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Abstract. The main goal of the first part of the paper is to show that the Fermi curve of a two-
dimensional periodic Schrödinger operator with nonnegative potential whose points parameterize
the Bloch solutions of the Schrödinger equation at the zero energy level is a smooth M -curve.
Moreover, it is shown that the poles of the Bloch solutions are located on the fixed ovals of an
antiholomorphic involution so that each but one oval contains precisely one pole. The topological
type is stable until, at some value of the deformation parameter, the zero level becomes an eigenlevel
for the Schrödinger operator on the space of (anti)periodic functions. The second part of the paper
is devoted to the construction of such operators with the help of a generalization of the Novikov–
Veselov construction.
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1. Introduction

The theory of periodic two-dimensional operators integrable at one energy level goes back to the
work [1], in which an algebraic-geometric construction of integrable two-dimensional Schrödinger
operators

˜H = (i∂x +A1(x, y))
2 + (i∂y +A2(x, y))

2 + u(x, y)

in a magnetic field was proposed. The shift u → u − E of the potential transforms the equation
˜Hψ = Eψ into ˜Hψ = 0. Hence, without loss of generality, it will always be assumed that the level
equals zero.

The construction of the work [1] is based on the notion of the two-point two-parameter Baker–
Akhiezer function ψ(x, y, p), which is uniquely determined by a smooth genus-g algebraic curve
Γ with two marked points P± and an effective nonspecial divisor D = γ1 + · · · + γg . The Baker–

Akhiezer function and the coefficients of the operator ˜H were explicitly written in terms of the
Riemann theta-function associated with the curve Γ.

In [8] and [9] Novikov and Veselov found sufficient conditions on the algebraic-geometric data
{Γ, P±,D} under which the corresponding operators

H = −Δ+ u(x, y), Δ := ∂2x + ∂2y = 4∂z∂z̄, (1.1)

are potential, i.e., Ai ≡ 0. The corresponding curves must have a holomorphic involution σ : Γ → Γ
with exactly two fixed points P± = σ(P±). We emphasize that the latter condition turns out to
be crucial for another remarkable Novikov–Veselov result, namely, an explicit expression for the
corresponding Baker–Akhiezer functions in terms of the Prym theta-function.

The nature of the Novikov–Veselov conditions was clarified in the work [5], where a constructive
description of the complex Fermi curve of a two-dimensional Schrödinger operator was proposed.
By definition, the complex Fermi curve is a Riemann surface ΓFermi (in what follows, we use the
notation ΓF ) whose points p ∈ ΓF parameterize the solutions of the equation

(−Δ+ u(x, y))ψ(x, y, p) = 0, Δ := ∂2x + ∂2y = 4∂z∂z̄, (1.2)

which are eigenvectors for the monodromy operators

ψ(x+ 2π�1, y, p) = w1(p)ψ(x, y, p), ψ(x, y + 2π�2, p) = w2(p)ψ(x, y, p). (1.3)
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In the spectral theory of periodic operators these solutions are called Bloch–Floquet solutions,
and the set of pairs (w1, w2) ∈ (C∗)2 for which there exists a Bloch solution with such Floquet
multipliers is called the Bloch–Floquet locus. Below it will be denoted by ΓBF . The statement that
this locus is defined by an analytic equation R(w1, w2) = 0, i.e., is an analytic complex curve, was
proved by Taimanov as a corollary of Keldysh’s theorem on the resolvent of a family of completely
continuous operators (for details and the history of the question, see [5] and [10]). The Fermi curve
is a partial normalization of the Bloch–Floquet curve, i.e., there is a holomorphic map ΓF �−→ ΓBF

which is one-to-one outside the singular points of ΓBF (and their preimages on ΓF ). For a generic
potential, the curve ΓBF is smooth and the notions of the Fermi curve and the Bloch–Floquet
spectral curve coincide.

One of the goals of this work is to generalize the Novikov–Veselov construction for the case of
zero eigenlevel, namely, for the case where E = 0 is an eigenvalue of the operator H in the space
of (anti)periodic functions. This case is special in many respects. In particular, if the multiplicity
of this level is odd, then the corresponding Fermi curve is necessarily singular.

Let us clarify the last statement. The Schrödinger operator is self-adjoint. Therefore, if ψ is
a Bloch solution of (1.2) with multipliers (w1, w2), then there is a dual Bloch solution ψσ of the
same equation with multipliers (w−1

1 , w−1
2 ), i.e., the Fermi curve is invariant under the holomorphic

involution

σ : ΓF �→ ΓF , (w1, w2) �→ (w−1
1 , w−1

2 ). (1.4)

This involution has fixed points only when E = 0 is an eigenlevel of the (anti)periodic problem for
the operator H . These points are the nodal points of the Fermi curve, which is therefore singular.

It is known that any singular curve admits a normalization, i.e., a holomorphic map ν : Γ → ΓF

of a smooth curve Γ to ΓF which is one-to-one outside the singular points of ΓF (and its preimages
on Γ). Although the fact that the Fermi curve is singular is important for the motivation of the
construction, the construction itself is based on a description of the analytical properties of the
preimage of the Baker–Akhiezer function on the normalization of the spectral curve, i.e., on the
smooth curve Γ. The corresponding curves have a holomorphic involution with n + 1 pairs of
fixed points (P±, p1±, . . . , pn±). Note that the analytical properties of the Baker–Akhiezer functions
on such curves for n > 0 coincide with those of functions leading to the so-called “multisoliton
solutions on the finite-gap background” of integrable models (see, e.g., [3] and [6]). In terms of the
Riemann theta-function these Baker–Akhiezer functions are expressed by complicated determinant-
type formulas. It has turned out that in the case under consideration their expression in terms of
appropriately defined Prym theta-functions remains the same for any n.

