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Amoebas, Ronkin function and Monge-Ampère

measures of algebraic curves with marked points.

I.Krichever ∗

Abstract

A generalization of the amoeba and the Ronkin function of a plane algebraic curve
for a pair of harmonic functions on an algebraic curve with punctures is proposed.
Extremal properties of M -curves are proved and connected with the spectral theory of
difference operators with positive coefficients.

1 Introduction

The amoeba Af of a holomorphic function f : (C∗)n → C (where C∗ = C \ 0) is, by
definition, the image in Rn of the zero locus of f under the mapping Log : (z1, . . . , zn) →
(log |z1|, . . . , log |zn|). The terminology was introduced by Gelfand, Kapranov and Zelevinsky
in [1] and reflects the geometric shape of typical amoebas, that is a semianalytic closed subset
of Rn with tentacle-like asymptotes going off to infinity. All connected components of the
amoeba complement Ac

f = Rn \ Af are convex. When f is a Laurent polynomial, then, as
shown in [4], there is a natural injective map from the set of connected components of Ac

f

to the set of integer points of Newton polytop ∆f of f . This injective map is defined by the
gradient ∇Rf of, the so-called Ronkin function introduced in [20]:

Rf(x) =
1

(2πi)n

∫

Log−1(x)

log | f(z1, . . . , zn)| dz1 · · ·dzn
z1 · · · zn

(1)

The Ronkin function Rf (x) is convex. Recall, that each convex function u defines the
associated Monge-Ampère measureMu. If u is a smooth convex function on Rn, thenMu =
det(Hess(u))v, where Hess(u) is the Hessian matrix and v denotes the Lebesque measure on
Rn. If u is convex but not necessary smooth ∇u can still be defined as a multifunction, and
the Monge-Ampère measure of u for any Borel set E is defined as Mu(E) = v(∇u(E)).

Since the Ronkin function is affine linear in a connected component of Ac
f , the support of

the associated Monge-Ampère measure µ :=MRf is in Af . The latter and the lower bound
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for the Hessian of the Ronkin function for n = 2 established in [21] give the upper bound for
the area of two-dimensional amoebas in terms of the area of the Newton polygon:

Area(Af) ≤ π2Area(∆f ) (2)

Recently concepts of the amoebas, the Ronkin function and the associated Monge-Ampère
measure for n = 2 have attracted additional interest and have become a major tool in the
studies of topological types of real algebraic curves [5, 6] and in the study of random surfaces
which arise as height functions of dimer configurations [7, 8, 9].

In [6] it was proved that curves, for which the upper bound (2) is sharp are defined
over R (up to a multiplication by a constant) and, furthermore, their real loci are isotopic
to simple Harnack curves defined for the first time in [5]. Simple Harnack curves form a
particularly restrictive type of Harnack curves shown to be topologically unique in [5] (and
later unique up to algebraic deformations in [8]. Recall, that classical Harnack curves are not
unique even topologically – in 1876 Harnack has proposed a construction of several series of
maximal curves in the plane with various topological arrangement of ovals.

In the study of limiting shapes of random surfaces simple Harnack curves arise as spec-
tral curves of two-dimensional periodic difference operators with positive coefficients. The
corresponding Ronkin function turned out to be the Legendre dual to a surface tension of
the model. The extremal properties of Harnack curves were crucial for the construction in
[7, 8, 9] and lead to many probabilistic implications.

The main goal of the present paper is to extend the notions of the amoeba and the
Ronkin function of a plane algebraic curve to the case of an arbitrary smooth algebraic
curve with marked points and to make the first steps in the study of their properties. More
precisely, for each algebraic curve Γ with n marked points pα we define a family of amoebas
parameterized by two imaginary normalized meromorphic differentials dζ1, dζ2 on Γ having
simple poles at the marked points. The imaginary normalization means that all periods of
the differentials are pure imaginary (the periods of the differential idζa are real, i.e. idζa
is a real-normalized differential in the sense of definition introduced in [2]). Note, that
the space of imaginary normalized differentials having simple poles at three points has real
dimension two. Therefore, the generalized amoeba corresponding to an algebraic curve with
three punctures is unique up to a linear transformation of R2. This particular case is of
special interest due to its connections with the spectral theory of integrable two-dimensional
difference operators (see Section 5).

