D = γ1 +· · ·+
γ2g , is called admissible if it satisfies

[D] + [σ (D)] = K� ∈ J (�) (3.14)

(where K� is the canonical class of �), and if, moreover, H 0(D + σ (D)) is generated
by an even holomorphic differential d�; that is,

d�(γs) = d�
(
σ (γs)

) = 0, d� = σ ∗(d�). (3.15)

Algebraically, what we are saying is the following. The divisors D satisfying
(3.14) are the preimage of the point K� under the map 1 + σ and thus are a translate
of the subgroup Ker(1 + σ ) ⊂ J (�) by some vector. As shown by Mumford [23],
this kernel has two components, one of them being the Prym and the other being
the translate of the Prym variety by the point of order 2 corresponding to the cover
� → �0 as an element in π1(�0). The existence of an even differential as in (3.15)
picks out one of the two components, and the other one is obtained by adding A−σ (A)
to the divisor of such a differential, for some A. In Mumford’s notation, the component
we pick is in fact P − (when we choose the base point according to (3.13) to identify
Pic0 and Picĝ−1), but throughout this article we deal with both components, using
some point (called P +

3 ) and the corresponding shift by P +
3 − P −

3 to pass from one
component to the other. We prove the following statement.

PROPOSITION 3.2
For a generic vector Z ∈ Cg , the zero divisor D of the function θ(A(P ) + Z) on � is
of degree 2g and satisfies the constraints (3.14) and (3.15); that is, it is admissible.
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Remark
We have been unable to find a complete proof of precisely this statement in the
literature. However, both Izadi and Smith have independently supplied us with simple
proofs of this result, based on Mumford’s description and results on Prym varieties.
As pointed out to us by a referee, this result can also be easily obtained by applying
[10, Proposition 4.1]. The reason we choose to give the longer analytic proof below
is because we need some of the intermediate results later on, and also to give an
independent analytic proof of some of Mumford’s results.

Note that the function θ(A(P ) + Z) is multivalued on �, but its zero divisor is
well defined. Arguments identical to those used in the standard proof of the inversion
formula (3.4) show that the zero divisor D(Z) := θ(A(P )+Z) is of degree ĝ−1 = 2g.

LEMMA 3.3
For any pair of points P ±

j conjugate under the involution σ , there exists a unique
differential d�j of the third kind (i.e., a dipole differential with simple poles at these
points and holomorphic elsewhere) such that it has residues ∓1 at these points, is
odd under σ , (i.e., satisfies d�j = −σ ∗(d�j )), and such that all of its a-periods
are integral multiples of πi; that is, such a differential d�i exists for a unique set of
numbers l0, . . . , lg ∈ Z satisfying∮

ak

d�j = πi lk, k = 0, . . . , g. (3.16)

Proof
Indeed, by Riemann’s bilinear relations, there exists a unique differential d� of the
third kind with residues as required, and satisfying

∮
ak

d� = 0 for all k. Note, however,
that then

∮
ak

σ ∗(d�) is not necessarily zero, as the image σ (ak) of the loop ak , while
homologic to ag+k on �, is not necessarily homologic to ag+k (resp., to a0 for σ (a0)) on
�\{P ±

j }. Thus each integral
∮

ak
σ ∗(d�), being equal to 2πi times the winding number

of σ (ak) around P +
j minus that around P −

j , is equal to 2πilk for some lk ∈ Z. We
now subtract from d� the linear combination πi

(
l0dω0 + ∑g

k=1 lk(dωk + dωg+k)
)

of even abelian differentials to get the desired d�j . �

LEMMA 3.4
For a generic D = D(Z) and for each set of integers (n, m, r) such that

n + m + r = 0 mod 2, (3.17)

the space

H 0
(
D + n(P +

1 − P −
1 ) + m(P +

2 − P −
2 ) + r(P +

3 − P −
3 )

)
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is 1-dimensional. A basis element of this space is given by

ψn,m,r (P ) := hn,m,r

θ(A(P ) + nU + mV + rW + Z)

θ(A(P ) + Z)
en�1(P )+m�2(P )+r�3(P ),

(3.18)
where �j is the abelian integral corresponding to the differential d�j defined by
Lemma 3.3, and U, V, W are the vectors of b-periods of these differentials; that is

2πiUk =
∮

bk

d�1, 2πiVk =
∮

bk

d�2, 2πiWk =
∮

bk

d�3. (3.19)

Proof
It is easy to check that the right-hand side of (3.18) is a single-valued function on �

having all the desired properties, and thus it gives a section of the desired bundle. Note
that the constraint (3.17) is required due to (3.16), and the uniqueness of ψ up to a
constant factor, that is, the 1-dimensionality of the H 0 above, is a direct corollary of
the Riemann-Roch theorem. �

For further use, let us note that bilinear Riemann identities imply that

2U = A(P −
1 )−A(P +

1 ), 2V = A(P −
2 )−A(P +

2 ), 2W = A(P −
3 )−A(P +

3 ). (3.20)

Let us compare the definition of ψ̂n,m defined for any curve � with that of ψn,m,r ,
which is only defined for a curve with an involution satisfying a number of conditions.
To make such a comparison, consider the divisor D̂ = D +P +

3 of degree ĝ = 2g +1,
and let ψ̂n,m be the corresponding Baker-Akhiezer function.

COROLLARY 3.5
For the Baker-Akhiezer function ψ̂nm corresponding to the divisor D̂ = D + P +

3 , we
have

ψ̂nm = ψn,m,ν, (3.21)

where ν = νnm is defined in (2.3); that is, it is zero or one so that n + m + ν is even.

COROLLARY 3.6
If n + m is even, then by formulas (3.3), (3.18), we get

θ̂(Â(P ) + nÛ + mV̂ + Ẑ) θ̂(Â(P0) + Ẑ)

θ̂(Â(P ) + Ẑ) θ̂(Â(P0) + nÛ + mV̂ + Ẑ)
=

θ(A(P ) + nU + mV + Z) θ(A(P0) + Z)

θ(A(P ) + Z) θ(A(P0) + nU + mV + Z)
enr1+mr2, (3.22)
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where ri = ∫ P

P0
(d�̂i − d�i), and we recall that Ẑ = Â(D̂) + κ̂ and that Z is its

image.

Remark 3.7
This equality, valid for any pair of points P, P0 ∈ � is a nontrivial identity between
theta functions. Thus far we have been unable to derive it directly from the Schottky-
Jung relations.

Notation
For brevity, throughout the remainder of the article we use the notation: ψn,m :=
ψn,m, νnm

.

LEMMA 3.8
The Baker-Akhiezer function ψn, m, given by

ψn, m = θ(A(P ) + Un + V m + νnmW + Z)

θ(Un + V m + (1 − νnm)W + Z) θ(A(P ) + Z)
· en�1(P )+m�2(P )+νnm�3(P )

e(2νnm−1)(n�1(P +
3 )+m�2(P +

3 ))
,

(3.23)
satisfies equation (2.1); that is,

ψn+1, m+1 − un,m(ψn+1,m − ψn, m+1) − ψn,m = 0,

with un,m as in (2.2), (2.3), where

c1 = e�2(P +
3 ), c2 = e�1(P +

3 ), c3 = e�1(P +
2 ). (3.24)

Proof
Note that the first and last factors in the denominator of (3.23) correspond to a special
choice of the normalization constants hn,m, ν in (3.18):

ψnm(P −
3 ) = (θ(Z + W ))−1, νnm = 0,

ψnme−�3 |P=P +
3

= (θ(Z − W ))−1, νnm = 1. (3.25)

This normalization implies that for n + m the difference (ψn+1,m+1 − ψn,m) equals
zero at P −

3 . At the same time, as a corollary of the normalization, we see that
(ψn+1,m − ψn,m+1) has no pole at P +

3 . Hence, these two differences have the same
analytical properties on � and thus are proportional to each other (the relevant H 0

is 1-dimensional by Riemann-Roch). The coefficient of proportionality unm can be
found by comparing the singularities of the two functions at P +

1 . �

The second factor in the denominator of formula (3.23) does not affect equation (2.1).
Hence, the lemma proves the only if part of statement (A) of the main theorem for the
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case of smooth curves. It remains valid under degenerations to singular curves which
are smooth outside of fixed points Qk which are simple double points, that is, to the
curves of type {�, σ, Qk}.

Remark 3.9
Equation (2.1) as a special reduction of (3.5) was introduced in [8]. It was shown that
equation (3.5) implies a five-term equation

ψn+1,m+1 − ãnmψn+1,m−1 − b̃n,mψn−1,m+1 + c̃nmψn−1,m−1 = d̃n,mψn,m (3.26)

if and only if it is of the form (2.1). A reduction of the algebro-geometric construction
proposed in [16] was found in the case of algebraic curves with involution having two
fixed points. It was shown that the corresponding Baker-Akhiezer functions do satisfy
an equation of the form (2.1). Explicit formulas were obtained for the coefficients of
the equations in terms of Riemann theta functions. The fact that the Baker-Akhiezer
functions and the coefficients of the equations can be expressed in terms of Prym theta
functions is new.

We are now ready to complete the proof of Proposition 3.2. Let ψn,m be the Baker-
Akhiezer function given by (3.23). According to Lemma 2.3, it satisfies equation (2.1).
The differential dψn,m is also a solution of the same equation, and thus using the shift
operator notation, we get

(T1 − 1)(ψσ
n,mdψn,m+1 − ψσ

n,m+1dψn,m) = (T2 − 1)(ψσ
n,mdψn+1,m − ψσ

n+1,mdψn,m).

(3.27)

For a generic set of algebro-geometric spectral data, the products ψσ
n,mψn,m+1 and

ψσ
n,mψn+1,m are quasi-periodic functions of the variables n and m. The data for which

they are periodic is characterized as follows.
Let dpj , i = 1, 2 be abelian differentials of the third kind with residues ∓1 at

punctures P ±
j , respectively, and normalized by the condition that all of their periods

are purely imaginary. We then have

�
∮

c

dpj = 0, ∀c ∈ H 1(�, Z). (3.28)

Nondegeneracy of the imaginary part of the period matrix of holomorphic differentials
implies that such dpj exists and is unique. If the periods of dpj are of the form∮

c

dpj = πinj
c

Nj

, nj
c ∈ Z, (3.29)
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then the function μj (Q) = eNj

∫ Q
dpj is single-valued on � and has pole of order Nj at

P +
j and zero of order Nj at P −

j . From the uniqueness of the Baker-Akhiezer function,
it then follows that

ψn+2N1,m = μ1

μ1(P −
3 )

ψn,m, ψn,m+2N2 = μ2

μ2(P −
3 )

ψn,m, ν = 0

ψn+2N1,m = μ1

μ1(P +
3 )

ψn,m, ψn,m+2N2 = μ2

μ2(P +
3 )

ψn,m, ν = 1. (3.30)

These imply that

ψσ
n+2N1,m

dψn+1+2N1,m = ψσ
n,mdψn+1,m + (ψσ

n,mψn+1,m)dp1 (3.31)

and that similar monodromy properties obtain for the other terms in (3.27). In this
case, the averaging of equation (3.27) in the variables n, m gives the equation

〈ψσ (t2ψ − t2ψ
σ )ψ〉2dp1 = 〈ψσ (t1ψ) − (t1ψ

σ )ψ〉1 dp2. (3.32)

Here 〈·〉1 stands for the mean value in n and 〈·〉2 stands for the mean value in m. For
a generic curve, differentials dpj have no common zeros. Hence, for such curves the
differential

d� = dp1

〈ψσ t1ψ − t1ψσψ〉1
= dp2

〈ψσ t2ψ − t2ψσψ〉2
(3.33)

is holomorphic on �. It has zeros at the poles of ψ and ψσ . The curves for which
(3.29) holds for some Nj are dense in the moduli space of all smooth genus g curves.
This proves that equation (3.33) holds for any curve. Proposition 3.2 is proved.

Remark 3.10
We have thus proved that for any Prym variety, part (A) of the main theorem is satisfied.
Note, however, that the statement of the main theorem is for all abelian varieties in
the closure of the locus Pg in Ag . To show that condition (A) holds for ppav’s in the
closure of Pg , it is enough to note that (A) is an algebraic condition, and thus is valid
on the closure of Pg . The only thing left to verify is that in the closure, all of the points
A, U, V, W can be chosen not to be points of order 2. Since we have shown that for
Prym varieties (in the open part Pg) the quadrisecancy occurs for any choice of points
on the Abel-Prym curve, and this curve in the limit degenerates to a curve (which is
thus not contained in the finite set of points of order 2), the limit points can be chosen
not to be of order 2 as well.

When we prove the characterization (the only if part of the main theorem) in
Section 5, there are no problems with the closure, as we are able to show explicitly
that condition (C) (implied by (A)) exhibits the abelian variety as the Prym for a
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possibly nodal curve. In particular, the case of the nodal curve corresponds to double
covers branched in two points, considered, for example, in [17].