The generalized Novikov–Veselov construction is presented in Section 4. From results of Sec-
tions 2 and 3 it will be clear that it plays a special role in the spectral theory of periodic Schrödinger
operators. We emphasize that, despite the significant progress made in [5], the problem of construct-
ing the periodic spectral theory of such operators in full generality remains open. In particular,
there is no proof that the sufficient conditions on the algebraic-geometric spectral data found in
[8], [5], and [7] are also necessary for Schrödinger operators with real nonsingular potential. These
conditions depend on the topological type of two natural commuting antiholomorphic involutions
of ΓF . The first one is

τ : ΓF �→ ΓF , (w1, w2) �→ (w̄1, w̄2); (1.5)

it reflects the fact that the potential is real. Indeed, if ψ is a Bloch solution of a Schrödinger
equation with real potential, then ψ̄ is also a Bloch solution of the same equation. Since the points
of the Fermi curve parameterize all Bloch solutions, if follows that, for any p ∈ ΓF , there is a point
τ(p) such that ψ̄(x, y, p) = ψ(x, y, τ(p)). The points of the fixed ovals of τ parameterize the real
Bloch solutions of the Schrödinger equation.

The fixed points of the second antiholomorphic involution στ correspond to the pairs of mul-
tipliers such that |wi| = 1. Note that

στ(p) = p =⇒ ψ(x, y, σ(p)) = ψ̄(x, y, p). (1.6)
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The simple observation that the anti-involution στ of the Fermi curve corresponding to a Schrö-
dinger operator with nonnegative potential has no fixed points has turned out to be crucial for the
proof that such a curve is an M -curve with respect to the anti-involution τ and that the points
of the pole divisor of the Bloch solution, which, together with the curve, uniquely determine the
potential, are located on the fixed ovals of τ so that each but one oval contains precisely one such
point. A similar description of the spectral data is well known in the theory of the one-dimensional
Schrödinger operator [2].

For any real potential, the anti-involution στ has only finitely many fixed ovals. Under a
continuous deformation of the potential this number changes only if the curve ΓF becomes singular.
More precisely, it changes if the zero energy level becomes an eigenlevel at some value of the
deformation parameter. This explains the special role of the generalized Novikov–Veselov potentials.

2. Preliminaries

To begin with, we present a description of the spectral Fermi curve and the Bloch–Floquet curve
for the simplest case of the “free” Schrödinger operator H0 = −Δ at the level E �= 0. The Bloch
solutions of Eq. (1.2) with u = −E are parameterized by a nonzero complex parameter k ∈ C∗
and have the form

ψ(z, z̄, k) = ekz−k−1 E
4
z̄; (2.1)

i.e., in this case, ΓF coincides with C∗ . The corresponding Floquet multipliers are given by the
formulas

w1(k) = e2π(k−k−1 E
4
)�1 , w2(k) = e2πi(k+k−1 E

4
)�2 , (2.2)

which define a map
W : C∗ �→ (C∗)2, k �→ (w1(k), w2(k)).

The image ofW is the spectral Bloch–Floquet curve ΓBF
0 of the operator (H0−E). The holomorphic

and antiholomorphic involutions (1.4) and (1.5) in this case have the form

σ : k �→ −k, τ : k �→ − E

4k̄
.

The only singularities of ΓBF
0 are the points of self-intersection which are the images of the “res-

onant” points k and k′ defined by the equations wi(k) = wi(k
′). Such pairs are parameterized by

pairs of integers n,m and the sign. They are solutions of the equations

k − E

4k
−

(

k′ − E

4k′

)

=
in

�1
, k +

E

4k
−

(

k′ +
E

4k′

)

=
m

�2
. (2.3)

Solving (2.3), we obtain k = k±n,m and k′ = k∓−n,−m , where

k±n,m :=
m�1 + in�2

4�1�2

(

1±
√

1− 4E�21�
2
2

m2l21 + n2l22

)

. (2.4)

The coordinates of the nodal points of the curve ΓBF
0 equal

w1(k
±
n,m) = exp

(

πin± πm�1
�2

√

1− 4E�21�
2
2

m2�21 + n2�22

)

,

w2(k
±
n,m) = exp

(

πim∓ πn�2
�1

√

1− 4E�21�
2
2

m2�21 + n2�22

)

.

The values of E for which the radicand in these formulas vanishes, i.e.,

E|n|,|m| =
m2�21 + n2�22

4�21�
2
2

,

are eigenvalues of the operator H0 = −Δ on the space of (anti)periodic functions. For such E , the
corresponding Bloch–Floquet curve has, in addition to an infinite number of simple nodal points,
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one self-intersection point of multiplicity 4. The proof of the existence of the Fermi curve for any
periodic Schrödinger operator proposed in [5] is based on a construction and convergence analysis
of series defining formal Bloch solutions.