The imaginary (real) normalized differentials of the third kind per se are not new. They
were probably known to Maxwell (the real part of such differential is a single valued harmonic
function on Γ which is the potential of electromagnetic field on Γ created by charged particles
at the marked points); they were used in the, so-called, light-cone string theory, and played
a crucial role in joint works of S. Novikov and the author on Laurent-Fourier theory on
Riemann surfaces and on operator quantization of bosonic strings [19].

For the first time, real normalization as defining property of quasi-momentum differen-
tials in the spectral theory of linear operators with quasi-periodic coefficients was introduced
in [10] and [13] (where they were called absolute normalized). A notion of real-normalized
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meromorphic differentials is central in the Whitham perturbation theory of integrable sys-
tems. These real-normalized differentials were used in [2] and [3] for a new proof the Diaz’
theorem on dimension of complete subvarieties of Mg,n, and for the proof of the vanishing
of a certain tautological class. In [15] they were used for the proof of Arbarello’s conjecture.

In the most general form the notions of the generalized amoeba and the Ronkin function
can be defined for any pair of harmonic functions on an algebraic curve with punctures. In
the last section we present this general setup and some examples associated with imaginary
normalized differentials of the second kind.

Acknowledgments. The author would like to thank Grisha Mikhalkin and Ovidiu
Savin for the numerous valuable comments, clarifications, and suggestions.

2 Amoebas of algebraic curves with two imaginary nor-

malized differentials

Let (Γ, p1, . . . , pn) be a smooth genus g algebraic curve with n distinct marked points. Non-
degeneracy of the imaginary part of the Riemann matrix of b-periods of a basis of the
normalized holomorphic differential on Γ implies that

Lemma 2.1. For a given set of n real numbers a = {aα ∈ R} such that
∑n

α=1 aα = 0 there is
a unique meromorphic differential dζa on Γ which is holomorphic outside the marked points
pα where it has simple poles with residues aα, respαdζa = aα, and such that all periods of dζa
are pure imaginary:

Re

∮

c

dζa = 0, ∀c ∈ H1(Γ,Z). (3)

Notice, that the imaginary normalization (3) implies that the real part xa of the abelian
integral ζa(p) =

∫ p
dζa + c, i.e.

xa(p) = Re

(∫ p

dζa + c

)
(4)

is a single-valued harmonic function on the punctured Riemann surface

Γ0 := Γ \ {p1, . . . , pn}. (5)

The zeros qs, s = 1, . . . , 2g + n− 2 (non necessary distinct) of dζa are critical points of xa.
The level set x−1

a (f) for f not in the set of critical values of xa (f /∈ {xa(qs)}) is the union of
smooth connected cycles on Γ. If f = fs := xa(qs) for some s, then qs is a self-intersection
point of the level set x−1

a (fs).

Let us fix a pair of n-tuples of real numbers aj = {aα,j},
∑

α aα,j = 0, j = 1, 2,. Then for
each smooth algebraic curve Γ with n marked points pα we have two associated imaginary
normalized differential which for brevity will be denoted throughout the paper by dζj := dζaj .
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Definition 2.2. The amoeba AS ⊂ R
2 associated with the data S = {Γ, pα, aα,j} is the

image of the map χ : Γ0 → R2, χ(p) = (x1(p), x2(p)), where xj(p) are harmonic functions on
Γ0 defined by the imaginary normalized meromorphic differentials dζj.

Remark 2.3. The action of GL2(R) on pairs of imaginary normalized differentials

dζ ′j = c1,j dζ1 + c2,j dζ2, {cij} ∈ GL2(R) . (6)

corresponds to a linear transformation of the amoeba.

Remark 2.4. If all periods of the differentials dζj are integer multiple of 2πid−1
j , where dj

are integers, then the functions zj = edjζj are single-valued meromorphic functions on Γ. In
that case Γ is an irreducible component of the normalization of a (possibly singular) plane

curve (Γ̃, z1, z2). If Γ̃ is a stable singular curve of the irreducible type, then AS coincides (up

to rescaling of coordinates) with the amoeba of the plane curve (Γ̃, z1, z2).

To some extend the proposed setup can be seen as a closer of a union of certain loci of
degree d plane (or more generally toric) curves as the degree d → ∞. In order to clarify the
latter statement it is instructive to consider the basic example of curves with three marked
points p1, p2, p3. Using if needed the linear transformation (6) we may assume without loss
of generality that the imaginary normalized differential dζj has residue 1 at the marked point
pj and residue −1 at the point p3. Consider the locus Σg,d in Mg,3 where the periods of
the corresponding differentials are in 2πid−1Z. Then as it was mentioned above the function
zj = edζj is a meromorphic function on Γ with pole of degree d at the point p3 and zero
of degree d at pj . Hence Γ is a normalization of a singular plane curve of degree d. The
conditions on periods defining Σg,d are independent on a choice of a basis of cycles and in
each fixed basis are rationality type condition. Therefore, the union of Σg,d for all d is dense
in Mg,3.