4. A discrete analog of Novikov-Veselov hierarchy
In this section, we introduce multiparametric deformations of the Baker-Akhiezer
functions and prove that they satisfy a system of difference-differential equations. The
compatibility conditions of these equations can be regarded as a discrete analog of the
Novikov-Veselov hierarchy (see [31]).

Let t = {t1
i , t

2
i , i = 1, 2 . . .} be two sequences of complex numbers (we assume

that only finitely many of them are nonzero). We construct a function ψ on the curve
� with prescribed exponential essential singularities at points P ±

i controlled by these
t .

LEMMA 4.1
Let D = D(Z) = γ1 + · · · + γ2g be an admissible divisor. Then there exists a unique
(up to a constant factor) meromorphic function ψn,m(t, P ) of P ∈ �, which we call a
multiparametric deformation of the Baker-Akhiezer function, such that
(i) outside of the marked points it has poles only at points γs of multiplicity not

greater than the multiplicity of γs in D;
(ii) ψn,m(t, P ) has an at most simple pole at P +

3 ;
(iii) in the local coordinate k−1 mapping a small neighborhood of P ±

1 to a small
disk in C (with the marked point mapping to zero), it has the power series
expansion

ψn,m(t, P ) = k∓ne
± ∑

i

t1
i k−i ( ∞∑

s=0

ξ ±
s (n, m, t)ks

)
(4.1)

for some ξ±
s (notice that this means that there is an essential singularity and

that the expansion starts from k−n at P +
1 and kn at P −

1 and goes toward k−∞);
(iv) in the local coordinate k−1 near P ±

2 , it has the power series expansion

ψn,m(t, P ) = k∓me
± ∑

i

t2
i k−i( ∞∑

s=0

χ ±
s (n, m, t)ks

)
. (4.2)

Proof
This function ψn,m is given by

ψn,m(t, P ) = hn,m(t)
θ(A(P ) + nU + mV + νnmW + Z + ∑

i(t
1
i U

1
i + t2

i U
2
i ))

θ(A(P ) + Z)

× exp
(
n�1(P ) + m�2(P ) + νnm�3(P ) +

∑
i

(t1
i �

1
i (P ) + t2

i �
2
i (P ))

)
,

(4.3)
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where �1, �2, �3, and the vectors U, V, W are as in Lemma 2.2; �
μ

j for μ = 1, 2 is
the abelian integral of the differential d�

μ

j , which has poles of the form

d�
1(2)
j = ±d

(
kj + O(1)

)
(4.4)

at punctures P ±
1(2), is holomorphic everywhere else, and is uniquely determined by the

normalization conditions ∮
ak

d�
1(2)
j = 0, k = 0, . . . , 2g ; (4.5)

coordinates of the vectors U
1(2)
j are defined by b-periods of these differentials; that is,

2πiU
1(2)
k,j =

∮
bk

d�
1(2)
j , k = 1, . . . , g. (4.6)

Note that, as before, if νnm = 0, then ψn,m is in fact holomorphic at P +
3 , and if

νnm = 1, then ψn,m does have a pole at P +
3 but also has a zero at P −

3 . As before, we
normalize ψn,m by conditions (3.25). �

Notation
In what follows, we deal with formal pseudodifference operators, shifting n and
m, with coefficients being functions of the variables n and m, and of the t’s. For
the remainder of this section, when we write functions f, g, . . . as coefficients of
pseudodifferential operators, they are meant to be functions of n, m, and t .

Denote by R the ring of functions of variables n, m, and t . We denote by O±
1

the rings of pseudodifference operators in two variables that are Laurent series in T ∓
1

(i.e., for elements in O+
1 , only finitely many positive powers of T1 are allowed) and

polynomials in T ±
2 ; that is,

O±
1 := R(T ∓

1 )[T ±
1 , T2, T

−1
2 ] =

{
D =

M2∑
j=M1

∞∑
i=N

rijT
∓i

1 T
j

2

}
,

where rij ∈ R. The intersection

O := O+
1 ∩ O−

1 = R[T1, T
−1

1 , T2, T
−1

2 ]

is the ring of difference operators. We further denote by O±
1,0 the ring of pseudodif-

ference operators in one variable that are Laurent polynomials in T ∓
1 , thought of as

subrings of O±
1 , respectively; that is,

O±
1,0 := R

(
(T ∓

1 )
) =

{
D =

∞∑
i=N

riT
∓i

1

}
.
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Finally, we denote by OH the left principal ideal in O generated by the operator
H = T1T2 − u(T1 − T2) − 1, that is, OH := OH , and we similarly set O±

H := O±
1 H .

Moreover, while performing computations in these rings, it is often convenient to
compute only a couple of the highest terms. To this end, we use for k > 0 notation
O(T −k

1 ) = T −k
1 R[[T −1

1 ]] for the operators in O+
1 only having terms with T n

1 for
n ≤ −k, and O(T k

1 ) = T k
1 R[[T1]] for the operators in O−

1 only having terms with T n
1

for n ≥ k.
We now want to show that the multiparametric deformations of the Baker-

Akhiezer functions satisfy a hierarchy of difference-differential equations.

PROPOSITION 4.2
The Baker-Akhiezer function ψ = ψn,m(t, P ) satisfies (2.1) with unm as in (2.2), with
Z replaced by Z + ∑

j (t1
j U

1
j + t2

j U
2
j ) (this can be written as Hψ = 0). There exist

unique difference operators of the form

L
(μ)
j =

(
f0j +

j−1∑
i=1

f
(μ)
ij T i

μ + T −i
μ f

(μ)
ij

)
(Tμ − T −1

μ ), μ = 1, 2, j = 1, 2, . . . (4.7)

such that the equations

∂

∂t
μ

j

ψ = L
(μ)
j ψ (4.8)

hold.

Proof
The proof of the first statement is identical to that in Lemma 2.3. The proof of the
statement that there exist operators of the form

L
(μ)
j =

j∑
i=−j

g
(μ)
ij T i

μ (4.9)

such that the equations in (4.8) hold is standard. Indeed, for each formal series (4.1),
there exists a unique operator L

(1)
j such that

( ∂

∂t
μ

j

− L
(1)
j

)
ψ = k±ne± ∑

i t1
i ki

( ∞∑
s=0

ξ̃ ±
s k−s

)
, ξ̃+

0 = 0. (4.10)

The coefficients g
(1)
j of the operator are difference polynomials in terms of the coef-

ficients ξs of the series (4.1). Now note that the left-hand side of (4.10) satisfies all
the properties that ψ satisfies, and thus must be proportional to it. However, since
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ξ̃+
0 = 0, the constant of proportionality must be equal to zero, and thus the left-hand

side vanishes as desired. The same arguments prove the existence of L
(2)
j .

It remains to show that the operators L
(μ)
j have the form as in (4.7). This is a

matter of showing that the coefficients of L
(μ)
j satisfy certain identities; that is, that the

generally constructed g
(μ)
ij for −j ≤ i ≤ j can in fact be expressed in terms of f

(μ)
ij

for 1 ≤ i ≤ j − 1. One easily checks that if L
(μ)
j is given by (4.7), then its formal

adjoint operator satisfies

(L(μ)
j )∗ = −(Tμ − T −1

μ )L(μ)
j (Tμ − T −1

μ )−1. (4.11)

This equation is in fact equivalent to (4.7), as it determines the coefficients of all the
negative powers of Tμ uniquely, given the coefficients of the positive powers. It thus
remains to prove this identity.

We denote by ψσ the composition ψσ (P ) = ψ(σ (P )); notice that by (4.1),
we know the expansion of both ψ and ψσ near P ±

1 . Now consider the differential
ψσ

(
T n

μ (Tμ − T −1
μ ) ψ

)
d�, where, as before, d� is a holomorphic differential having

zeros at the poles of ψ and ψσ . Then this expression is a meromorphic differential
on �, which a priori has poles only at P ±

μ and P ±
3 . Due to normalization in (3.25), it

is holomorphic at the punctures P ±
3 ; the pole of ψ cancels with the zero of ψσ and

vice versa. Therefore, for n > 0, this differential has a pole only at P +
μ , and hence its

residue at this point must vanish:

resP +
μ

(
ψσ (T n

μ (Tμ − T −1
μ ) ψ) d�

) = 0, ∀n > 0. (4.12)

The normalization in (3.25) also implies that

resP +
μ

(
ψσ (Tμ ψ)d�

) = 1. (4.13)

Equations (4.12) and (4.13) recursively define coefficients of the power series ex-
pansion of ψσd� at P +

μ in terms of the coefficients of the power series for ψ . The
corresponding expressions can be explicitly written in terms of the so-called wave
operator.

We first observe that in the ring O+
1,0 there exists a unique pseudodifference

operator

� =
∞∑

s=0

ϕsT
−s

1 (4.14)

such that the expansion (4.1) of ψ at P +
1 is equal to

ψ = � kne
∑

i t1
i ki

. (4.15)



336 GRUSHEVSKY and KRICHEVER

Indeed, this identity provides a unique way of determining the coefficients ϕs recur-
sively.

LEMMA 4.3
The following identity holds:

ψσd� = (
k−ne− ∑

i t1
i ki

(T1 − T −1
1 ) �−1(T1 − T −1

1 )−1
) dk

k2 − 1
. (4.16)

Here and below, the right action of pseudodifference operators is defined as the formal
adjoint action; that is, we set f T = T −1f .

Proof
Recall that by definition, the residue of a pseudodifference operator D = ∑

s dsT
s is

resT D := d0. It is easy to check (by verifying that this holds for the basis, that is, by
checking this for D1 = T a

1 and D2 = T b
1 ) that for any two pseudodifference operators

D1, D2, we have

resk(k−ne− ∑
i t1

i ki

D1)(D2k
ne

∑
i t1

i ki

) d ln k = resT (D2D1). (4.17)

The last equation implies that

resk

(
k−ne− ∑

i t1
i ki

(T1 − T −1
1 ) �−1(T1 − T −1

1 )−1
)

×(
T n

1 (T1 − T −1
1 ) ψ

) dk

k2 − 1
= resk

(
k−ne− ∑

i t1
i ki

�−1(T1 − T −1
1 )−1

)
×(

T n
1 (T1 − T −1

1 )� kne
∑

i t1
i ki )

d ln k = resT T n
1 = δn, 0;

that is, the formal series defined by the right-hand side of (4.16) satisfies equations
(4.12) and (4.13), which are the defining equations (solving term by term; see above)
for ψσd�. �

Now we are ready to complete the proof that the adjoints of L
μ

j satisfy (4.11), thus
proving Proposition 4.2. Consider the pseudodifference operator

L := �T1�
−1,

for which ψ is an eigenvector; indeed, we have

Lψ = �T1k
ne

∑
i t1

i ki = �kn+1e
∑

i t1
i ki = kψ. (4.18)
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Considering the expansion of (4.8) in a neighborhood of P +
1 , we see that the positive

parts of the pseudodifference operators L
(1)
j and Lj coincide; hence

(L(1)
j )+ = L

j
+ (4.19)

(where by the positive part of a pseudodifference operator D = ∑
s dsT

s we mean
D+ := ∑

s>0 dsT
s).

The differential d� is independent of n. Therefore, from (4.16) it follows that the
operator

L̃ := (T1 − T −1
1 )−1L∗(T1 − T −1

1 ) (4.20)

has ψσ as an eigenfunction:

L̃ψσ = kψσ . (4.21)

Equation (4.8) considered in the neighborhood of P −
1 implies that the negative parts

of L
(1)
j and L̃j coincide; hence

(L(1)
j )− = −L̃

j
−. (4.22)

The last two equations prove (4.11) and then (4.7) for μ = 1. The case μ = 2 is
analogous, and the proposition is thus proved. �

COROLLARY 4.4
The operators H and L

(μ)
j satisfy the equations

∂

∂t
μ

j

H ≡ [Lμ

j , H ] mod OH . (4.23)

Proof
It is easy to show that the ideal of difference operators D (i.e., of D ∈ O) such that
Dψ = 0 is OH . From (4.8), it follows that( ∂

∂tjμ

H − [Lμ

j , H ]
)
ψ = 0.

Hence, the right- and left-hand sides of (4.23) are equal in the factor-ring O/OH . �

We show below that the system of nonlinear equations (4.23) can be regarded as a dis-
crete analog of the Novikov-Veselov hierarchy. The basic equation of this hierarchy—
the discrete analog of the Novikov-Veselov equation—is given by (4.23) for j = 1.
The operator L

(1)
1 is of the form

L
(1)
1 = v(T1 − T −1

1 ). (4.24)
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Equation (4.23) is equivalent to the system of two equations for the two functions
u = un,m(t), v = vn,m(t):

v(t−1
1 u) = u(t2v) (4.25)

∂tu = [(t1t2v)(t1u) − u(t2v)] u − [t1t2v − v] (4.26)

The discrete Novikov-Veselov hierarchy
The discrete analog of the Novikov-Veselov hierarchy is of independent interest.
In what follows, we consider only the part of the hierarchy corresponding to times
tj := t1

j , and set all t2
j = 0.