For any k0 ∈ C∗ , we introduce complex numbers kν as solutions of the equation w1(k) = w10 :=
w1(k0), where w1(k) is defined in (2.2). The indices ν of kν are pairs (n,±) of an integer and a
sign. It is easy to see that

kν =
in

2�1
+

1

2

(

k0 − E

4k0

)

± 1

2

√

(

in

�1
+

(

k0 − E

4k0

))2

+ E.

We set ψν := ψ(x, y, kν) and w2ν := w2(kν), where ψ and w2 are given by (2.1) and (2.2),
respectively.

Under the assumption w20 �= w2ν for ν �= 0 we define formal series

F (y, k0) =

∞
∑

s=1

Fs(y, k0), (2.5)

Ψ(x, y, k0) =

∞
∑

s=0

ϕs, ϕs =
∑

ν

csν(y)ψν(x, y), (2.6)

by the recurrent formulas

Fs = r−1
0 〈ψ+

0 vϕs−1〉x, (2.7)

c00 = 1, cs0 = −r−1
0

s
∑

i=1

Fi〈ψ+
0 ϕs−i〉x, s � 1. (2.8)

For ν �= 0, we set c0ν = 0, and for s � 1, we set

csν =
w2ν

rν(w2ν − w20)

∫ y+2π�2

y

〈

ψ+
ν

(

− v(x, y)ϕs−1 +
s

∑

i=1

2Fiϕs−i,y

)〉

x

+
w2ν

rν(w2ν −w20)

∫ y+2π�2

y

〈

ψ+
ν

(

Fiyϕs−i +
s−i
∑

l=1

FiFlϕs−i−l

)〉

, (2.9)

where

ψ+
ν = ψ(x, y,−kν), rν = r(kν), r(k) := 4πi�1

(

k +
E

4k

)

. (2.10)

Here and below 〈f〉x denotes the average over the period of a 2π�1-periodic function f of the
variable x.

Lemma 2.1. The formula

ψ̃(x, y, k0) = exp

(∫ y

0
F (y′, k0) dy′

)

Ψ(x, y, k0)Ψ
−1(0, 0, k0)

defines a formal Bloch solution of the equation

(−∂2x − ∂2y + v(x, y)− E)ψ̃ = 0, (2.11)

i.e., a solution of (2.11) with the monodromy properties
{

ψ̃(x+ 2π�1, y, k0) = w10ψ̃(x, y, k0),

ψ̃(x, y + 2π�2, k0) = w̃20ψ̃(x, y, k0),

where

w̃20 = w20 exp

(∫ 2π�2

0
F (y′, k0) dy′

)

.
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To describe the structure of the Fermi curve, let us fix a positive number h > 0 and define
neighborhoods R±

nm of the resonant points (2.4) so that, for any k0 /∈ R±
nm , the inequality

|w20w
−1
2ν − 1| > h, ν �= 0,

holds. Without loss of generality it can be assumed that h is chosen so that the neighborhoods
R±

nm do not intersect.

Lemma 2.2. [5] Suppose that v(x, y) admits an analytic continuation to some neighborhood of
real values of the variables x and y . Then there is a constant N0 such that, for any k0 /∈ R±

nm with
|k0|+ |k−1

0 | > N0 , the series given by formulas (2.5)–(2.9) converge uniformly and absolutely and

define Bloch solutions ψ̃(x, y, k0) of Eq. (2.11). The function ψ̃(x, y, k0) is an analytic function of
the variable k0 and does not vanish for any x and y .

In the resonance case (where the condition w20 �= w2ν does not hold), we construct formal
Bloch solutions as follows. Let I be any finite set of indices ν such that

w2α �= w2ν , α ∈ I, ν /∈ I.

Then the matrix analogues of the previous formulas define formal quasi-Bloch solutions of Eq. (2.11),

i.e., a set of solutions ψ̂α(x, y, w10) of the Schrödinger equation with the monodromy properties

ψ̂α(x+ 2π�1, y, w10) = w10ψ̂α(x, y, w10),

ψ̂α(x, y + 2π�2, w10) =
∑

β

T β
α (w10)ψ̂β(x, y, w10).

(2.12)

For brevity, we do not present here the corresponding series (see [5]). For what follows, it is sufficient
to know an explicit form of the first two terms of the series for the matrix T (w10):

(T0)
β
α = w2βδ

β
α, (T1)

β
α =

w2β

rβ

∫ 2π�2

0
〈ψ+

β vψα〉x dy′. (2.13)

For k0 ∈ R±
nm with |k0| + |k−1

0 | > N0 , as the resonance set of indices we take the pairs (ν, ν0)
such that ν = 0 and kν0 ∈ R∓

−n,−m . As shown in [5], the formal series defining the quasi-Bloch

solutions uniformly absolutely converge and define functions ψ̂α(x, y, w10) which are holomorphic
in the variable w10 ∈ W±

n,m . Here W±
n,m is the domain in the complex plane that is the image of

R±
n,m under the map defined by the function w1(k0). Note that W±

n,m is simultaneously the image

under the same map of the second resonance neighborhood R∓
−n,−m .

Consider the matrix T (w10) in (2.12). It depends holomorphically on the variable w10 ∈W±
n,m .