Our first goal is to describe explicitly the locus of the critical points of the amoeba map:

Lemma 2.5. The locus γ ⊂ Γ0 of the critical points of the amoeba map ξ : Γ0 → R2 is a
union of the locus γ0, where the function

R(p) =
dζ1
dζ2

(7)

is real, i.e. γ0 := {p ∈ γ0| ImR(p) = 0}, and the finite set (possibly empty) of the common
zeros of the differentials dζj.

Remark 2.6. A pair of meromorphic differentials on a smooth algebraic curve defines a map
of the curve to the two-dimensional complex projective space, p ∈ Γ → (dζ1(p) : dζ2(p)) ∈
CP

2. For plane curves f(z1, z2) = 0 where dζj = d ln zj this map is known as the logarithmic
Gauss map. The characterization of the critical points of the amoeba map for plane curves
as the preimage under the logarithmic Gauss map of RP2 ⊂ CP

2 was obtained in [5].

Proof. The statement of the Lemma is a direct corollary of the following simple computations
motivated by the computations of the Hessian of the Ronkin function in [21].
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Let p be a regular point of the map χ, i.e. at p the form dx1 ∧ dx2 is non-degenerate.
Then in the neighborhood of p the functions (x1(p), x2(p)) define a system of real coordinates
and we can write

ζ1 = x1 + iy1(x1, x2), ζ2 = x2 + iy2(x1, x2) (8)

The imaginary parts yj of the abelian integrals ζj are multivalued functions with periods of
dζj.

Taking the full external differential of equations (8) we get

dζ1 = (1 + i∂1y1) dx1 + (i∂2y1) dx2, dζ2 = (i∂1y2) dx1 + (1 + i∂2y2) dx2 (9)

The ratio R = dζ1/dζ2 of two meromorphic differentials is a meromorphic function on Γ.
Hence,

(i∂1y2)R = 1 + i∂1y1, (1 + i∂2y2)R = i∂2y1 (10)

From the first equation in (10) we get

∂1y2 = −
1

Im R
, ∂1y1 = −

Re R

Im R
(11)

The second equation in (10) implies

∂2y2 =
Re R

Im R
, ∂2y1 =

|R|2

Im R
(12)

From (9) and equations (11,12) it easy follows:

dζ1 ∧ dζ̄2 = (2 + 2i∂1y1) dx1 ∧ dx2 (13)

Hence,

4dx1 ∧ dx2 = dζ1 ∧ dζ̄2 + dζ̄1 ∧ dζ2 = −2i(ImR) dζ1 ∧ dζ̄1 = −2i

(
ImR

|R|2

)
dζ2 ∧ dζ̄2 . (14)

For any meromorphic form ω the two-form idω∧dω̄ is finite and positive except at poles and
zeros of the differential. Therefore, equation (14) implies that non-isolated critical points of
χ is the locus γ0 where R is real. From (14) it follows also that isolated critical points of χ
are common zeros of dζ1 and dζ2.

Note for further use, that equation (14) allows to identify the closed subsets Γ+ and Γ−

of Γ0, where the jacobian J(χ) of the map χ is non-negative and nonpositive, respectively,
with the loci

Γ± := {p ∈ Γ±| ∓ ImR(p) ≥ 0}. (15)

The intersection γ0 = Γ+ ∩ Γ− of these sets is the locus of non-isolated critical points of
the amoeba map. It is a graph on Γ whose vertices are zeros of the differential dR and non
simple poles of R (corresponding to multiple zeros of dζ2). Generically, edges of the graph
are preimages of the folding lines of the amoeba map.

The following statement shows that the geometric shape of a generalized amoeba is the
same as that for the typical amoebas of plane curves:
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Proposition 2.7. All connected components of the complement Ac
S are convex. There are

n unbounded components separated by tentacle-like asymptotes of the amoeba.

Proof. Convexity (local) of the amoeba compliment in the neighborhood of any point of its
boundary is an easy corollary of the maximum principle for harmonic functions xi or their
linear combinations. The proof of the global convexity of each connected component requires
additional arguments. In the theory of conventional amoebas there are few different types
of such arguments. One of the simplest is the use of convexity of the Ronkin function (see
[21] or [5]). Identically the same arguments using the generalized Ronkin function (which
will be introduced in the next section) prove the first statement of the Proposition.