Let us write out this part of the hierarchy in a closed form. We think of it as a
system of evolution equations on the space

S :=
{
H, L

∣∣∣ H = T1T2 − u(T1 − T2) − 1, L =
∞∑
i=0

viT
−i+1

1

}
(4.27)

satisfying

[H, L] ≡ 0 mod O+
H , (4.28)

and such that, moreover, u and v0 are of the form

u = C
(t1τ ) (t2τ )

(t1t2τ ) τ
, v0 = (t1τ ) (t−1

1 τ )

τ 2
, (4.29)

where C is a constant and τ = τ (n, m) is some function.
The meaning of (4.28) is as follows. A priori, the operator [H, L] has a unique

representation of the form

[H, L] =
( ∞∑

s=0

hsT
−s+2

1

)
+ DH,

with D ∈ O+
1 . Therefore, the constraint (4.28) is equivalent to equations hs = 0. The

first of these equations h0 = 0 is an equation for u and v0, which is automatically
satisfied due to (4.29).

By a direct computation of the series expansion of [H, L], it is easy to see that
equations hs = 0 for s > 0 have the form

(t2vs)(t−s
1 u) − (t−1

1 u)vs = Rs(τ, v1, . . . , vs−1), (4.30)

where Rs is some difference polynomial. They recursively define vs(n, m), if the
initial data vs |m=0 are fixed. Therefore, the space S of operators H, L with the leading
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coefficients u, v0 of the form (4.29) satisfying (4.28) can be identified with the space
of one function of two variables, and an infinite number of functions of one variable,
that is, {τ (n, m), vs(n), s > 0}.

Our next goal is to define a hierarchy of commuting flows on S . Any operator in
O+

1,0, and, in particular, Lj , has a unique representation of the form

Lj =
j−1∑

i=−∞
fijT

i
1 (T1 − T −1

1 ). (4.31)

Then the formula (4.7) with μ = 1 defines a unique operator Lj := L
(1)
j such that

(4.19) holds, and also satisfies condition (4.11) with μ = 1 for the adjoint.

THEOREM 4.5
The equations

∂tj L = [Lj, L], ∂tj H ≡ [Lj, H ] mod OH (4.32)

define commuting flows on the space S .

Proof
Note that the highest power of T1 in L is T1, and ∂tj H = (∂tj u)(T1 − T2). Thus in
order to show that equations (4.32) are well defined, we need to prove the following:
(a) [Lj, L] is of degree not greater than 1;
(b) [Lj, H ] ≡ aj (T1 − T2) mod OH ;
(c) the corresponding equations for v0 and u are consistent with the ansatz (4.29).

The proof of (a) is standard. We compute

Lj = Lj + Fj + F 1
j T −1

1 + O(T −2), (4.33)

where

Fj = t−1
1 f1,j − f−1,j , F 1

j = t−2
1 f2,j − f−2,j . (4.34)

Using [L, Lj ] = 0, we get

[Lj, L] = [Fj + O(T −1
1 ), L] = (Fj − t1Fj )v0T1 + O(1),

thus proving (a). Note also that by comparing the leading coefficients, we obtain

∂

∂tj
ln v0 = Fj − t1Fj . (4.35)
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The proof of (b) is much harder. The difference operator HLj is of order one in
T2. Hence it has a unique representation of the form

HLj = D1 − ajT2 + DH, (4.36)

where D ∈ O and D1 ∈ O1,0.
Our next goal is to show that D1 is of degree one in T1; that is, it has the form

D1 = bjT1 + cj . From the equation T −1
1 H ≡ 0 mod OH , we get

T2 = t−1
1 u + T −1

1 − t−1
1 uT −1

1 T2 = t−1
1 u + (1 − t−1

1 ut−2u)T −1 + O(T −2
1 ). (4.37)

Equations [Lj , H ] = 0 and (4.33) imply that in O+
H , the left-hand side of (4.36) is

equal to

HLj = (
(t1t2Fj − t1Fj )u

)
T1 + +(

(1 − ut−1
1 u)t1t2Fj + (ut−1

1 u)t2Fj

− Fj + (t−1
1 u)t1t2F

1
j − ut1F

1
j

)
. + O(T −1). (4.38)

Substituting this expression and the formula for T2 in (4.36), we get D1 = bjT1 +
cj + O(T −1

1 ), where

bj := (t1t2Fj − t1Fj ) u (4.39)

cj : = aj t−1
1 u + (1 − ut−1

1 u)t1t2Fj + (ut−1
1 u)t2Fj − Fj + (t−1

1 u)t1t2F
1
j − ut1F

1
j .

(4.40)

Now we compute the left- and right-hand sides of (4.36) in O−
H . Indeed, in O−

1 we
have

Lj = −L̃j − F̃j − F̃ 1
j T1 + O(T 2

1 ), (4.41)

where, as before, L̃ = (T1 − T −1
1 )−1L∗(T1 − T −1

1 ). If fij are coefficients of L̃ in
(4.31), then

L̃j = −
j−1∑

i=−∞
T −i

1 · fij · (T1 − T −1
1 ). (4.42)

Hence

F̃j = t1Fj = f1,j − t1f−1,j , F̃ 1
j = t2

1F
1
j = f2,j − t2f−2,j . (4.43)

In order to proceed, we now need the following statement.
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LEMMA 4.6
If (4.28) is satisfied, then the equation

[H, L̃] ≡ 0 mod O−
H (4.44)

holds.

Proof
We prove the lemma by inverting the arguments used above in the proof of Lemma
3.2. First, for a pair of operators L and H satisfying (4.28), we introduce a formal
solution ψ = ψnm of equations

Lψ = kψ, Hψ = 0 (4.45)

of the form

ψnm = kn
( ∞∑

s=0

ξs(n, m)k−s
)
. (4.46)

Substitution of (4.46) into (4.45) gives a system of difference equations, which recur-
sively define ξs . They have the form

(T2 ξs+1) − u ξs+1 = ξs − u (T2 ξs), v0 (T1 ξs+1) − ξs+1 = R̃s, (4.47)

where R̃s are explicit expressions linear in the coefficients vr of L and difference
polynomial in ξr, r < s. If u, v0 are of the form (4.29), then the first equation for
s = −1 is satisfied by

ξ0 = t−1
1 τ

τ
. (4.48)

The compatibility condition of equations (4.47) is equivalent to (4.28). These equations
uniquely define ξs+1 for all (n, m) if the initial data ξs+1(0, 0) for (4.47) is fixed.
Therefore, the solution ψ is unique up to multiplication by an (n, m)-independent
Laurent series in the variable k.

The function ψ defines a unique operator � of the form (4.14) such that equation
(4.15) holds (with ti = 0). Now we define a formal series

ψσ = k−n
( ∞∑

s=0

ξσ
s (n, m)k−s

)
, ξσ

0 = t1τ

τ
(4.49)

by the formula

ψσ = (
(T1 − T −1

1 ) �−1(T1 − T −1
1 )−1

)∗
k−n. (4.50)
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This formal series is an eigenfunction of the operator L̃; that is, L̃ψσ = kψσ .
Therefore, in order to prove (4.44), it is sufficient to prove that Hψσ = 0.

From equations (4.29) and (4.48), it follows that

ψ̃σ := Hψσ = k−n
( ∞∑

s=1

ξ̃ σ (n, m)k−s
)
. (4.51)

Hence, to prove that ψ̃σ = 0, it is enough to show that

[
ψ̃σ (T j

1 ψ)
]

R
:= resk

( ψ̃σ (T j

1 ψ) dk

k2 − 1

)
= 0, ∀j ≥ 2. (4.52)

From the definition of ψσ , it follows that

[ψσ (t2j

1 ψ)]R = 0, [ψσ (t2j+1
1 ψ)]R = 1, j ≥ 0 (4.53)

(compare to (4.12), (4.13)). Using the equation Hψ = 0, we get

t2

[
ψσ t2jψ

]
R

= (t2j−1
1 u)

[
t2ψ

σ t2j−1ψ)
]
R

− (t2j−1
1 u) t2

[
ψσ t2j−1ψ

]
R

+ [
t2ψ

σ t2j−1
]
R

. (4.54)

Then, by induction, it is easy to show that (4.53) and (4.54) imply that

[
t2ψ

σ t2j+2ψ
]
R

= 1 −
2j+1∏
i=0

(ti1u)−1,
[
t2ψ

σ t2j+1ψ
]
R

=
2j∏
i=0

(ti1u)−1, j ≥ 0.

(4.55)
Direct substitution of (4.55) into (4.52) completes the proof of the lemma. �

Now we compute both sides of (4.36):

T2 ≡ 1

u
+

(
1 − 1

ut1u

)
T 1

1 + O(T 2
1 ) mod O−

H . (4.56)

Equations (4.41) and (4.44) imply that [Lj, H ] = H (F̃j + F̃ 1
j T1 + O(T 2

1 )) ∈ O−
H .

Therefore, the operator D1 in (4.36) has no negative powers of T1, and hence, it is
indeed of the form bjT1 + cj .

Straightforward computations of the first two coefficients of [Lj, H ] give the
following formulas:

cj − aj

u
= F̃j − t2F̃j , (4.57)

(
1− 1

ut1u

)
aj−bj= 1

t1u

(
t1t2F̃j+(ut1u − 1)t2F̃j − (ut1u) t1F̃j − t1uF̃ 1

j + u t2F̃
1
j

)
.

(4.58)
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From (4.39), (4.43), and (4.57), we get the equations

cju = (aj − bj ), (4.59)

and then

cj (ut1u − 1) = t1t2F̃j + ut1u
(
t2F̃j − t1F̃j

) − t1uF̃ 1
j + u t2F̃

1
j − F̃j . (4.60)

In order to complete the proof of (b), it is enough now to show that the right-hand side
of (4.60) is zero. For that we need the following.

LEMMA 4.7
The equations

F̃ := −k + (k2 − 1)
∞∑

j=1

F̃j k−j−1 = (t1ψ
σ )ψ − ψσ (t1ψ), (4.61)

F̃ 1 := − (t1τ )2

τ t2τ
k2 + (k2 − 1)

∞∑
j=1

F̃ 1
j k−j−1 = ψσ (t2

1ψ) − (t2
1ψ

σ )ψ (4.62)

hold.

Proof
The expression for the leading coefficients of F̃ and F̃ 1 follows from (4.48) and
(4.50). In order to prove (4.61), we need to show that

F̃j = resk

(
[(t1ψ

σ )ψ − ψσ (t1ψ)]
kjdk

k2 − 1

)

= resk

( [
(T1ψ

σ )(Ljψ) − ψσ (T1L
jψ)

] dk

k2 − 1

)
. (4.63)

From (4.50), using the relation (4.17), we see that the right-hand side of (4.64) is equal
to

resT

(
(LjT −1

1 − T1L
j )(T1 − T −1

1 )−1
) = f1,j − t1f−1,j , (4.64)

which proves (4.61). The proof of (4.62) is identical. �

From (4.61) and the equation Hψ = 0, it follows that

t2F̃ = −A
{
(t2ψ

σ (ut1ψ − ut2ψ + ψ)
} = −A

{
(t2ψ

σ (ut1ψ + ψ)
}
. (4.65)

Here and below, A{·} stands for the antisymmetrization of the corresponding expres-
sion with respect to the interchange of ψσ and ψ .
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In the same way, we get

t1t2F̃ = −A
{
(ut1ψ

σ − ut2ψ
s + ψσ )t2

1t2ψ
}

= −(ut1u)t1A
{
ψσ (t1ψ − t2ψ)

} − ut2F̃
1

−A
{
ψσ (t1(ut1ψ − ut2ψ + ψ)

}
.

Further direct use of the equation Hψ = 0 and (4.65) finally gives the equation

t1t2F̃ + ut1u
(
t1F̃ − t2F̃

) − t1uF̃ 1 + u t2F̃
1 − F̃ = 0. (4.66)

The proof of (b) is complete. The comparison of the coefficients at T1 in the left- and
right-hand sides of (4.32) gives

∂tj ln u = bj = t2F̃j − F̃j . (4.67)

We now proceed to prove (c) and to derive the evolution equation for τ . The left
and right actions of pseudodifference operators are formally adjoint; that is, for any two
operators the equality (k−nD1)(D2k

n) = k−n(D1D2k
n)+ (T1 −1)(k−n(D3k

n)) holds.
Here D3 is a pseudodifference operator whose coefficients are difference polynomials
in the coefficients of D1 and D2. Therefore, from (4.61) and (4.50), it follows that

F̃ 0 = −k − (T1 − 1)
(

(k2 − 1)
∞∑

s=2

Qjk
−j

)
, (4.68)

where the coefficients of the series Q are difference polynomials in the coefficients of
the wave operator �. Equation (4.68) implies that

F̃j = (1 − T1)Qj = Qj − t1Qj. (4.69)

Taking into account the ansatz (4.29), we see that equations (4.35) and (4.69) are
equivalent to one equation for the function τ

∂tj ln τ = Qj. (4.70)

Remark 4.8
It is necessary to mention that the Qj are defined only up to an additive term that is
invariant under T1. This ambiguity reflects the fact that the ansatz (4.29) is invariant
under the transformation

τ (n, m) �−→ f (m)τ (n, m),

where f (m) is an arbitrary function.
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Equation (4.70) completes the proof of the statement that equations (4.32) are well
defined. The proof of the statement that the corresponding flows on S commute with
each other is standard. �

5. Bloch (quasi-periodic) wave solutions
We begin by proving the implication (A) ⇒ (C) in the main theorem. As mentioned
above, this does not require the knowledge of the explicit theta-functional form of the
function ψ . An implication of this kind was proved for the first time in [2].