In the case under consideration, this is a 2 × 2 matrix, and the degree of the discriminant of its
characteristic equation

det(w̃2 · I− T (w10)) = 0 (2.14)

equals 2. In other words, the characteristic equation (2.14) defines a two-sheeted covering Γ±
n,m of

the domain W±
nm with two branch points inside the domain. We say that a resonance point k±nm is

marked if Γ±
n,m is singular, i.e., the discriminant of the characteristic equation has one double zero.

Lemma 2.3. For unmarked resonance points k±nm , the Bloch function ψ̃(x, y, k0) extends ana-
lytically to the Riemann surface Γ±

n,m , where it has one simple pole. For marked resonance points,

the Bloch function ψ̃(x, y, k0) extends analytically from the nonresonance domain to the neighbor-
hoods R±

n,m and R∓
−n,−m .

The extension of the Bloch functions to the “central domain” R0 defined by the inequalities

2π�1

∣

∣

∣

∣

Re

(

k0 − E

4k0

)∣

∣

∣

∣

< r, 2π�1

∣

∣

∣

∣

Im

(

k0 − E

4k0

)∣

∣

∣

∣

< N,

where N is an integer, is described in a similar way. The function w1(k0) represents R0 as a 2N -
sheeted covering of the domain W0 ⊂ C∗ defined by the inequalities e−r < |w10| < er . Given any
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k0 such that w1(k0) ∈W0 , for the resonance set I of indices we take the set of those kα for which
kα ∈ R0 .

Lemma 2.4. Under the assumptions of Lemma 2.2 there are constants c1 and c2 such that,
for r > c1 and N > c2 , the series defining the quasi-Bloch solutions converge uniformly and
absolutely. The Bloch solutions of the Schrödinger equation extend from the nonresonance domain to

the Riemann surface ˜Γ0 defined over W0 by the characteristic equation (2.14) for the corresponding

2N×2N monodromy matrix. The extension is a meromorphic function on ˜Γ0 with poles independent
of (x, y). The number of these poles does not exceed the number of resonance pairs k±n,m ∈ W0 . In

the generic case, the surface ˜Γ0 is nonsingular and the number of poles equals the genus of ˜Γ0 .

The results presented above make it possible to describe the global structure of ΓF . This is the

surface obtained from the complex plane of the variable k0 by “pasting in” ˜Γ0 instead of R0 and
the surfaces Γ±

nm instead of the domains R±
n,m for the unmarked resonance points. If the number of

unmarked resonance points is finite, then ΓF has finite genus and can be compactified by two points.
The corresponding potentials are called algebraic-geometric (or finite-gap) at the zero energy level.
As shown in [5], the algebraic-geometric potentials are dense in the space of all periodic potentials.

Remark 2.5. By “pasting in” we mean that the boundaries of the “excised” and “pasted in”
domains are identified by means of the function w1 and the complex structure on the union of
the complement to the excised domain and the pasted in one is defined by the condition that the
holomorphic functions in this structure are those that are continuous on the gluing line.

3. The Fermi Curve of the Schrödinger Operator with Nonnegative Potential

The construction presented in the previous section allows us to consider ΓF as a kind of per-
turbation of the Fermi curve of the operator H = −Δ−E with any chosen constant E . In [5], for
definiteness, the constant E was set to 4. Varying this parameter, we can describe more effectively
the structure of the Fermi curve ΓF for the operator H = −Δ − E + v(x, y) when the periodic
function v is small enough, i.e., |v(x, y)| < ε, and the constant E is not an eigenvalue of H0 , i.e.,
E �= E|n|,|m|. Without loss of generality we will assume that the average of the perturbing potential
over the torus equals zero: 〈〈v〉〉 = 0.

In this case, the coefficients of the series defining formal Bloch and quasi-Bloch solutions are
bounded by the coefficients of the geometric progression with exponent ε, which automatically
guarantees the convergence of these series. Moreover, ε can be chosen so that there is no “central”
resonance domain in the construction of ΓF , i.e., ΓF is obtained by pasting in only the Riemann
surfaces Γ±

n,m for unmarked pairs of the resonant points and, as a consequence, ΓF is smooth. The

description of ΓF admits further effectivization when E < 0, which holds in the more general case
of nonnegative potentials. We present this description below.

Consider the function

p(k) :=
lnw1(k)

2π�1
= k − E

4k
.

The Riemann surface of the inverse function k(p) is a two-sheeted covering of the complex p-plane
with the two branch points ±p0 = ±1

2

√−E . For E < 0, we view this surface as being glued
from two copies of the p-plane cut along the real axis between the branch points ±p0 . The gluing
identifies the upper (lower) edge of the cut on one sheet with the lower (upper) edge of the cut on
the second sheet. In this realization the holomorphic involution σ maps p to −p on the same sheet,
and the antiholomorphic involution τ maps p to p̄ on the other sheet.

Let Π be the set consisting of a real number p0 > 0 and pairs of complex numbers {pjs, j =
1, 2}, where s is a finite or infinite set of pairs of integers (n �= 0,m). We call Π admissible if
p1n,m = −p2−n,−m, p2n,m = −p1−n,−m,

Im pjs =
n

2�1
, |pjs − p(k±n,m)| = o

(

1

n2 +m2

)

, (3.1)
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and the intervals [p1s, p
2
s] parallel to the real axis do not intersect. Note that if the set of indices

is finite, then the second set of conditions in (3.1) is empty. For an infinite set of indices, these
conditions mean that the corresponding pairs are asymptotically localized in neighborhoods of the
corresponding resonance points.