The second statement of the Proposition is obvious when the asymptotic directions

ϕα := Arg (aα,1 + iaα, 2) (16)

of tentacles of the amoeba are all distinct. Notice, that for a given curve Γ with fixed
marked points pα the differentials dζj depend continuously on the parameters aα, j . Hence,
the intersection of the amoeba with any compact set in R2 also depends continuously on aα.
That implies that the second statement of the Proposition holds in the general case, as well.

Remark 2.8. It would be interesting to find an upper bound ν(g, n) for the number of
connected components of the generalized amoebas corresponding to smooth genus g algebraic
curves with n marked points.

3 The generalized Ronkin function

For each x = (x1, x2) ∈ R2 introduce the closed subsets Γ±
x ⊂ Γx ⊂ Γ:

Γx := {p ∈ Γx| x1(p) ≤ x1, x2(p) ≤ x2} , Γ±

x = Γx ∩ Γ±. (17)

Definition 3.1. The generalized Ronkin function ρ = ρS associated with a smooth algebraic
curve with two imaginary normalized differentials (S = {Γ, pα, aα,j}) is given by the formula:

ρ (x) =
1

8πi

∫ ∫

Γx

sgn(ImR(p)) (dζ1 ∧ dζ̄2 − dζ̄1 ∧ dζ2). (18)

Theorem 3.2. The generalized Ronkin function ρ (x) given by (18) is a convex function on
R2. It is affine linear in each connected component of Ac

S. It is smooth at the regular points
of the amoeba, i.e. outside of the set F of critical values of χ, and furthermore at x ∈ AS \F

Hess ρ (x) =
1

2π

∑

p∈χ−1(x)

1

| ImR(p)|

(
1 ReR(p)

ReR(p) |R(p)| 2

)
. (19)

Remark 3.3. Formula (19) in the case of plane curves coincides with the formula for the
hessian of Ronkin functionRf obtained in [21]. Hence, in the case of plane curve the function
ρ coincides with the conventional Ronkin function up to an affine linear form.
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Proof. Let x0 be in a complement of the amoeba. Then the boundary of the domain Γx0

is a disjoint union of the cycles lj(x
0) := x−1

j (x0j ) ∩ Γx0, j = 1, 2. For a generic x0 ∈ Ac
S

these cycles are smooth. It will be always assumed that segments l±j (x
0) = lj(x

0) ∩ Γ± are
oriented such that dxk, k 6= j, is positive with respect to the orientation. Then, lj(x

0) =
l+j (x

0)− l−j (x
0).

Equation (13) implies that the generalized Ronkin function can be represented in the
form:

2πρ (x) =

∫ ∫

Γ+
x

(∂1y1)dx1 ∧ dx2 −

∫ ∫

Γ−
x

(∂1y1)dx1 ∧ dx2 (20)

Hence,

2π∂2ρ (x
0) =

∫

l+
1
(x0)

(∂1y1)dx1 −

∫

l−
1
(x0)

(∂1y1)dx1 = −i

∮

l1(x0)

dζ1 (21)

From (11) and (12) it follows that ∂1y1 = −∂2y2. Therefore,

2π∂1ρS(x
0) = i

∮

l2(x0)

dζ2 (22)

The periods of the differentials in the right hand sides of (21,22) are constant in each of the
connected component of Ac

S . Therefore, ρ is affine linear in each of these components.

Consider now a regular point x of the amoeba, i.e. x ∈ AS \ F , where F is the set of
critical values of χ, then from (20) we get the equation:

2π∂1ρ (x) = −
∑

p∈χ−1(x)∩Γ+

y2(p) +
∑

p∈χ−1(x)∩Γ−

y2(p) + Π2(x), (23)

where Π2 is the imaginary part of the period of dζ2 (over connected components of the level
set l2(x) which do not intersect l1(x)). Similarly, we get

2π∂2ρ (x) =
∑

p∈χ−1(x)∩Γ+

y1(p)−
∑

p∈χ−1(x)∩Γ−

y1(p) + Π1(x), (24)

Notice that the periods Π1 and Π2 are locally constant. Therefore, taking the derivatives of
(23) and (24) and using the equations (11) and (12) we get equation (19) for the Hessian of
ρ at the regular points of the amoeba.