Throughout this section, ν = 0, 1 and is considered as an element of the group
Z2 = Z/2Z.

LEMMA 5.1
Let V ∈ Cd , and let τ ν

n (z) for n ∈ N, ν ∈ Z2 be two sequences of holomorphic
functions on Cd such that each divisor T ν

n := {z ∈ Cd : τ ν
n (z) = 0} is not invariant

as a set under the shift by V ; that is, T ν
n �= T ν

n + V . Suppose that the system of
equations (considered as a joint system for ν = 0 and ν = 1, intertwining ψ0 and
ψ1)

ψν
n+1(z + V ) − uν

n(z)
(
ψν+1

n+1 (z) − ψν+1
n (z + V )

) − ψν
n (z) = 0, (5.1)

where for some constant C ∈ C

uν
n(z) = C

τν+1
n+1 (z) τ ν+1

n (z + V )

τ ν
n+1(z + V ) τ ν

n (z)
, (5.2)

has solutions ψν
n of the form

ψν
n (z) = αν

n(z)

τ ν
n (z)

, (5.3)

where α ν
n is a holomorphic function. Then the equation

τ ν+1
n+1 (zν

n) τ ν+1
n (zν

n + V ) τ ν
n−1(zν

n − V ) + τ ν
n+1(zν

n + V ) τ ν+1
n (zν

n − V ) τ ν+1
n−1 (zν

n)

= (
τ ν+1
n+1 (zν

n) τ ν+1
n (zν

n − V ) τ ν
n−1(zν

n + V ) + τ ν
n+1(zν

n − V ) τ ν+1
n

× (zν
n + V ) τ ν+1

n−1 (zν
n)

)
C 2 (5.4)

is valid for all n, ν, and for any point zν
n ∈ T ν

n .

Proof
Let I ν

n (z) be the left-hand side of (5.1). A priori, it may have poles at the divisors T ν
n

and T ν
n+1 − V . The vanishing of the residue of I ν

n at T ν
n implies that

ψν+1
n+1 (zν

n) − ψν+1
n (zν

n + V ) = −αν
n(zν

n)
τ ν
n+1(zν

n + V )

τ ν+1
n+1 (zν

n)τ ν+1
n (zν

n + V )
C−1, (5.5)
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while the vanishing of the residue of I ν
n−1 at T ν

n−1 − V implies that

ψν+1
n (zν

n − V ) − ψν+1
n−1 (zν

n) = αν
n(zν

n)
τ ν
n−1(zν

n − V )

τ ν+1
n (zν

n − V )τ ν+1
n−1 (zν

n)
C−1. (5.6)

On the other hand, the evaluation of I ν+1
n at the divisor T ν

n − V implies that

ψν+1
n+1 (zν

n) − ψν+1
n (zν

n − V ) = −αν
n(zν

n)
τ ν
n+1(zν

n − V )

τ ν+1
n+1 (zν

n)τ ν+1
n (zν

n − V )
C, (5.7)

while the evaluation of I ν+1
n−1 at the divisor T ν

n implies that

ψν+1
n (zν

n + V ) − ψν+1
n−1 (zν

n) = αν
n(zν

n)
τ ν
n−1(zν

n + V )

τ ν+1
n (zν

n + V )τ ν+1
n−1 (zν

n)
C. (5.8)

The left-hand side of the difference of (5.5) and (5.6) is the same as that of the
difference of (5.7) and (5.8); equating the right-hand sides of these differences yields
(5.4). �

Formulation (A) of our main theorem implies that the assumption of Lemma 5.1 is
satisfied for C = c3, z ∈ Cg and that

τ ν
n (z) = θ (Un + (1 − ν)W + z) (c( l, z)

1 cn
2)ν−1/2, (5.9)

where l ∈ Cg is a vector such that (l, V ) = 1. Then from (5.4) for ν = 0, we get on
the divisor T 0

0 (that is, for θ(Z) = θ(z + W ) = 0),

τ 1
1 (z) τ 1

0 (z + V ) τ 0
−1(z − V ) + τ 0

1 (z + V ) τ 1
0 (z − V ) τ 1

−1(z)

= c2
3

(
τ 1

1 (z) τ 1
0 (z − V ) τ 0

−1(z + V ) + τ 0
1 (z − V ) τ 1

0 (z + V ) τ 0
−1(z)

)
, (5.10)

which, after substituting (5.9) and canceling the common factors, yields

c2
1c

2
2 θ(Z + U − W ) θ(Z + V − W ) θ(Z − U − V )

+ θ(Z + U + V ) θ(Z − V − W ) θ(Z − U − W )

= c2
2c

2
3 θ(Z + U − W ) θ(Z − V − W ) θ(Z + V − U )

+ c2
1c

2
3 θ(Z − V + U ) θ(Z + V − W ) θ(Z − U − W ), (5.11)

which is identical to equation (2.6) with the minus sign chosen for W (and, corre-
spondingly, the constants c1 and c2 appearing in positive power). Similarly, the case
of ν = 1, n = 0 of formula (5.4) yields the plus-sign case of (2.6). The implication
that (A) ⇒ (C) in the main theorem is thus proved.
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We now show that (C) can also be obtained as a corollary of a more general fourth
order relation for Prym theta functions. As mentioned above, it was proved in [8] that
equation (2.1) implies the five-term equation (3.26). Note that all pairs of indices have
sums of the same parity; that is, equation (3.26) is in fact a pair of equations on two
functions ψ defined on two sublattices of the variables (n, m).

The statement that ψn,m satisfy (3.26) can be proved directly. Indeed, all the
functions involved in the equation are in

H 0
(
D + (n + 1)P +

1 − (n − 1)P −
1 + (m + 1)P +

2 − (m − 1)P −
2 + ν(P +

3 − P −
3 )

)
.

By the Riemann-Roch theorem, the dimension of the latter space is 4. Hence, any five
elements of this space are linearly dependent, and it remains to find the coefficients of
(3.26) by a comparison of singular terms at the points P ±

1 , P ±
2 . For n+m = 0 mod 2,

we get

ãn,m = c2
1c

2
3

θ(Zn,m + V ) θ(Zn,m + U − V + W )

θ(Zn,m − V ) θ(Zn,m + U + V + W )
,

b̃n,m = c2
2c

2
3

θ(Zn,m + U ) θ(Zn,m − U + V + W )

θ(Zn,m − U ) θ(Zn,m + U + V + W )
,

c̃nm = c2
1c

2
2

θ(Zn,m + U ) θ(Zn,m + V ) θ(Zn,m − U − V + W )

θ(Zn,m − U ) θ(Zn,m − V ) θ(Zn,m + U + V + W )
, (5.12)

where Zn,m = Z + Un + V m. From the normalization of ψn,m, it follows that

d̃nm = 1 − ãn,m − b̃n,m + c̃n,m. (5.13)

Substituting (3.23), (5.12), and (5.13) here proves the following statement.

PROPOSITION 5.2
For any four points A, U, V, W on the image � ↪→ P (�) and for any Z ∈ P (�),
the following equation holds:

θ(Z + W ) × [θ(A + U + V + Z) θ(Z − U ) θ(Z − V )

− c2
1c

2
3 θ(A + U − V + Z) θ(Z − U ) θ(Z + V )

− c2
2c

2
3 θ(A − U + V + Z) θ(Z + U ) θ(Z − V )

+ c2
1c

2
2 θ(A − U − V + Z) θ(Z + U ) θ(Z + V )]

= θ(A + Z) × [θ(W + U + V + Z) θ(Z − U ) θ(Z − V )

− c2
1c

2
3 θ(W + U − V + Z) θ(Z − U ) θ(Z + V )

− c2
2c

2
3 θ(W − U + V + Z) θ(Z + U ) θ(Z − V )

+ c2
1c

2
2 θ(W − U − V + Z) θ(Z + U ) θ(Z + V )]. (5.14)
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To the best of our knowledge, equation (5.14) is a new identity for Prym theta functions.
For Z such that θ(W + Z) = 0, it is equivalent to equation (2.6) with the minus sign
chosen. The second equation of the pair (2.6) can be obtained from (3.26) considered
for the odd case (i.e., for n + m = 1 mod 2). Using theta-functional formulas, it can
be shown using (3.26) that equation (5.14) is equivalent to (2.1).

Wave solutions
In Section 2, we proved that if θ(Z) is the Prym theta function, then equation (2.1)
with u as in (2.2) has not just one solution ψ of the form (2.4), but a family of solutions
parameterized by points A in the image � −→ P (�) under the Abel-Prym map. Note,
however, that formulation (C) of the main theorem does not involve (A). The first step
in proving the only if part of (C) (and thus also of (A) and (B), which imply (C)) is
to introduce a spectral parameter in the problem, that is, to show that equations (2.6)
are sufficient for the existence of certain formal solutions of equations (5.1). These
solutions are functions of the form

ψν
n (z) = knC(l,z) φν

n(z, k), (5.15)

where k−1 is a formal parameter (eventually to be identified with the local coordinate
on the curve), φν

n(z, k) is a regular series in k−1; that is,

φν
n(z, k) =

∞∑
s=0

ξν
n, s(z)k−s, (5.16)

and l ∈ Cd is such that (l, V ) = 1.
The ultimate goal of this section is to show that such solutions exist with ξν

n,s being
holomorphic functions of z ∈ Cg defined outside the divisor θ(z+Un+ (1−ν)W ) =
0.∗ As we see below, an obstruction for the existence of such solutions is the “bad
locus.”

� := � 0 ∪ �1,

where �ν is the V -invariant subvariety of the divisor � + (ν − 1)W that is not
U -invariant; that is,

�ν :=
{
Z ∈ X :

∀n ∈ Z θ(Z + nV + (1 − ν)W ) = 0;
∃n ∈ Z θ(Z + U + nV + (1 − ν)W ) �= 0

}
. (5.17)

∗In [17], [18], [19] the corresponding solutions were called λ-periodic, reflecting the normalization leading to
their definition. The idea of that normalization goes back to [21].
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We prove in Lemma 5.10 that the bad locus is empty, but until then we construct wave
solutions with the desired properties only along certain affine subspaces of Cg; then
we patch these together.†

Notation
Denote by π : Cg → X = Cg/� the universal cover map for X. Let Y be the
Zariski closure of the group 〈ZV 〉 ⊂ X. As an abelian subvariety, it is generated by
its irreducible component Y 0, containing zero, and by the point V0 of finite order in
X, such that V − V0 ∈ Y 0, NV0 = λ0 ∈ �. Shifting Y if needed, we may assume,
without loss of generality, that zero is not in the bad locus �. Since any subset of Y

that is invariant under the shift by V is dense in Y , this implies that Y ∩ � = ∅.
We denote C := π−1(Y ). Then C is a union of its connected component passing

through zero (which is a linear subspace V ∼= Cd ⊂ Cg) and shifts by a preimage
of a vector of finite order; that is, we have C = ∪r∈Z(V + rV0). Denoting then
�0 := � ∩ C , we have Y = C/�0, and we can also write �0 = �̃0 + ZV0, where
�̃0 := � ∩ V.

In what follows, we assume that τ ν
n (z) are holomorphic functions of the variable

z ∈ C that do not vanish identically and have the following factors of automorphy
with respect to �0:

τ ν
n (z + λ) = τ ν

n (z) e(z, αλ)+nβλ+wν
λ , (5.18)

where αλ, β
ν
λ are independent of n, and we define for further use

bν
λ := eβλ+wν

λ−wν+1
λ . (5.19)

This means that uν
n(z) given by (5.2) is a section of some degree zero line bundle on

Y .

PROPOSITION 5.3
Suppose that equation (5.4) for τ ν

n (z) holds. Then equations (5.1) with potentials uν
n(z)

given by (5.2) have wave solutions of the form (5.15) such that
(i) the coefficients ξν

n, s(z) of the formal series φν
n(z, k) are meromorphic functions

of the variable z ∈ C with a simple pole at the divisor T ν
n ,

ξν
n, s(z) = τ ν+1

n,s (z)

τ ν
n (z)

, (5.20)

†The locus � is an analog of singular locus considered in [28]. We are grateful to Enrico Arbarello for an
explanation of its crucial role, which helped us focus on the heart of the problem.
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where τ ν+1
n,s (z) is a holomorphic function (the shift from ν to ν + 1 is only for

notational ease to simplify further formulas), and

τ ν
n,0(z) = τ ν

n−1(z); (5.21)

(ii) each of the individual terms in the power series expansion of φ have the follow-
ing automorphy properties (note we are not yet making any claims regarding
φ as a whole):

bν
λξ

ν
n,s(z + λ) − ξν

n,s(z) =
s∑

i=1

Bλ
i,n−s+iξ

ν
n,s−i(z) (5.22)

for any λ ∈ �0 (notice that the coefficients depend on i and in a sort of diagonal
way on n, but do not depend on ν, which is important for future computations).