For each admissible set Π of data, we construct a Riemann surface Γ(Π) from two copies of
the complex p-plane with cuts between the points p0 and −p0 on both sheets, along the segments
[p1s, p

2
s] on the first sheet, and along the segments [p̄1s, p̄

2
s] on the second sheet by identifying the

upper (lower) edges of the cuts between p0 and −p0 and along each [p1s, p
2
s] on the first sheet with

the lower (upper) edges of the cut between p0 and −p0 and along [p̄1s, p̄
2
s] on the second sheet,

respectively. After gluing each of the cuts corresponds to a nontrivial cycle on the surface Γ(Π).
The respective cycles will be denoted by a0 and as .

Theorem 3.1. For any real positive periodic potential u(x, y) > 0 that can be analytically
extended to a neighborhood of real x, y , the Bloch solutions of Eq. (1.2) can be parameterized by the
points of the Riemann surface Γ(Π) corresponding to some admissible data set Π. The corresponding

function ψ̃ is meromorphic and has one pole on each of the cycles as .

Proof. For E < 0, the coordinates of the nodal points wi(k
±
nm) are real. As mentioned above, for

sufficiently small ε, the set of resonant indices contains only two elements, which can be identified
with (n,m,±) and (−n,−m,∓). It can be checked directly that

ψ(k±n,m) = ψ(k∓−n,−m), ψ+(k±n,m) = ψ(k±−n,−m), r±n,m = r∓−n,−m, (3.2)

where r±n,m := r(k±n,m) and the function r(k) is defined in (2.10). It follows from (3.2) and (2.13)

for w10 = w1(k
±
n,m,) that the monodromy matrix has the form

T (w1(k
±
nm)) = w2(k

±
nm)

(

1 κ
κ̄ 1

)

+O(ε2), (3.3)

where κ = (r∓−n,−m)−1〈〈ψ+(k∓−n,−m)vψ(k
±
n,m〉〉. Note that the diagonal elements of the monodromy

matrix equal 1 due to the assumption that the average of v equals zero.
From (3.3) it follows that the eigenvalues of the matrix T (w1(k

±
nm)) are real and distinct in the

first order in the parameter ε. Therefore, since the Fermi curve is invariant under τ , they should
be real in all orders. In other words, in a neighborhood of each unmarked pair of the resonance
points there is a “forbidden zone,” that is, a fixed oval of the anti-involution τ . Since the pole
divisor of the Bloch function is invariant under τ and there is only one pole in a neighborhood of
the resonance pair, it follows that this pole must lie on the oval as . This proves the theorem for
potentials of the form u = −E + v for E < 0 and sufficiently small v.

Change of notation. So far we denoted the Bloch solutions of Eq. (1.2) constructed with the

help of perturbation theory by ψ̃ . In the rest of the paper we will denote them by ψ(x, y, p), p ∈ ΓF .
Similarly, the Floquet multipliers will be denoted by wi(p).

Our next goal is to prove that the established properties of the Fermi curve and the pole divisor
of the Bloch function are stable with respect to a deformation of the potential u under which
u remains nonnegative. From the invariance of ΓF with respect to σ and τ it follows that the
described structure can change only if (i) the cycles as for distinct s touch each other (at this
moment the curve ΓF becomes singular) or (ii) there appears a pair of resonance points p, p′ on
ΓF such that wi(p) = wi(p

′) and these points are fixed under the involution στ , i.e., |wi(p)| = 1.
The same argument as in the proof of Theorem 2.2 in [5] proves that the periodicity of the

potential (reflected in the fact that on ΓF the functions wi(p) are defined) is an obstruction to the
merging of cycles as . An obstruction to the emergence of singularities of type (ii) is the nonnegativity
of u.

Lemma 3.2. The anti-involution στ of the Fermi curve ΓF corresponding to a nonnegative
potential has no fixed points.
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Proof. Suppose that there is a point on ΓF that is fixed under the anti-involution στ(p) = p.
By definition ψ = ψ(x, y, p) is a Bloch solution of Eq. (1.2). Let us multiply the left-hand side of
the equation by the dual Bloch function ψσ and integrate the resulting periodic function of x and
y over the torus (it is periodic because the Floquet multipliers of the function ψσ are inverse to
those of ψ). Integration by parts gives the equation

∫ 2π�1

0

∫ 2π�2

0
(∂xψ∂xψ

σ + ∂yψ∂yψ
σ + uψψσ) dx dy = 0.

From (1.6) it follows that ψσ = ψ̄. Therefore, if u � 0, then the left-hand side is strictly positive.
The obtained contradiction completes the proof of the theorem.

Remark 3.3. Note that the simplicity of the description of the Fermi curve as the curve cor-
responding to some admissible data set is misleading to some extent. By construction the function
p is multivalued on Γ(Π), but its multivaluedness reduces to adding an integer multiple of i/�1 ;
therefore, the function w1(p) = exp(2π�1p) is well defined on Γ(Π). Hence the curves of the form
Γ(Π) for any admissible set of data correspond to potentials periodic in the variable x. Periodicity
in y, which is equivalent to the existence on Γ(Π) of the second function w2 , gives additional tran-
scendental equations for admissible sets of data. Nevertheless, the description of the Fermi curves
in terms of admissible data turns out to be effective enough for the study of perturbed curves.