Each term in the sum at the righthand side in (19) is a symmetric matrix with determinant
1 and with positive diagonal elements. Hence, each term of the sum is positive definite.
Therefore, Hess ρ is positive definite in the interior of the amoeba.

Let σ be a subset of the points of the critical set F whose preimages are not finite. If
the primage of x ∈ σ is not finite, then it is a closed cycle of the graph γ0. Generically σ
is empty, but in any case it is a finite set. From equations (23,24) it easy follows that ∇ρ
extends continuously at x ∈ F \ σ. That implies the convexity of the generalized Ronkin
function ρ. The theorem is proved.

Notice, that the associated Monge-Ampére measure has nonzero point measure at each
x ∈ σ. Indeed, on the cycle c = χ−1(x) ∈ γ we have

dy2
dy1

(t) =
dζ2
dζ1

(t), t ∈ c (25)
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Hence, the latter function is not a constant. Therefore, the convex hull of the line (−y2(t), y1(t)) ∈
R2 has non-trivial measure.

From the proof of Theorem 3.2 it follows that the image of the gradient map ∇ρ : R2 →
R2 is a polygon ∆S that is the convex hull of the set of points vα = (vα,1, vα,2) ∈ R2, which
are the images under ∇ρ of the unbounded components of AS .

We describe first the polygon ∆S in the case when asymptotes ϕa given by (16) of the
tentacles the amoeba are all distinct. Using if needed a linear transformation (6) we may
assume also that αα,j 6= 0. The periods (21,22) defining the image under ∇ρ of unbounded
components are sums of periods over small cycles around subsets of marked points. The latter
are equal (up to a sign) to the corresponding residues of the differential. It is straightforward
to verify that the coordinates of the vertices of ∆S equal

If ± aα,2 > 0, then vα,1 = ±
∑

β∈I±α

aβ,2, where I±α := {β ∈ I±α | ± aβ,2 > 0,±(ϕβ −ϕα) > 0} .

(26)

If±aα,1 > 0, then vα,2 = ∓
∑

β∈J±
α

aβ,1, where J±

α := {β ∈ J±

α | ∓aβ,2 > 0,∓(ϕβ −ϕα) > 0} .

(27)
It is easy to see that the formulae (26) and (27) extend continuously to the general case
when some of ϕα might coincide.

Corollary 3.4. The inequality

Area(AS) ≤ π2Area(∆S) (28)

holds.

The proof of (28) is identical to that in [21]. Namely, as shown in [21], for (2×2) symmetric
positive definite matrices M1 and M2 the inequality

√
det (M1 +M2) ≥

√
detM1 +

√
detM2 (29)

holds, with equality precisely if M1 and M2 are real multiples of each other. The sum in the
righthand side of (19) contains at least two terms. Hence, det HessS(x) ≥ π−2 at the regular
points of amoeba, x ∈ AS \ F . As shown above, the image under the gradient map of the
regular points of the amoeba is ∆S minus some of its vertexes. Combining the last two facts
one gets (28).

4 Amoebas of M-curves

At the beginning of this section we show that the bound (28) is sharp, and is achieved for
certain pairs of imaginary normalized differentials on the, so-called, M-curves.

Recall that a smooth genus g algebraic curve Γ with antiholomorphic involution τ : Γ → Γ
is M-curve if τ has maximal possible number of fixed cycles. By Harnack inequality, that
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number is (g+1). The anti-involution τ on an M-curve is always of the separating type, i.e.
Γ is a union of two closed subsets Γ± such that τ : Γ+ → Γ− and Γ+ ∩ Γ− = ∪g

j=0Aj , where
Aj are fixed ovals of τ .

Definition 4.1. The set of data (Γ, pα, aα,j) is called Harnack: (i) Γ is a M-curve; (ii) the
marked points pα are on one of the fixed ovals A0, . . . Ag of the antiinvolution τ , say pα ∈ A0;
(iii) The cyclic order pα along the cycle A0 coincides with counterclockwise order of the
vertices of the polygon ∆S .

The following statement describes explicitly the zero divisor of an imaginary normalized
differential on a M-curve under certain assumptions on positions of its poles and signs of its
residues:

Lemma 4.2. Let dζ be an imaginary normalized differential on a M-curve Γ with poles pα
on one of the fixed ovals of the involution, pa ∈ A0. If signs of the residues of dζ at pα are
changed only twice with respect to cyclic order along the oval, then dζ has no zeros outside
of the fixed ovals of the anti-involution τ . Furthermore: (i) all zeros of dζ are simple, (ii)
there is exactly 2 zeros of dζ on each of g fixed ovals of τ that do not contain poles of dζ;
(iii) there is exactly one zero of dζ on each segment of A0 between consecutive poles with the
same sign of the residues.