Proof
Writing down the equation for ψ in terms of the power series expansions in k−s and
equating coefficient of k−s to zero (i.e., substituting (5.2), (5.15), (5.16) into (5.1))
yields

C ξν
n+1, s+1(z + V ) − uν

n(z)
(
ξν+1
n+1, s+1(z) − C ξν+1

n, s (z + V )
) + ξν

n,s(z) = 0. (5.23)

For s = −1, equation (5.23) is satisfied with τ ν
n,0 given by (5.21), that is, with

ξν
n, 0(z) = τ ν+1

n−1 (z)

τ ν
n (z)

. (5.24)

We now prove the lemma by induction in s. Let us assume inductively that for
r ≤ s − 1 the functions ξν

n,r (z) are known for all n and ν and satisfy the quasi-
periodicity condition (5.22) above (it is customary in the subject to call such solutions
Bloch solutions or Bloch functions).

The idea of the proof of the inductive step is as follows. We write down the
equation relating τ ν

n+1,s+1 (we are using n + 1 instead of n solely for the ease of
notation; recall that the inductive assumption is for all n) to the τ for smaller values
of s (which we know inductively to exist and be holomorphic). From this equation we
then get an explicit formula for τ ν

n+1,s+1 on the divisor T ν
n (i.e., for τ ν

n (z) = 0). We
also get an explicit formula for τ ν

n+1,s+1 for z such that τ ν
n (z + V ) = 0, which after

translating the argument gives another formula for τ ν
n+1,s+1 on the divisor T ν

n . Once
we verify that the two resulting formulas agree (this is a hard computation using the
step of the induction), it follows that τ ν

n+1,s+1 restricted to T ν
n is in fact holomorphic,

and thus can be extended from this divisor holomorphically to Cd . We now give the
details of this argument.
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Writing down equation (5.23) in terms of τ ’s for arbitrary s and clearing denom-
inators yields

Cτν+1
n+1,s+1(z + V )τ ν

n (z) − Cτν+1
n (z + V )τ ν

n+1,s+1(z) − C2τ ν
n,s(z + V )τ ν+1

n+1 (z)

+ τ ν
n+1(z + V )τ ν+1

n,s (z) = 0. (5.25)

These equations can be easily solved on the divisor T ν
n . Indeed, if we take z = zν

n ∈ T ν
n

here, the first term vanishes and we get the following formula:

Cτν
n+1,s+1(zν

n) = τ ν+1
n,s (zν

n)τ ν
n+1(zν

n + V ) − C2τ ν
n,s(z

ν
n + V )τ ν+1

n+1 (zν
n)

τ ν+1
n (zν

n + V )
. (5.26)

Alternatively, using equation (5.25) for ν + 1 instead of ν and setting z = zν
n − V , for

zν
n ∈ T ν

n as above, we get

Cτν
n+1,s+1(zν

n) = τ ν+1
n,s (zν

n)τ ν
n+1(zν

n − V ) − C2τ ν
n,s(z

ν
n − V )τ ν+1

n+1 (zν
n)

τ ν+1
n (zν

n − V )
. (5.27)

For τ ν
n+1,s+1 to have a chance to exist, these two expressions must agree.

LEMMA 5.4
If the inductive assumption (and the conditions of the proposition, in particular formula
(5.4)) is satisfied for s, then the two expressions above for the function τ ν

n+1,s+1(z)
restricted to the divisor T ν

n are equal.

Proof
Equating the two expressions obtained for τ ν

n+1,s+1 on T ν
n , we see that what we need

to prove is the following identity:

τ ν+1
n,s (zν

n)τ ν
n+1(zν

n − V )τ ν+1
n (zν

n + V ) − C2τ ν
n,s(z

ν
n − V )τ ν+1

n+1 (zν
n)τ ν+1

n (zν
n + V )

= τ ν+1
n,s (zν

n)τ ν
n+1(zν

n + V )τ ν+1
n (zν

n − V ) − C2τ ν
n,s(z

ν
n + V )τ ν+1

n+1 (zν
n)τ ν+1

n (zν
n − V ).

(5.28)

To prove that this is the case, we use the inductive assumption for n − 1, s − 1, and
equation (5.4). Indeed, for n − 1, s − 1, equation (5.25) reads

Cτν+1
n,s (z + V )τ ν

n−1(z) − Cτν+1
n−1 (z + V )τ ν

n,s(z)

−C2τ ν
n−1,s−1(z + V )τ ν+1

n (z) + τ ν
n (z + V )τ ν+1

n−1,s−1(z) = 0.
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By the inductive assumption, we know that this is satisfied. If we now take z = zν
n−V ,

that is, set τ ν
n (z + V ) = 0 here, we get

C2τ ν
n−1,s−1(zν

n) = Cτν+1
n,s (zν

n)τ ν
n−1(zν

n − V ) − Cτν+1
n−1 (zν

n)τ ν
n,s(z

ν
n − V )

τ ν+1
n (zν

n − V )
.

Similarly, if we instead take the equation with ν + 1 instead of ν, and take z = zν
n, we

get

τ ν
n−1,s−1(zν

n) = Cτν
n−1(zν

n + V )τ ν+1
n,s (zν

n) − Cτν
n,s(z

ν
n + V )τ ν+1

n−1 (zν
n)

τ ν+1
n (zν

n + V )
.

Since we inductively assumed the existence and uniqueness of τ ν
n−1,s−1, these two

expressions must agree, which is to say that we have the following identity:

τ ν+1
n,s (zν

n)τ ν
n−1(zν

n − V )τ ν+1
n (zν

n + V ) − τ ν
n,s(z

ν
n − V )τ ν+1

n−1 (zν
n)τ ν+1

n (zν
n + V )

= C2τ ν+1
n,s (zν

n)τ ν
n−1(zν

n + V )τ ν+1
n (zν

n − V ) − C2τ ν
n,s(z

ν
n + V )τ ν+1

n−1 (zν
n)τ ν+1

n (zν
n − V ).

(5.29)

Notice now how similar this known identity is to formula (5.28) that we need to
prove. Indeed, the coefficient of τ ν+1

n,s (zν
n) in (5.28) is equal to

τ ν
n+1(zν

n − V )τ ν+1
n (zν

n + V ) − τ ν
n+1(zν

n + V )τ ν+1
n (zν

n − V ).

Now using formula (5.4), which we know holds for τ , we see that this coefficient is
equal to

(
τ ν+1
n (zν

n − V )τ ν
n−1(zν

n + V ) − τ ν+1
n (zν

n + V )τ ν
n−1(zν

n − V )
) τ ν+1

n+1 (zν
n)

τ ν+1
n−1 (zν

n)
. (5.30)

Substituting this expression into (5.28) is equivalent to the identity

τ ν+1
n,s (zν

n)
τ ν+1
n+1 (zν

n)

τ ν+1
n−1 (zν

n)

(
τ ν+1
n (zν

n − V )τ ν
n−1(zν

n + V ) − C2τ ν+1
n (zν

n + V )τ ν
n−1(zν

n − V )
)

= τ ν
n,s(z

ν
n − V )τ ν+1

n+1 (zν
n)τ ν+1

n (zν
n + V ) − C2τ ν

n,s(z
ν
n + V )τ ν+1

n+1 (zν
n)τ ν+1

n (zν
n − V ).

(5.31)

Multiplying this identity by τ ν+1
n−1 (zν

n)/τ ν+1
n+1 (zν

n) yields formula (5.29), which we in-
ductively know to hold. Thus formula (5.28) holds, and the lemma is proved. �
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LEMMA 5.5
The function τ ν

n+1,s+1(zν
n) given by (5.26) and (5.27) can be extended to a holomorphic

function on the entire divisor T ν
n .

Proof
The expression (5.26) for τ ν

n+1,s+1(zν
n) is certainly holomorphic when τ ν+1

n (zν
n + V ) is

nonzero, that is, is holomorphic outside of T ν
n ∩ (T ν+1

n −V ). Similarly, the expression
for τ ν

n+1,s+1 given by formula (5.27) is holomorphic away from T ν
n ∩ (T ν+1

n + V ).
We have assumed that the closure of the abelian subgroup generated by V is

everywhere dense. Thus for any zν
n ∈ T ν

n , there must exist some N ∈ N such that
zν

n + (N + 1)V �∈ T ν+1
n ; let N moreover be the minimal such N . From (5.26), it then

follows that τ ν
n+1,s+1 can be extended holomorphically to the point zν

n +NV . However,
by Lemma 5.4 we know that the expressions (5.27) and (5.26) agree. Thus expression
(5.27) must also be holomorphic at zν

n + NV ; since its denominator there vanishes, it
means that the numerator must also vanish; that is, we must have

Cτν+1
n,s (zν

n + NV )τ ν
n+1(zν

n + (N − 1)V ) − τ ν
n,s(z

ν
n + (N − 1)V )τ ν+1

n+1 (zν
n + NV ) = 0.

But this expression is equal to the numerator of (5.26) at zν
n + (N − 1)V ; thus τ ν

n+1,s+1

defined from (5.26) is also holomorphic at zν
n + (N − 1)V (the numerator vanishes,

and the vanishing order of the denominator is one, since we are talking exactly about
points on its vanishing divisor). Thus unless N = 0, we have a contradiction, since N

was chosen minimal. For N = 0, however, zν
n + V �∈ T ν+1

n , and thus (5.26) defines
τ ν
n+1,s+1 holomorphically at zν

n. �

Recall now that an analytic function on an analytic divisor in Cd has a holomorphic
extension to all of Cd (see [27]). Therefore, there exists a holomorphic function
τ̃ ν
n+1,s+1(z) extending the function given on the divisor T ν

n by the right-hand side of
(5.26) (by Lemma 5.5, it is holomorphic, and thus the extension is holomorphic).
It is then natural to attempt to use the function ξ̃ ν

n+1,s+1 := τ̃ ν+1
n+1,s+1/τ

ν
n+1 for the

proposition, but this cannot be done immediately, as such an extension does not need
to be quasi-periodic, nor is it going to be a solution of equation (5.23). We thus need
to adjust this extension appropriately.

We start by determining the quasi-periodicity properties; indeed, for zν+1
n ∈ T ν+1

n ,
where we know that τ̃ ν+1

n+1,s+1 is given by (5.26), we have

ξ̃ ν
n+1,s+1(zν+1

n ) = −Cξν
n,s(z

ν+1
n + V ) + τ ν

n,s(z
ν+1
n )τ ν+1

n+1 (zν+1
n + V )

τ ν
n (zν+1

n + V )τ ν
n+1(zν+1

n )
, (5.32)
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from which by using the quasi periodicity of τn (5.18) and that of τn,s (5.22), it follows
that

bν
λξ̃

ν
n+1,s+1(zν+1

n + λ) = −C
(
ξν
n,s(z

ν+1
n + V ) −

s∑
i=1

Bν
i,n−s+iξ

ν
n,s−i(z

ν+1
n + V )

)

+
(τ ν

n,s(z
ν+1
n ) +

s∑
i=1

Bλ
i,n−s+iτ

ν
n,s−i(z

ν+1
n ))τ ν+1

n+1 (zν+1
n + V )

τ ν
n (zν+1

n + V )τ ν
n+1(zν+1

n )
,

(5.33)

since the e(2z+V,αλ)+(2n+1)βλ factors for the second term of (5.32) coming from (5.18)
cancel in the numerator and denominator, and the remaining e2ων+1

λ −2ων
λ cancels with

bν
λ/b

ν+1
λ . We now note that the terms in the right-hand side split in pairs similar to

those in (5.32) and we can thus simplify this to get

0 = bν
λξ̃

ν
n+1,s+1(zν+1

n + λ) − ξ̃ ν
n+1,s+1(zν+1

n ) −
s∑

i=1

Bλ
i,n−s+iξ

ν
n+1,s+1−i(z

ν+1
n ). (5.34)

This says that the function on the right-hand side here (denote it by g
λ,ν
n+1,s+1(z))

vanishes for z = zν+1
n ∈ T ν+1

n and has a pole for z ∈ T ν
n+1. Using formula (5.24) for

ξν
n,0, we can then write

g
λ,ν
n+1,s+1(z) = f

λ,ν
n+1,s+1(z)ξν

n+1,0(z),

where f
λ,ν
n+1,s+1(z) is now holomorphic and satisfies the twisted homomorphism rela-

tions

f
λ+μ,ν

n+1,s+1(z) = f
λ,ν
n+1,s+1(z + μ) + f

μ,ν

n+1,s+1(z). (5.35)

We only know the function ξ̃ to have the desired quasi periodicity on the divisor T ν+1
n ,

and would now like to adjust it so that the corrected function would have computable
quasi periodicity for all z. To achieve this, we need to add to ξ̃ a summand involving
f .