4. The Generalized Novikov–Veselov Construction

The goal of this section is to construct Schrödinger operators which are finite-gap (algebraic-
geometric) at the zero energy level in the case where this zero level is an eigenlevel.

Let Γ be a smooth algebraic curve with an involution σ having n+1 pairs of fixed points P± , pi± ,
i = 1, . . . , n. The curve Γ is a two-sheeted covering of the factor curve Γ0 := Γ/σ branched at the
fixed points. If Γ0 is of genus g0 , then by the Riemann–Hurwitz formula Γ has genus g = 2g0 + n.
Below it is assumed that neighborhoods of the marked points P± are endowed with fixed local
coordinates k−1

± which are odd with respect to the involution, i.e., k±(p) = −k±(σ(p)).
We say that a divisor D = γ1 + · · · + γg+n is admissible if the set of points γs and γσs is the

set of zeros of some meromorphic differential dΩ having simple poles at the fixed points of the
involution and residues satisfying the equations

resP± dΩ = ±1, respi+ dΩ = − respi− dΩ. (4.1)

Lemma 4.1. For a generic admissible divisor D , there is a unique Baker–Akhiezer function
ψ(x, y, p), p ∈ Γ, such that

(i) ψ is meromorphic on Γ \ P± and has at most simple poles at the points γs (if they are
distinct);

(ii) in a neighborhood of the points P± the function ψ has the form

ψ = ek±(x±iy)

( ∞
∑

s=0

ξ±s (x, y)k
−s
±

)

, k± = k±(p); (4.2)

(iii) its values at the points pi± satisfy the equations

ψ(x, y, pi+) = ψ(x, y, pi−); (4.3)

(iv) the coefficients ξ±0 in (4.2) equal

ξ+0 = 1, ξ−0 = 1. (4.4)

Proof. According to [4], the vector space of functions that satisfy the first two conditions (i)
and (ii) is of dimension n+ 1. Hence in the general position the n linear equations in (iii) and the
normalization ξ+0 = 1 of the coefficient uniquely determine ψ. The proof that the second equation
in (4.4) holds in this case is similar to that in [8].
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Indeed, consider the differential dΩ1 = ψψσdΩ, where dΩ is a meromorphic differential whose
zeros are the poles of the functions ψ and ψσ , so that dΩ1 has poles only at the points ri± outside the

marked points P± . By assumption the local coordinates k−1
± are odd with respect to σ. Therefore,

the exponential singularities of ψ and ψσ are canceled in the differential dΩ1 . Hence the differential
dΩ1 is meromorphic on Γ. The sum of all residues of a meromorphic differential equals 0. It follows
from (4.1) and (4.3) that the sum of residues of dΩ1 at each pair of points pi± equals 0. Hence

0 = resP+ ψψ
σdΩ + resP− ψψ

σdΩ = 1− (ξ−0 )
2.

A priori ξ−0 is a meromorphic function of its arguments. Therefore, it identically equals 1 or −1.
For x = y = 0, the function ψ equals 1 identically in p. Hence ξ−0 (0, 0) = 1, which implies (4.4).

The analytical properties of ψ are similar to those used in the construction of the so-called
“multisoliton solutions on the finite-gap background” of the KdV equation (see [3]). This makes it
possible to obtain an explicit, although cumbersome, expression for ψ in terms of the determinant
of an n× n matrix whose entries are expressed in terms of the Riemann theta-function. Our next
goal is to show that, for any n, the Baker–Akhiezer function admits a simple explicit expression in
terms of appropriately defined Prym theta-functions.

It is known that on Γ there is a basis of a- and b-cycles with canonical intersections matrix:
ai · aj = bi · bj = 0, ai · bj = δij ; moreover, in this basis the action of the involution σ has the form

σ(ai) = ai+g0 , σ(bi) = bi+g0 , i = 1, . . . , g0, (4.5)

and

σ(ai) = −ai, σ(bi) = −bi, i = 2g0 + 1, . . . , 2g0 + n. (4.6)

Let dωi be a normalized basis of holomorphic differentials on Γ (i.e.,
∮

aj
dωi = δij ). We introduce

the following holomorphic Prym differentials odd with respect to σ:

dui = dωi − dωi+g0 , i = 1, . . . , g0,

dui = 2dωi, i = g0 + 1, . . . , g0 + n.

Let Π denote the matrix of their b-periods, Πi,j =
∮

bi
duj , which defines the corresponding Prym

theta-function

θ(z|Π) :=
∑

m∈Zg+n

e2πi(z,m)+πi(m,Πm).

By A(p) we denote the vector (depending on the choice of a path) with coordinates Ai(p) =
∫ p
P+
dui

and by Ω±(p), the Abelian integrals Ω± =
∫ p
P+
dΩ± , where dΩ+(dΩ−) is the normalized (i.e., having

zero a-periods) meromorphic differential which has only one singularity (at P+(P−)) and is of the
form dΩ± = dk±(1 + O(k−2

± )). The definition of Ω+ needs clarification, since dΩ+ has a pole at

P+ . By the integral dΩ+ of the point P+ we mean the choice of the branch Ω+ = k+ +O(k−1
+ ) in

a neighborhood of P+ and the analytic continuation along the path. In what follows, it is assumed
that the paths in the definition of A(p) and Ω±(p) are the same.