Proof. Notice, that the imaginary normalization condition is invariant with respect to an
antiholomorphic involution, i.e. dζ = τ ∗(dζ̄). Hence, dζ is real on the fixed ovals of τ . Then,
the imaginary normalization implies that the period of dζ along Aj which do not contain
the marked points vanishes. Hence, on each of these ovals there are at least 2 distinct zeros
of dζ .

Let pα and pα+1 be two consecutive (along A0) marked points with the same sign of the
residues. Then, dζ has at least one zero on the segment of A0 between these points. By
the second assumption of the lemma the number of consecutive pairs of the marked points
with the same signs of the residues is at least n − 2. The zero divisor of dζ is of degree
2g+n− 2. Hence, all the previous bounds on the number of distinct zeros are sharp and we
have accounted all the zeros of dζ . The lemma is proved.

Lemma 4.3. The amoeba map defined by the imaginary normalized differentials dζj asso-
ciated with Harnack data restricted to Γ+ ⊂ Γ is a diffeomorphism of Γ+

0 := Γ+ \ {pα} with
AS.

Proof. Let us show first, that for the Harnack pairs the set γ of critical points of the
amoeba map coincides with the locus A0, . . . , Ag of fixed points of the anti-involution τ .
Indeed, suppose not, then as follows from Lemma (2.5) there exists a point p /∈ Aj such that
R(p) = r is real. By definition of R the differential dζ = dζ1 − rdζ2 has zero at the point p.
Notice now, that if dζ1, dζ2 is a Harnack pair of the imaginary normalized differentials, then
the differential dζ satisfies the assumptions of Lemma 4.3, and can not vanish outside the
fixed ovals of the involution.

If the locus of F of critical points of the amoeba map coincides with the boundary of
AS then the function x2 restricted to a segments of the level line x−1

1 (a) in Γ+
0 is monotonic.

The lemma is proved.
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The same arguments show that

Lemma 4.4. For Harnack data the gradient ρ restricted to A \ F is one-to-one map onto
the interior of the polygon ∆S with g points removed. The latter are images under ρ of the
fixed ovals A1, . . . , Ag.

Our next goal is to show that as in the case of plane curves the extremal property of the
area characterizes the Harnack pairs.

Theorem 4.5. The equality

Area(AS) = π2Area(∆S) . (30)

holds if and only if AS is associated with a Harnack pair of the imaginary normalized dif-
ferentials.

Proof. The key arguments in the proof are almost identical to that in [6]. First notice,
that if the equality (30) holds then the sum in (19) contains two equal terms. Hence on the
preimage χ−1(A \ F there is an involution τ and

R(z) = R̄(τ(z)). (31)

From the latter it follows that τ is an anti-holomorphic involution of χ−1(A \ F ). Another
corollary of (30) is that there is no points of F having non-zero point mass, i.e. all points
of A has finite number of preimages. From that it easy follows that each point of F has
only one preimage. Hence, τ extends to an anti-holomorphic involution of Γ and preimages
of bounded connected components of F are fixed ovals of the involution. Preimages of
unbounded connected components of F are segments of A0 between consecutive poles pα

5 Two-dimensional difference operators.

For completeness, in this section we briefly outline some relevant facts from the spectral
theory of difference operators. In the framework of the spectral theory of two-dimensional
difference operators

(Lψ)n,m = ψn+1, m + ψn,m+1 + un,mψn,m (32)

acting on functions of the discrete variables (n,m) ∈ Z
2 (see [12, 8]) the plane curves of

degree d arise as the spectral curves of d-periodic operators, vn,m = vn+d,m = vn,m+d. The
points of these curve parameterize, the so-called, Bloch solution of the equation Lψ = 0, i.e.
the solutions that are eigenfunctions of the monodromy operators

ψn+d,m = z1ψn,m, ψn,m+d = z2ψn,m. (33)

In [12] an explicit solution of the inverse spectral transform in terms of Riemann theta-
function was obtained for integrable difference operators. In the periodic case the integrable
difference operators (related to solutions of the bilinear discrete Hirota equations (BDHE))
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are singled out by the condition that the affine spectral curve is compactified by three infinite
points.