Indeed, f defines an element of the first cohomology group of �0 with coefficients
in the sheaf of holomorphic functions, f ∈ H 1

gr (�0, H
0(Cd, O)). Arguments identical

to that in the proof of part (b) in [28, Lemma 12] show that there must then exist a
holomorphic function hν

n+1,s+1(z) such that

f
λ,ν
n+1,s+1(z) = hν

n+1,s+1(z + λ) − hν
n+1,s+1(z) + E

λ, ν
n+1,s+1, (5.36)
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where E
λ, ν
n+1,s+1 is a (z-independent!) constant. By using equation (5.35), we observe

that E depends on λ linearly, that is, that

E
λ+μ,ν

n+1,s+1 = E
λ,ν
n+1,s+1 + E

μ,ν

n+1,s+1. (5.37)

We then define

ζ ν
n+1,s+1(z) := ξ̃ ν

n+1,s+1(z) − hν
n+1,s+1(z)ξν

n+1,0(z).

Using (5.24) and (5.18), we first compute

ξν
n+1,0(z + λ) = τ ν+1

n (z + λ)

τ ν
n+1(z + λ)

= eων+1
λ −ων

λ−βλ
τ ν+1
n (z)

τ ν
n+1(z)

= ξν
n+1,0(z)

bν
λ

(5.38)

and then compute the quasi periodicity

bν
λζ

ν
n+1,s+1(z + λ) − ζ ν

n+1,s+1(z)

= (
bν

λξ̃
ν
n+1,s+1(z + λ) − ξ̃ ν

n+1,s+1(z)
)

− bν
λh

λ,ν
n+1,s+1(z + λ)ξν

n+1,0(z + λ) + h
λ,ν
n+1,s+1(z)ξν

n+1,0(z)

=
(
g

λ,ν
n+1,s+1(z) +

s∑
i=1

Bλ
i,n−s+iξ

ν
n+1,s+1−i(z)

)

+ (
E

λ, ν
n+1,s+1 − f

λ,ν
n+1,s+1(z)

)
ξν
n+1,0(z)

= E
λ, ν
n+1,s+1ξ

ν
n+1,0(z) +

s∑
i=1

Bλ
i,n−s+iξ

ν
n+1,s+1−i(z). (5.39)

We have now constructed a function ζ having the correct quasi-periodicity properties
(although the first coefficient depends on ν, so we need to deal with this below) but we
still cannot take it to be the function ξν

n+1,s+1 that we are trying to define, as it may not
satisfy equation (5.23). We thus define R ν

n+1,s+1 to be the error obtained by plugging
ζ into (5.23):

R ν
n+1,s+1(z)ξν

n+1,0(z + V ) : = C ζν
n+1, s+1(z + V ) − uν

n(z)
(
ζ ν+1
n+1, s+1(z)

−C ξν+1
n, s (z + V )

) + ξν
n,s(z). (5.40)

Notice that for this to make sense we need to assume that we have been performing
all of the above computations simultaneously for ν and ν + 1, so that indeed both ζ ’s
above are defined at this point.

From Lemma 5.5, we know that the right-hand side of this formula has no pole at
T ν

n and vanishes at T ν+1
n −V , and thus we know that R ν

n+1,s+1 is a holomorphic function
of z. We can use (5.22) and (5.39) to compute the transformation properties of R under
a shift by a vector λ ∈ �0. Indeed, using (5.18) to compute bν

λu
ν
n(z +λ) = uν

n(z)bν+1
λ ,
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and using (5.38) for the left-hand side, we get, shifting by λ and multiplying by bν
λ

and subtracting the original function,(
R ν

n+1,s+1(z + λ) − R ν
n+1,s+1(z)

)
ξν
n+1,0(z + V )

= CE
λ, ν
n+1,s+1ξ

ν
n+1,0(z + V ) +

s∑
i=1

Bλ
i,n−s+iξ

ν
n+1,s+1−i(z + V )

−uν
n(z)

(
E

λ, ν+1
n+1,s+1ξ

ν+1
n+1,0(z) +

s∑
i=1

Bλ
i,n−s+iξ

ν+1
n+1,s+1−i(z)

−C

s∑
i=1

Bλ
i,n−s+iξ

ν+1
n,s−i(z + V )

)
+

s∑
i=1

Bλ
i,n−s+iξ

ν
n,s−i(z). (5.41)

Now note that for each constant Bλ
i,n−s+i in the above expression, the function it

multiplies is exactly the right-hand side of (5.23) for n and some j ≤ s and thus
vanishes identically (this uses in a crucial way the fact that B’s do not depend on ν).
Using formulas (5.2), (5.24) for uν

n and ξn+1,0, we get

R ν
n+1,s+1(z + λ) − R ν

n+1,s+1(z) = C(Eλ,ν
n+1,s+1 − E

λ,ν+1
n+1,s+1).

Moreover, by (5.37) we know that the E’s are linear functions of λ, that is,

E
λ,ν
n+1,s+1 − E

λ,ν+1
n+1,s+1 = 2�ν

n+1,s+1(λ)

for some linear function �; note that �ν
n+1,s+1(z) = −�ν+1

n+1,s+1(z). It then follows that
the difference R − 2� is periodic with respect to shifts by �0 and is thus constant; that
is, we have then Rν

n+1,s+1(z) = 2C�ν
n+1,s+1(z) + 2Aν . We can now introduce one last

correction and finally define

ξν
n+1,s+1(z) := ζ ν

n+1,s+1(z) − (
�ν

n+1,s+1(z − V/2) + Aν + l(z)
)
ξν
n+1,0(z), (5.42)

where l(z) is a linear function such that l(V ) = Aν + Aν+1. These functions are
solutions of (5.23); indeed, the new error term is equal to

Rν
n+1,s+1(z)ξν

n+1,0(z + V ) −(
�ν

n+1,s+1(z + V/2) + Aν + l(z + V )
)
ξν
n+1,0(z + V )

+uν
n(z)

(
�ν+1

n+1,s+1(z − V/2) + Aν+1 + l(z)
)
ξν+1
n+1,0(z)

= ξν
n+1,0(z + V )

(
Rν

n+1,s+1(z) − �ν
n+1,s+1(z + V/2)

−Aν − l(z + V ) + �ν+1
n+1,s+1(z − V/2) + Aν+1 + l(z)

)
= ξν

n+1,0(z + V )
(
2�ν

n+1,s+1(z) + 2Aν − �ν
n+1,s+1(z)

−Aν − l(V ) − �ν
n+1,s+1(z) + Aν+1

) = 0,

where we used definitions (5.2), (5.21) and the definitions of �, l, and A.
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We now need to check that the functions ξ satisfy the quasi-periodicity conditions
(5.22). From (5.38) and (5.39), it follows that

bν
λξ

ν
n+1,s+1(z + λ) − ξν

n+1,s+1(z) = (
E

λ,ν
n+1,s+1 − �ν

n+1,s+1(λ) − l(λ)
)
ξν
n+1,0(z)

+
s∑

i=1

Bν
i,n−s+iξ

ν
n+1,s+1−i(z),

which means that the function ξν
n+1,s+1 satisfies the quasi-periodicity condition (5.22)

if we take

Bλ
n+1,s+1 := E

λ,ν
n+1,s+1 − �ν

n+1,s+1(λ) − l(λ) = E
λ,ν
n+1,s+1 + E

λ,ν+1
n+1,s+1

2
− l(λ)

(notice that this does not depend on ν, as required in formula (5.22)). Observe that
the B we construct depends on the choice of the linear function l(λ). We have thus
constructed a quasi-periodic solution for s + 1 and proved the inductive step of the
proposition. �

COROLLARY 5.6
For ξν

n,s and ξν+1
n,s fixed, the solutions of (5.23), for both ν and ν + 1, are unique up to

the transformation

ξν
n+1,s+1(z) �−→ ξν

n+1,s+1(z) + (
c + l(z)

)
ξν
n+1,0(z), (5.43)

where c is a constant, and where l is a linear function on C such that l(V ) = 0 and
both c and l are independent of ν.

Proof
This follows by tracing the ambiguity of the choices involved in the proof of the above
lemma. Alternatively, one can prove this directly by investigating the quasi-periodicity
properties of the difference of two solutions of (5.23). �

To eliminate the freedom of choosing ξν
n+1,s+1, we would now like to fix the quasi-

periodicity condition to be the same for all n, and to be as simple as possible. Similarly
to the case of a nondegenerate trisecant treated in [19], there may be a problem here
in that the functions ξν

n,s may turn out to be periodic (in our case, by periodic we mean
bλj

ξ ν
n,s(z + λj ) = ξν

n,s(z)). Similarly to the situation in [19], note that the space of
periodic functions with a pole on the divisor T ν

n is the space of sections of some line
bundle, and thus finite-dimensional. Since all divisors T ν

n differ by shifts, there is an
upper bound on this dimension independent of n and ν.

It then follows that the functions ξν
n,s , for n fixed and for s and ν varying, are

linearly independent. Indeed, suppose that there were some linear relation among
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them, with the maximal value of s involved in this relation being equal to S. But then
solving equations (5.23) with ν and with ν + 1, allows one to express ξν

n,S in terms
of ξν

n−1,S−1 and ξν+1
n−1,S−1, and thus obtain a linear relation among the ξ ’s with index

n − 1, and with maximal s being equal to S − 1. By downward induction, we can get
to s = 0 and arrive at a contradiction with the fact that ξν

n,0 �= 0 and is not proportional
to ξν+1

n,0 . Note, moreover, that if for some s the function ξν
n,s is not periodic, this would

mean that some B is nonzero, and thus ξν
n,s+i could not be periodic for any i > 0,

as the term in (5.22) with this nonzero B would be linearly independent with all the
other terms on the right-hand side there.

LEMMA 5.7
Let λ0, λ1, . . . , λd be a set of C-linear independent vectors in �0. Suppose that
equation (5.23) has periodic solutions for i < r (and any n and ν), that is, that there
are some �ν

n,i(z) such that

bν
λj

�ν
n,i(z + λj ) − �ν

n,i(z) = 0

for all i < r, all n and ν, and such that �ν
n,0 = ξν

n,0 is given by (5.24). Suppose also
that there are quasi-periodic solutions �ν

n,r with

bν
λj

�ν
n,r (z + λj ) − �ν

n,r (z) = Ajξ
ν
n,0(z), ∀j = 0, . . . , d (5.44)

for all n, where Aj are some constants such that there does not exist a linear form l

on C with l(λj ) = Aj , and l(V ) = 0 (i.e., such that the scalar product of the vector
�A = (A1, . . . , Ad) and V is nonzero). Then for all s ≥ r , and all n and ν equations,
(5.23) has quasi-periodic solutions satisfying (5.22) with B

λj

i,n = Ajδi,r ; that is, there
exist functions ξν

n,s(z) for all s ≥ r and all n and ν such that

bν
λj

ξ ν
n,s(z + λj ) − ξν

n,s(z) = Ajξ
ν
n,s−r (z). (5.45)

(Note that we do not necessarily have ξν
n,i(z) = �ν

n,i(z) for i ≤ r , but they satisfy the
same quasi periodicity and solve the same equation (5.23).) Moreover, such ξν

n,s(z)
are unique up to adding cn,sξ

ν
n,0(z), with cn,s being a constant dependent only on the

remainder of n modulo r .

Proof
We prove the lemma by induction in s, starting with s = 0, with the inductive assump-
tion being that functions �ν

n,i satisfying (5.23) and the quasi-periodicity condition
(5.45) have been constructed for all n and ν and for all i ≤ r +s, that they are periodic
for i < r , and that, moreover, ξν

n,i(z) := �ν
n,i(z) for i ≤ s (so that the inductive

assumption for s = 0 is the assumption of the lemma).
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From (5.43) we know that there must exist solutions ξ̃ ν
n,s+r+1(z) of (5.23) for all

n and ν, with quasi periodicity

bν
λj

ξ̃ ν
n,s+r+1(z + λj ) = Aj�

ν
n,s+1(z) + B

λj

n,s+r+1ξ
ν
n,0(z), (5.46)

where B are some new constants. The idea now is that we adjust all the �ν
n,s+i for

0 < i ≤ r to another set of solutions of (5.23) with the same quasi periodicity, so that
�n,s+r+1 satisfying the quasi-periodicity condition (5.45) would exist.

Indeed, suppose we take ξν
n+1,s+1(z) := �ν

n+1,s+1(z) + cn+1,s+1ξ
ν
n+1,0(z) for some

constant cn+1,s+1, independent of ν (if we added l(z)ξν
n+1,0(z), the quasi periodicity of

ξν
n+1,s+1(z) would no longer be the same as that of �ν

n+1,s+1(z)). If we make such a
change, we also need to add something (call it f ν(z)), to �ν

n+2,s+2(z), so that (5.23) is
still satisfied. Since the �’s themselves satisfied (5.23), the corrections we introduce
must also satisfy it; that is, we must then have

Cf ν(z + V ) − uν
n+1(z)

(
f ν+1(z) − Ccn+1,s+1ξ

ν+1
n+1,0(z + V )

) + cn+1,s+1ξ
ν
n+1,0(z) = 0,

and the same for ν + 1. However, this is exactly the equation (5.23) that is satisfied
by cn+1�

ν
n+2,1(z), and thus it follows that f ν(z) = cn+1,s+1�

ν
n+2,1(z) would work.