Lemma 4.2. The Baker–Akhiezer function in Lemma 4.1 equals

ψ(x, y, p) =
θ(A(p) + zU+ + z̄U− + Z|Π)θ(Z|Π)
θ(zU+ + z̄U− + Z|Π)θ(A(p) + Z|Π) e

zΩ+(p)+z̄Ω−(p), (4.7)

where U+ and U− are the vectors with coordinates

U j
± =

1

2πi

∮

bj

dΩ±

and

Z = −
∑

s

A(γs) + K , (4.8)

where K is a constant vector.



32

Proof. It follows from the monodromy properties of the theta-function and the definition of the
vectors U± that the function ψ defined by the right-hand side of (4.7) is a single-valued function
of p ∈ Γ. It is easy to see that this function has the required exponential singularity at the marked
points P± . Outside these points the function ψ is meromorphic. Let us prove that its values at the
pairs of points pi± , i = 1, . . . , n, coincide.

The differentials dΩ± are odd with respect to the involution, i.e., σ∗(dΩ±) = −dΩ± . Therefore,

Ω±(pi+)−Ω±(pi−) =
∫ pi+

pi−
dΩ± =

1

2

∮

a2g0+i

dΩ± = 0. (4.9)

The Prym differentials are also odd. Therefore,
∫ pi+

pi−
duj =

1

2

∫

a2g0+i

duj = 0, j = 1, . . . , g0, (4.10)

∫ pi+

pi−
dug0+j =

1

2

∫

a2g0+i

dug0+j = δij ∈ Z.

Hence the coordinates of the vector A(pi+)−A(pi−) are integers. The periodicity of the theta-function
with respect to such vectors and relations (4.9) imply (4.3).

In a similar way one can check relations (4.4). The first of them is a direct consequence of the
definition of ψ by (4.7). To prove the second relation, consider an odd cycle a0 whose projection
on Γ0 is a path connecting the points P± . It is easy to see that it is homologous to the cycle

a0 = −
n
∑

i=1

a2g0+i ∈ H1(Γ;Z).

This observation and (4.10) imply that the coordinates of the vector A(P−) are integers. Hence the
second relation in (4.4) holds.

The pole divisor D = D(Z) of the function ψ given by (4.7) is a well-defined zero divisor of
the multivalued function θ(A(p)+Z|Π). A standard argument proves that this divisor is of degree
g + n. The proof of the relation (4.8) between the vector Z and the Prym–Abel transform of the
divisor D(Z) is also standard. To complete the proof of the lemma, it remains to prove the following
assertion.

Lemma 4.3. For a generic vector Z , the zero divisor D(Z) of θ(A(p) + Z|Π) is admissible,
i.e., the divisor D + Dσ is a zero divisor of a meromorphic differential with simple poles at the
fixed points of σ and residues satisfying (4.1).

We prove this statement after proving the following theorem, which is the main result of this
section.

Theorem 4.4. The Baker–Akhiezer function ψ given by formula (4.7) where Z is a generic
vector is a solution of Eq. (1.2) with potential

u(x, y) = −2Δ ln θ(zU+ + z̄U− + Z|Π) + E, E := 4
dΩ−
d(k−1

+ )
(P+). (4.11)

If

2π�1(U+ + U−) = Na +ΠN b, 2πi�2(U+ − U−) =Ma +ΠM b (4.12)

for some integer vectors N1 , N2 and M1 , M2 , then the function u(x, y) is (2π�1, 2π�2)-periodic and
the functions ψi := ψ(x, y, p±i ) are eigenfunctions of the operator H on the space of (anti)periodic
functions.

Proof. As shown above, for any Z , the function ψ satisfies all conditions defining the Baker–
Akhiezer function for some divisor D(Z). An argument standard in the finite gap theory and based
only on the uniqueness of the Baker–Akhiezer function proves (1.2) with potential u = 4∂z̄ξ

+
1 , where
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ξ+1 is the coefficient in the expansion (4.2) of the function ψ at the point P+ . In a neighborhood
of this point we have the equations

A(p) = −2U+k
−1
+ +O(k−2

+ ), Ω−(p) = Ek−1
+ +O(k−2

+ ). (4.13)

The first of them is a consequence of the Riemann bilinear relations. The substitution of (4.13)
into (4.7) gives (4.11). In the general case, it defines a meromorphic quasi-periodic function of the
variables (x, y). For comparison with the result of the previous section, consider the differentials

dp1 : = dΩ+ + dΩ− −
g0+n
∑

j=0

iνbjduj, (4.14)

dp2 : = i(dΩ+ − dΩ−)−
g0+n
∑

j=0

iμbjduj , (4.15)

where the νbj and μbj are the coordinates of real vectors defined by the equations

2π(U+ + U−) = νa +Πνb, 2πi(U+ − U−) = μa +Πμb.

The periods of these differentials over the basic cycles aj , bj ∈ H1(Γ,Z) equal
∮

aj

dp1 = −iνbj ,
∮

bj

dp1 = iνaj ,

∮

aj

dp2 = −iμbj,
∮

bj

dp2 = iμaj .