Recall, briefly the solution of the inverse problem. Consider a smooth genus g algebraic
curve Γ with three marked points p1, p2, p3. Then, a choice of a basis of cycles {Ai, Bi}
on Γ with the canonical matrix of intersections: Ai ∩ Bj = δi, j, Ai ∩ Aj = Bi ∩ Bj = 0
allows one to introduce the basis of normalized holomorphic differentials ωi,

∮
Aj
ωi = δi,j and

the matrix B of its periods, Bi,j =
∮
Bj
ωi. The latter is a symmetric matrix with positive

definite imaginary part. It defines the Jacobian of the curve J (Γ) := Cg/Λ, where the lattice
Λ is generated by the basis vectors em ∈ Cg and the column-vectors of B. The Riemann
theta-function θ(z) = θ(z|B) corresponding to B is given by the formula

θ(z) =
∑

m∈Zg

e2πi(z,m)+πi(Bm,m), (z,m) = m1z1 + · · ·+mgzg . (34)

The multi-valued correspondence A(p) ∈ Cg, Ak(p) =
∫ p
ωk descents to the so-called Abel

map A : Γ → J (Γ).

Introduce also the normalized abelian integral dΩ1(dΩ2) of the third kind having simple
pole with residue 1 at p1(p2) and simple pole with residue −1 at p3. Their abelian integrals
Ωj(p) are multivalued functions on Γ.

Theorem 5.1. ([12]) Let p be a point of Γ. Then for any g-dimensional vector Z the
function

ψ(m,n) =
θ(A(p) +mU + nV + Z)

θ(mU + nV + Z)
emΩ1(p)+nΩ2(p), (35)

where U = A(p1)− A(p3), V = A(p2)− A(p3), satisfies the difference equation

ψ(m,n+ 1) = ψ(m+ 1, n) + u(m,n)ψ(m,n) (36)

with

u(m,n) =
τ(m+ 1, n+ 1)τ(m,n)

τ(m+ 1, n)τ(m,n + 1)
(37)

where
τ(m,n) = cm1 c

n
2 θ(mU + nV + Z) (38)

A few remarks: (a) In general the coefficients of the difference equation are complex
qusiperiodic function (possibly singular) of the variables (m,n). (b) If the vectors U and V
are d-periodic points of the Jacobain, then u(m,n) are d-periodic. (The latter condition is
equivalent to the condition that on Γ there exist function z1 and z2 having pole of order d at
p3 and zeros of order d at p1 and p2, respectively). (c) If on Γ there is an antiholomorphic
involution and if the marked points pj are fixed by the involution, then u is real for real Z
(but still might be singular). Finally, (d)

Lemma 5.2. If Γ is M-curve, and the marked points are on one of the fixed ovals of the
involution, then for all real Z the coefficients of the difference equation are non-singular for
all (n,m).
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The proof of the lemma is standard in the finite-gap theory. Namely, the corresponding
discrete Baker-Akhiezer function ψ(m,n, p) is a unique meromorphic function on Γ having
pole of order n + m at p3, zero of order m at p1 and zero of order n at p2, and having in
addition at most simple poles at points γ1, . . . , γg (if the latter are distinct), i.e. ψ(m,n, p) ∈
H0((m+n)p3−mp1−np2+D), D = γ1+ · · ·+γg. In addition to zeros at p1, p2, this function
has g zeros γs(n,m). The coefficient u(m,n) is singular iff one of these zeros coincides with
p3.

Let Γ be anM-curve, and the marked points be on one of the fixed ovals of the involution.
If points γs are chosen such that γs ∈ As, then from the uniqueness of the Baker-Akhiezer
function it follows that ψ̄ = τ ∗ψ, i.e. ψ is real on each of the fixed ovals of the antiinvolution
τ . On each of this ovals it has pole, hence it must have a zero. The total number of these
zeros γs(m,n) is g. Hence, none of them can coincide with p1 ∈ A0. The lemma is proved.

Under the gauge transformation Ψ(m,n, p) = (−1)nτ(m,n)ψ(n,m), equation (36) takes
the following form

τ(m+ 1, n)Ψ(m,n+ 1) + τ(n, n + 1)Ψ(m+ 1, n) + τ(m+ 1, n+ 1)Ψ(m,n) = 0 (39)

Corollary 5.3. Under the assumption of Lemma 5.2 the coefficients of equation 39 are real
positive numbers.

In order to prove the corollary it is enough to consider a degeneration of Γ to the rational
curve with three fixed points. Such a degeneration can be performed within the space of
M-curves, therefore along the deformation the coefficients remain non-zero, and the operator
corresponding to a rational curve has constant positive coefficients.