Similarly, we need to add cn+1,s+1�
ν
n+i+1,i(z) to each �ν

n+i+1,s+i+1(z), so that all of the
equations (5.23) are satisfied. Finally, in this way we see that the necessary adjustment
of ξ̃ ν

n+r+1,s+r+1 is

�ν
n+r+1,s+r+1(z) := ξ̃ ν

n+r+1,s+r+1(z) + cn+1,s+1�
ν
n+r+1,r (z) + ln+r+1(z)ξν

n+r+1,0(z),

where we now need to allow the presence of a linear term to make the quasi periodicity
be (5.45) as desired. From (5.46) and (5.44) we can compute the quasi periodicity to
be

bν
λj

�ν
n+r+1,s+r+1(z + λj ) − �ν

n+r+1,s+r+1(z) = Aj�
ν
n+r+1,s+1(z)

+(
B

λj

n+r+1,s+r+1 + cn+1,s+1Aj + ln+r+1(λj )
)
ξν
n+r+1,0(z) = Ajξ

ν
n+r+1,s+1(z)

+(
B

λj

n+r+1,s+r+1 + (cn+1,s+1 − cn+r+1,s+1)Aj + ln+r+1(λj )
)
ξν
n+r+1,0(z).

For this to be the desired property (5.45), we must have

B
λj

n+r+1,s+r+1 + (cn+1,s+1 − cn+r+1,s+1)Aj + ln+r+1(λj ) = 0, ∀j = 0, . . . , d.

For fixed n, this is a system of linear equations for the difference of the constants
cn+1,s+1 − cn+r+1,s+1 and the coefficients of the linear form l. Recall that l can be
chosen arbitrarily such that l(V ) = 0; that is, if λ0 �= 0, then the coefficients of l

span the d-dimensional space, in which by assumption �A does not lie. Thus the rank
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of the matrix of coefficients is d + 1, and this system of d + 1 linear equations has a
unique solution. If λ0 = 0, then the dimension of the space of linear forms l is d , but
the periodicity condition for λ0 is trivially satisfied. The inductive assumption is thus
proved; note that as a result we are able to fix the differences cn+1,s+1 − cn+r+1,s+1,
and thus the constants only depend on the remainder of n modulo r . �

From local to global considerations
Up until this point we have only been working on C , under the assumption that
for all n the functions τ ν

n (z) do not vanish identically. For τ ν
n given by (5.9), this is

equivalent to the assumption that Un /∈ � for all n. We now observe that if a vector
Z ∈ Cg is such that Z + Un /∈ � for all n, then by the same arguments we can
construct wave solutions along the shifted affine subspaces Z +C ⊂ Cd . Since all the
constructions are explicitly analytic, if we perturb Z (while still staying away from
� − Un), the solutions constructed along Z + C will change holomorphically with
Z. Of course, such solutions can only be constructed locally, while globally there may
be a choice involved, and we may thus have a monodromy for this choice as we go
around � − Un. Thus, we cannot a priori expect ξn,s(Z + z) (for z ∈ C , Z ∈ Cg) to
be a global holomorphic function of Z.

Note that for fixed n the functions ξν
n+1,s+1(Z + z) exist if Z + nU /∈ �, and

ξν
n−i,s−i(Z + z) exist for 0 ≤ i ≤ s. We pass now from a local to a global setting. In

this setting, the recursive equation (5.23) takes the form

C ξν
s+1(Z + U + V ) − uν(Z) (ξν+1

s+1 (Z + U ) − C ξν+1
s (Z + V )) + ξν

s (Z) = 0 (5.47)

with

uν(Z) = C
τν+1(Z + U ) τ ν+1(Z + V )

τ ν(Z + U + V ) τ ν(Z)
, (5.48)

where

τ ν(Z) = θ
(
Z + (1 − ν)W

) (
c

( l1, Z)
1 c

(l2,Z)
2

)ν−(1/2)
(5.49)

and l1, l2 are vectors such that l1(V ) = l2(U ) = 1, l1(U ) = l2(V ) = 0. In these
notation the arguments in the proof of Proposition 5.3 yield the following.

PROPOSITION 5.8
If equations (2.6) are satisfied, then
(i) for Z /∈ ∪N

i=0(� − iU ), there exist functions τ ν
s (Z + z), 0 ≤ s ≤ N , which

are local holomorphic functions of Z and global holomorphic functions of
z ∈ C , such that equations (5.47) hold for ξν

s (Z) = τ ν+1
s (Z)/τ ν(Z), with

τ ν
0 (Z) = τ ν(Z − U ) (this is (5.24);
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(ii) the functions ξs satisfy the monodromy relations

bν
λξ

ν
s (Z + z + λ) − ξν

s (Z + z) =
s∑

i=1

Bλ
i (Z) ξν

s−i(Z + z), λ ∈ �0; (5.50)

(iii) if ξs−1 is fixed, then ξs is unique up to the transformation

ξs(z + Z) �−→ ξs(Z + z) + (
cs(Z) + ls(Z, z)

)
ξ0, (5.51)

where ls(Z, z) is a linear form in z such that ls(Z, V ) = 0.

LEMMA 5.9
Let r be the minimal integer such that ξν

1 , . . . , ξ ν
r−1 are periodic functions of z with

respect to �0, and such that there is no periodic solution ξν
r of (5.47). Then the

inductive assumptions of Lemma (5.7) are satisfied; that is, the quasi-periodicity
coefficients Bλ

i (Z) in (5.50) do not depend on Z or i − s.

Proof
By assumption, ξν

r−1(z) is periodic; that is, we have

0 = bν
λξ

ν
r−1(Z + z + λ) − ξν

r−1(Z + z) =
r−1∑
i=1

Bλ
i (Z) ξν

r−1−i(Z + z).

However, as noted above, the functions τ ν
s , for 0 ≤ s ≤ r −1, are linearly independent

(recall that if not, by applying (5.47) we could produce a linear dependence having
only one term, which is impossible), which means that all coefficients Bλ

i are zero for
all i ≤ r − 1. Thus the monodromy of the next function is given by

bν
λξ

ν
r (Z + z + λ) − ξν

r (Z + z) = Bλ
r (Z)ξν

0 (Z + z),

where we of course know ξν
0 explicitly, and Bλ

r is a local function of Z defined locally
for

Z ∈ X \
r−1⋃
i=0

(� − iV ).

From Lemma 5.8, we know that the only ambiguity in the choice of the solutions ξν
n,r (z)

is given by (5.51). Recall that adding a linear function multiple changes the equation
to be satisfied, while adding a constant multiple does not change the quasi-periodicity
properties, so that finally Bλ

r (Z) is independent of the ambiguity, and is well defined
as a holomorphic function of Z ∈ X′. Since the locus � ⊂ X is of codimension at
least 2, by Hartogs’s theorem the function Bλ

r (Z) can be extended holomorphically
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to all of X. Since X is compact, this means that Bλ
r (Z) is a constant, which we can

denote Aλ for the inductive assumption of Lemma 5.7. If we had �A · V = 0, then
by a transformation (5.43) with a suitable linear term we could get a new solution
with Aλi

= 0 for i = 0, . . . , d; that is, the function ξν
n,r (z) could be made periodic,

contradicting the way we chose r . �

LEMMA 5.10
In the setup of our construction, the “bad locus” � is actually empty; that is, if
equation (2.6) (part (C), the weakest assumption of our main theorem) is satisfied,
then � = ∅.

Proof
The proof of this lemma is analogous to the proof of the similar statement for the fully
discrete trisecant characterization of Jacobians treated in [19], once we first prove that
�0 = �1.

The only ambiguity in the definition of τ ν
1 (Z) is in the choice of the coefficient

c1 in (5.51). Suppose there exists a point A ∈ �0 \ �1, such that θ(A + NV ) �=
0 = θ(A + NV + W ) for some N . Then locally near the point A + NV , choose
some holomorphic branch of the function ξ 1

1 (Z) = τ 0
1 (Z)/τ 1(Z). Doing this fixes the

value of c1(Z) for all Z near A + NV . However, since the ambiguity in the choice of
ξ 0

1 (Z) = τ 1
1 (Z)/τ 0(Z) is given by the same function c1(Z) (which did not depend on

ν!), it means that for Z in a neighborhood of A + NV , but away from �0, we also
have a fixed choice of ξ 0

1 (Z), and thus also of the holomorphic function τ 1
1 (Z). Since

�0 has codimension at least 2 in X, the function τ 1
1 (Z) can thus be extended to all

points in a neighborhood of A, which is a contradiction. Thus we must have �0 ⊂ �1,
and of course, by symmetry, they are in fact equal.

We now prove in the same manner that � = � + rU ; above we used the fact
that in (5.51) c1 is independent of ν, and now we use c1(Z) = c1(Z + rU ). Indeed,
suppose we have A ∈ (� − rU ) \ �. This means that in a neighborhood of A, we
can choose a locally holomorphic function τ ν

1 (Z); that is, choose a local holomorphic
branch of c1(Z). However, since c1(Z) = c1(Z + rU ), this also fixes the choice of c1

in a neighborhood of the point A + rU , and thus in a neighborhood of A, outside of
� − rU , we have a holomorphic function τ ν

1 (Z + rU ), which now can be extended
across � − rU , and which we know to be of codimension at least two. This constructs
a solution τ ν

1 (A + rU ), which contradicts the assumption A ∈ (� − rU ).
Since by definition � has no subset invariant under a shift by U , this implies that

either � is empty, or r > 1. Suppose now that � is nonempty, so r > 1. Recall that
we have τ ν

0 (Z) = τ ν(Z − U ) = cθ(Z + (1 − ν)W − U ) for some constant c, and
thus since �0 = �1, we have τ ν

0 |�+U = 0. Thus for any Z ∈ � + U and for s = 1,
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the last two terms in (5.47) vanish, yielding

Cξν
1 (Z + U + V ) − uν(Z)ξν+1

1 (Z + U ) = 0.

However, this is exactly equation (5.47) for s = 0, which is solved by ξν
0 , and thus all

periodic with respect to �0 solutions are constant multiples of ξν
0 . By using (5.51),

we can subtract this constant and get a solution such that ξν
1 (Z + U ) = 0 for any

Z ∈ � + U ; that is, we have ξν
1 |�+2U = 0.

Now we can repeat this process. Indeed, for s = 2 and Z ∈ � + 2U , the last
two terms in (5.47) include ξν

1 (Z + V ) and ξν
1 (Z), and thus vanish, so that as a result

we see that ξν
2 on � + 3U is a constant multiple of ξν

0 . By using (5.51) again, we can
make this multiple to be zero again. Repeating this a number of times, we eventually
get ξν

r−1|�+rU = 0.
Since � = � + rU , we also have τ ν |�+rU = 0, and thus for Z ∈ � + rU and

s = r − 1, the last two terms in (5.47) vanish to the second order (both factors of
each summand vanish). Thus ξν

r can be defined in a neighborhood of � + rU = �

as a holomorphic function vanishing on � + rU . However, this implies in particular
that bν

λξ
ν
r (Z + λj ) − ξν

r (Z) = 0 for Z ∈ � and any λj ∈ �0, which contradicts the
assumption that ξν

r could not be periodic. The lemma is thus proved. �

As shown above, if � is empty, then the functions τ ν
s can be defined as global

holomorphic functions of Z ∈ Cg . Then, as a corollary of the previous lemmas, we
get the following statement.

LEMMA 5.11
Suppose that (2.6) for θ(Z) holds. Then there exists a pair of formal solutions

φν =
∞∑

s=0

ξν
s (Z) k−s (5.52)

of the equation

kCφν(Z+U +V, k)−uν(Z)
(
kφν+1(Z+U, k)−Cφν+1(Z+V, k)

)−φν(Z, k) = 0,

(5.53)
with C = c3 and

uν(Z) = τ ν+1(Z + U ) τ ν+1(Z + V )

τ ν(Z + U + V ) τ ν(Z)
, (5.54)

where τ ν is given by (5.49), such that
(i) the coefficients ξν

s of the formal series φν are of the form ξν
s (Z) =

τ ν+1
s (Z)/τ ν(Z), where τ ν

s (Z) are holomorphic functions;
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(ii) φν(Z, k) is quasi-periodic with respect to the lattice �, and for the basis
vectors λj in C its monodromy relations have the form

φν(Z + λj ) = (1 + Aλj
k−1) φν(Z, k), j = 1, . . . , g, (5.55)

where Aλj
are constants such that there is no linear form on C vanishing at V

(i.e., l(V ) = 0), and such that l(λj ) = Aλj
;

(iii) φν is unique up to multiplication by a constant in Z factor.