6 Concluding remarks: Amoebas versus jellyfish and

other creatures.

In the most general form the amoeba map χ : Γ0 → R2 of a smooth algebraic curve Γ with
marked points pα can be defined by any pair of harmonic function xj(p) on Γ0 = Γ \ {pα}.

Let x(p) be a harmonic function, then locally there exists a unique up to an additive
constant conjugate harmonic function y(p). Hence, x(p) uniquely defines the differential
dζ = dx + idy, which by construction is imaginary normalized holomorphic differential on
Γ0. One can specify asymptotic behavior of x(p) near the marked point by the requirement
that dζ is meromorphic on Γ and has a fixed singular part at the marked points.

Recall that explicitly choosing a singular part of a pole of order at nα +1 near pα means
on a small neighborhood of pα choosing: (i) a coordinate zα such that zα(pα) = 0; (ii)
polynomial Rα of the form Rα =

∑nα

i=0 rα, iz
−i−1
α , and identifying pairs (zα, Rα) and (wα, R

′
α)

if R′ dwα = Rα dzα + O(1) dzα, wα = wα(zα). The coefficient rα, 0 is the residue of the
singular part, i.e. for singular parts with no residues rα, 0 = 0.

Non-degeneracy of the imaginary part of Riemann matrix of b-periods of normalized
holomorphic differential on a smooth genus g algebraic curve Γ implies that:
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Lemma 6.1. For any fixed singular parts of poles with pure real residues, there exists a
unique meromorphic differential Ψ, having prescribed singular part at Pα and such that all
its periods on Γ are imaginary, i.e.

Re

(∮

c

dζ

)
= 0, ∀ c ∈ H1(Γ,Z) (40)

(for detailed proof see Proposition 3.4 in [2]).

The generalized amoebas considered above correspond to the case when dζ has simple
poles at the marked points. As it seems for the author the following two examples show that
properties of maps χ defined by imaginary normalized differentials with higher order poles
deserve a systematic study.

Example 1. Let dζ1, dζ2 be imaginary normalized differentials on Γ having pole at a
marked point p0 of the form (z−2+O(1))dz and i(z−2+O(1))dz. Notice, that a different choice
of the local coordinate z corresponds to a linear transformation of the pair of differentials.

At first glance a notion of the corresponding amoeba is trivial. Indeed, it is easy to see
that the map χ is one-to-one in the neighborhood of p0. Hence, χ has degree 1, and therefore,
the image of χ is R2. Non-trivial nature of χ is reflected by a compact set in R2, which is the
complement to the set whose points have just one preimage on Γ0. It can be checked that
for an elliptic curve this complement set is bounded by piecewise concave curve with four
cusps. An attempt to visualize the map χ the elliptic curve Γ0 reveals 3D creature which
looks like jellyfish (continuing ”biological” terminology by GKZ).

Example 2. The following example of a pair of imaginary normalized differentials having
poles of the form dζ1 = (−z−2 + O(1)) and dζ2 = (−2z−3 + O(1))dz) is connected with
the spectral theory of nonstationary Shrödinger equation (see details in [10],[11]). It is easy
to see that the corresponding map χ is of degree zero. There is one infinite connected
complement of the image of χ which is bounded by a curve which is asymptotically is the
parabola x2 = x21. As shown in [11] for the case of M-curves and one puncture fixed under
anti-involution τ the map χ is 2 : 1 outside of images of fixed ovals, which are boundaries of
compact connected componets of Ac. The gradient map ∇ρ restricted to Γ+ is one-to-one
with the upper half plane of R2 with g points removed.

Remark 6.2. The computations in the proof of Lemma 2.5 are pure local and can be
summarized as follows:

Let x1(p) and x2(p) be a pair of harmonic functions in the domain p ∈ D. They con-
secutively define: a pair of conjugate harmonic functions yj(p); the imaginary normalized
holomorphic differentials dζj = dxj + idyj, and the function R(p) (given by (7)).

Corollary 6.3. In the subdomain D0 := {p ∈ D0| ImR(p) 6= 0}, where the harmonic func-
tions xj(p) define a system of local coordinates, there is a unique convex function G(p) whose
gradient equals

∇G(x1, x2) = sgn (ImR)

(
−y2(x1, x2)
y1(x1, x2)

)
.

13



The generating function G is a building block of the generalized Ronkin function which
at noncritical points x of the image of the harmonic map χ : D 7−→ R2 is equal to

ρ(x) :=
∑

p∈χ−1(x)

G(p).
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