6. The spectral curve
In this section, we finish a proof of the fact that condition (C) of the main theorem
characterizes Prym varieties. Indeed, in the previous section we showed that if (C)
holds, some quasi-periodic wave solutions can be constructed. In this section, we also
show that these wave solutions are eigenfunctions of commuting difference operators
and identify X with the Prym variety of the spectral curve of these operators. Much
of the argument is analogous to that in [17] and [19].

The formal series φν(Z, k) constructed in the previous section defines a wave
function

ψ = ψnm(k) := knφνnm(nU + mV + Z, k).

This wave function determines a unique pseudodifference operator L such that Lψ =
kψ (the coefficients of this L can be computed inductively term by term); we note
that the ambiguity in the definition of φν(Z) (it is only defined up to a factor that is
T1-invariant) does not affect the coefficients of the wave operator L. Therefore, its
coefficients are of the form

L =
∞∑

s=−1

wνnm

s (Z + nU + mV ) T −s
1 , (6.1)

where wν
s (Z) are well-defined meromorphic sections of line bundles on X with auto-

morphy properties given by (5.19).
As before, we define functions F̃j by formula (4.63); that is, we set

F̃j := resT

(
(LjT −1

1 − T1L
j )(T1 − T −1

1 )−1
)
.

The definition of ψ implies that these functions are of the form

F̃j = F̃
νnm

j (Un + V m + Z), (6.2)

where F̃ ν
j (Z) are meromorphic functions on X.
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LEMMA 6.1
There exist vectors Vm = {Vm,k} ∈ Cg and constants vm ∈ C such that

F̃ ν
j (Z) = vj + ∂

∂Vj

(
ln τ ν(Z) − ln τ ν+1(Z + U )

)
. (6.3)

Proof
Consider the formal series ψσ given by (4.50). It has the form

ψσ
n,m = k−nφ σ, νn,m(Un + V m + Z, k), (6.4)

where the coefficients of the formal series

φ σ, ν(Z, k) =
∞∑

s=0

ξ σ, ν
s (Z) k−s (6.5)

are difference polynomials in the coefficients of φν and φν+1. Therefore, we know a
priori that ξσ,ν(Z) are meromorphic functions, which may have poles for Z ∈ T ν+nU

or Z ∈ T ν+1 + nU . We claim that in fact these coefficients are of the form

ξ σ, ν
s = τ σ, ν

s (Z)

τ ν(Z)
, (6.6)

where τ σ, ν
s (Z) are some holomorphic functions; that is, that they have only simple

poles at T ν .
Indeed, we showed in Section 3 that ψσ solves the equation Hψσ = 0. In

Section 4, we deduced from statement (C) of the main theorem the fact that ψν can
have only a simple pole at T ν . By replacing ψν by ψ σ, ν and replacing U by −U ,
we get from statement (C) functional equations for τ σ, ν

s , and in the same way deduce
also that ψσ,ν can have only a simple pole at T ν .

Equation (4.61) then implies that F̃ ν
j are the coefficients of the formal series

−k + (k2 − 1)
∞∑

j=1

F̃ ν
j (Z)

= k−1φ σ, ν+1(Z + U, k) φν(Z, k) − kφ σ, ν(Z, k) φν+1(Z + U, k). (6.7)

It thus follows that F̃ ν
j (Z) have simple poles only at the divisors T ν and T ν+1 − U ;

these are the only possible poles of the right-hand side. Moreover, equation (4.69) says
(recall that t1 is shifting the variable n, i.e., adding U ) that there exist meromorphic
functions Qν

j such that

F̃ ν
j (Z) = Qν

j (Z) − Qν+1
j (Z + U ). (6.8)
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We know a priori that Qν
j may have poles only at T ν and T ν+1 − U . However, if

there were a pole at T ν+1 − U , it would then mean that Qν+1
j (Z + U ) would have a

pole at T ν − 2U , and since by our initial assumptions U was not a point of order 2,
this is impossible. Thus Qν

j has simple poles only on T ν , as desired for expression
(6.3) for F̃ ν

j to be valid. The functions F̃ ν
j are abelian functions. Therefore, the residue

of Qν
j is a well-defined section of the theta bundle restricted on T ν , that is,

(Qν
j τ ν)|T ν ∈ H 0(τ ν |T ν ).

It is known that the later space is spanned by the directional derivatives of the theta
function. Thus we see that there must exist some vector V ν

j ∈ Cg such that Qν
j −

(∂ ln τ ν(Z)/∂V ν
j ) is a holomorphic function. The periodicity of F̃ ν

j with respect to
the lattice implies that V ν

j = V ν+1
j , and thus (6.3) holds. �

Consider now the linear space spanned by the functions {F̃ ν
j (Z), j = 1, . . .}. From

(6.3), we see that there are only (g + 1) parameters involved in determining F̃ ν
j ,

and thus this space is at most (g + 1)-dimensional. Therefore, for all but g̃ :=
dim {F̃ ν

j (Z)} − 1 ≤ g positive integers j , there exist constants ci,j such that

F̃ ν
j (Z) = c0,j +

j−1∑
i=1

ci,j F̃
ν
i (Z). (6.9)

Let I denote the subset of integers j for which there are no such constants. We call
this subset the gap sequence; the set of {F̃ ν

j } with j in this subset forms a basis of the
space spanned by all F̃ ν

j .

LEMMA 6.2
Let L be the pseudodifference operator corresponding to the quasi-periodic (Bloch)
wave function ψ constructed above. Then, for the difference operators

L̂j := Lj +
j−1∑
i=1

ci,jLn−i = 0, ∀j /∈ I, (6.10)

the following equations are satisfied with some constants as,j :

L̂j ψ = aj (k) ψ, aj (k) = kj +
∞∑

s=1

as,j k
j−s . (6.11)

Proof
From the proof of Theorem 3.5, we get

[Lj, H ] ≡ (t2F̃j − F̃j ) (T1 − T2) mod OH .
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Therefore, operators L̂j and H commute in O/OH . Hence, if ψ is a Bloch wave
solution of (5.1) (i.e., Hψ = 0), then L̂jψ is also a Bloch solution of the same
equation. Since (5.1) has a unique solution up to multiplication by a constant (i.e.,
the kernel of H is 1-dimensional), we must have L̂jψ = aj (Z, k)ψ , where aj is
T1-invariant; that is, aj (Z, k) = aj (Z + U, k).

Note that the constant factor ambiguity in the definition of ψ does not affect aj ,
and thus aj are well-defined global meromorphic functions on Cg \ �. Since the
closure of ZU is dense in X, the T1 invariance of aj implies that aj is a holomorphic
function of Z ∈ X, and thus it is constant in Z (note that we in fact have as,n = −cs,n

for s ≤ n). �

If we now set m = 0, the operator L̂j can be regarded as a Z-parametric family of
ordinary difference operators L̂Z

j .

COROLLARY 6.3
The operators L̂Z

j commute with each other:

[L̂Z
i , L̂Z

j ] = 0. (6.12)

A theory of commuting difference operators containing a pair of operators of coprime
orders was developed in [25], [15]. It is analogous to the theory of rank 1 commuting
differential operators [4], [5], [13], [14], [25] (this theory was recently generalized to
the case of commuting difference operators of arbitrary rank in [20]).

LEMMA 6.4
Let AZ be the commutative ring of ordinary difference operators spanned by the
operators L̂Z

j . Then there exists an irreducible algebraic curve � of arithmetic genus
ĝ with involution σ : � −→ � such that for a generic Z, the ring AZ is isomorphic
to the ring of meromorphic functions on � with the only poles at two smooth points
P ±

1 , which are odd with respect to the involution σ . The correspondence Z → AZ

defines a holomorphic map of X to the space of odd torsion-free rank 1 sheaves F on
�

j : X −→ Prym(�) = Ker(1 + σ ) ⊂ Pic(�). (6.13)

Proof
As shown in [25], [15], there is a natural correspondence

A ←→ {�, P±, F } (6.14)

between commutative rings A of ordinary linear difference operators containing
a pair of monic operators of coprime orders, and sets of algebro-geometric data
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{�, P±, [k−1]±, F }, where � is an algebraic curve with fixed first jets [k−1]± of
local coordinates k−1

± in the neighborhoods of smooth points P ±
1 ∈ �, and F is a

torsion-free rank 1 sheaf on � such that

h0(�, F ) = h1
(
�, F (nP+ − nP−)

) = 0. (6.15)

The correspondence becomes one-to-one if the rings A are considered modulo the
conjugation A′ = gAg−1.

The construction of the correspondence (6.14) depends on a choice of initial
point n0 = 0. The spectral curve and the sheaf F are defined by the evaluations of
the coefficients of generators of A at a finite number of points of the form n0 + n. In
fact, the spectral curve is independent on the choice of x0, but the sheaf does depend
on it; that is, F depends on the choice of n0.

Using the shift of the initial point, it is easy to show that the correspondence (6.14)
extends to the commutative rings of operators whose coefficients are meromorphic
functions of x. The rings of operators having poles at n = 0 correspond to sheaves
for which the condition (6.15) for n = 0 is violated.

A commutative ring A of linear ordinary difference operators is called maximal if
it is not contained in any larger commutative ring. The algebraic curve � corresponding
to a maximal ring is called the spectral curve of A. The ring A is isomorphic to the
ring A(�, P ±

1 ) of meromorphic functions on � with the only pole at P +
1 , and vanishing

at P −
1 . The isomorphism is given by the equation

Laψ = aψ, La ∈ A, a ∈ A(�, P ±
1 ), (6.16)

where ψ is a common eigenfunction of the commuting operators.
Let �Z be the spectral curve corresponding to the maximal ring ÂZ containing

AZ . The eigenvalues aj (k) of the operators L̂Z
j defined in (6.11) coincide with the

Laurent expansions at P +
1 of the meromorphic functions aj ∈ A(�Z, P±), and thus

are Z-independent. Hence, the spectral curve �Z in fact does not depend on Z.
The functions ψσ are eigenfunctions of L̂j :

L̂jψ
σ = −aj (k)ψσ . (6.17)

Hence, the correspondence ψ ↔ ψσ gives rise to an involution σ of the spectral
curve. The eigenvalues aj are odd with respect to the involution, and thus the lemma
is proved. �

The next step is to consider deformations of AZ defined by the discrete Novikov-
Veselov hierarchy introduced in Section 3. Through this hierarchy, we identified the
space spanned by functions F̃j with the tangent space to the orbit of the hierarchy.
Lemma 5.1 identifies the orbit of the hierarchy with Z + Y , where Y is the closure
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of the group spanned by vectors Vj . The orbit of the NV hierarchy is the odd part of
the orbit of two Kadomtsev-Petviashvili flows corresponding to points P ±

1 . It follows
from [28] that the orbit of the discrete NV hierarchy is isomorphic to P (�). For a
generic Z, the ring AZ is a maximal odd ring. Therefore, we get the following.

LEMMA 6.5
For Z ∈ Cg generic, the orbit of AZ under the NV flows defines an isomorphism:

iZ : P (�) −→ Z + Y ⊂ X. (6.18)

COROLLARY 6.6
The Prym variety P (�) of the spectral curve � is compact.

The compactness of the Prym variety is not as restrictive as the compactness of the
Jacobian (see [7]). Nevertheless, it implies an explicit description of the singular
points of the spectral curve. The following result is due to Robert Friedman (see [17,
Appendix]).

COROLLARY 6.7
The spectral curve � is smooth outside of fixed points qk of the involution σ . The
branches of � at qk are linear and are not permuted by σ .

The arguments identical to that used at the end of [17] prove that in fact the singular
points qk are at most double points. For a curve with at most double singular points,
all rank 1 torsion-free sheaves F are line bundles. Therefore, the map j in (6.13) is
inverse to iZ in (6.18), and the main theorem is thus proved.

Acknowledgments. We thank Enrico Arbarello, Robert Friedman, and Takahiro Shiota
for very useful discussions in which we learned many things about the geometry of
Prym varieties and Prym theta divisors.

We likewise thank all the referees for their very careful reading of the article and
for their numerous valuable comments, clarifications, and suggestions.

References

[1] E. ARBARELLO and C. DE CONCINI, On a set of equations characterizing Riemann
matrices, Ann. of Math. (2) 120 (1984), 119 – 140. MR 0750718

[2] E. ARBARELLO, I. KRICHEVER, and G. MARINI, Characterizing Jacobians via flexes of
the Kummer variety, Math. Res. Lett. 13 (2006), 109 – 123. MR 2200050



370 GRUSHEVSKY and KRICHEVER

[3] A. BEAUVILLE and O. DEBARRE, Sur le problème de Schottky pour les variétés de
Prym, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 613 – 623.
MR 0963492

[4] J. L. BURCHNALL and T. W. CHAUNDY, Commutative ordinary differential operators,
I, Proc. London Math. Soc. 21 (1922), 420 – 440.

[5] ———, Commutative ordinary differential operators, II, Proc. Royal Soc. London 118
(1928), 557 – 583.

[6] O. DEBARRE, “Vers une stratification de l’espace des modules des variétés abéliennes
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