This implies that if relations (4.12) hold, then the functions

wj(p) = exp

(

2π�j

∫ p

dpj

)

(4.16)

are single-valued on the curve Γ. They are holomorphic outside the marked points P± , at which they
have exponential singularities. Moreover, note that, by virtue of (4.9), we have wj(p

i
+) = wj(p

i−)
for all i = 1, n. Therefore, the uniqueness of the Baker–Akhiezer function implies (1.3). Hence the
Baker–Akhiezer function is a Bloch solution of the Schrödinger equation (1.2). The differentials
dΩ± are odd with respect to the involution σ. Hence wj(σ(p)) = w−1

j (p). The points pi± are fixed

under σ. Therefore, w2
j (p

i±) = 1. This completes the proof of the theorem.

Let us now return to the proof of Lemma 4.3. Since the lemma is not used in the proof of the
main theorem, we present only a sketch of its proof.

As shown above, the function ψ given by (4.7) satisfies the Schrödinger equation. The same
argument as in the proof of Lemma 2.3 in [5] gives the equation

dΩ :=
2i dp1

〈ψyψσ − ψψσ
y 〉x

=
−2i dp2

〈ψxψσ − ψψσ
x 〉y

,

where, as above, dp1 and dp2 are the differentials given by (4.14) and 〈·〉x and 〈·〉y denote averaging
over the variables x and y, respectively.

The differential dΩ is meromorphic on Γ. Its zeros are the poles of the functions ψ and ψσ , and
it has poles at the fixed points of σ. From the definition of the Baker–Akhiezer function it follows
that its residues at the points P± equal ±1. The proof that its residues at the other branch points
satisfy relations (4.1) requires additional arguments.

Let us prove these relations for the curves corresponding to periodic potentials. For such curves,
Eq. (4.16) defines a single-valued function w1(p). Let us fix a complex number w10 and consider
the points on Γ for which w1(pν) = w10 . We set ψν = ψ(x, y, pν) and ψ+

ν = ψ(x, y, σ(p)). The
same argument as in the proof of Lemma 2.4 in [5] shows that, for any periodic function f(x), the
following series converge to the function f(x):

f =
∑

ν

r−1
ν 〈ψ+

ν f〉x∂yψν = −
∑

ν

r−1
ν 〈∂yψ+

ν f〉xψν , (4.17)
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where rν := 〈∂yψνψ
σ
ν −ψν∂yψ

σ
ν 〉x . Strictly speaking, the equation holds for w2

10 �= 1, since otherwise
some of the points pν are the branch points pi± , at which rν = 0. The left-hand side of (4.17) does

not depend on w10 . Therefore, letting w
2
10 → 1, we see that the singular terms of the series (4.17)

for w2
10 = 1 cancel each other. Since f is arbitrary, it follows that the cancellation takes place for

each pair of marked points. This is equivalent to (4.1), which proves Lemma 4.3.

Remark 4.5. The space of all curves Γ corresponding to periodic Schrödinger operators with
fixed periods is of dimension g0− 1. Indeed, every such curve Γ is defined by a factor curve Γ0 and
a set of 2n+ 2 points on it. For fixed integer vectors Na , Ma , N b , and M b , the conditions on the
periods of the differentials stated in the theorem are equivalent to a system of 2(g0 +n) equations.
By definition the differentials depend also on the choice of the curve and the local coordinates at
the marked points P± . In fact, they depend only on the first jet (the leading term) of the local
coordinate. A linear transformation of the two-dimensional space of these jets corresponds to a
linear transformation of the two periods of the potential. Hence the total dimension is equal to
3g0 − 3 + 2n + 2− 2(g0 + n) = g0 − 1.

As mentioned above, in the general case, the potentials (4.11) of the Schrödinger operator
are meromorphic functions of their arguments. A potential takes real values at real values of the
arguments if and only if there is an antiholomorphic involution τ on Γ which commutes with σ,
i.e., στ = τσ (or, equivalently, the factor curve Γ0 is real) and the following conditions on the
parameter determining the Baker–Akhiezer function are satisfied:

τ(P+) = P−, τ∗(k+) = k̄−, τ(p+i + pi−) = (p+i + pi−), τ(D) = D.

Note that the third condition is equivalent to the condition that, for each i, one has either τ(pi±) =
pi± or τ(pi±) = pi∓ .

The reality of the potential corresponding to data satisfying the constraints above follows from
the relation

ψ̄(τ(p)) = ψ(p),

which, in turn, follows from the uniqueness of the Baker–Akhiezer function and the fact that the
analytical properties of the two functions on the left- and right-hand sides of the relation coincide.

Below we present two types of conditions sufficient for the corresponding potentials of the
Schrödinger equation to be regular. The first of them is a direct generalization of the constraints
proposed in [8].

Recall that, for any antiholomorphic involution of a smooth algebraic curve of genus g, the
number of fixed ovals of the antiholomorphic involution is at most g+1. The curves for which this
number equals g + 1 are called M -curves.

Theorem 4.6. Suppose that Γ is an M -curve whose antiholomorphic involution has fixed ovals
a0, a1, . . . , ag and holomorphic involutions acts as in (4.5) and (4.6). Suppose also that pi± ∈ a2g0+i .
Let the points γs of an admissible divisor D of degree g + n be such that each of the fixed ovals
a1, . . . , a2g0 and each of the segments into which the ovals a2g0+i are partitioned by the points pi±
contains precisely one of these points. Then the corresponding potential is real and nonsingular.

Proof. The proof is standard. From formula (4.7) it follows that the poles of the potential
correspond to (x, y) at which one of the zeros of ψ coincides with P+ . This is impossible, since, for
all (x, y), each of the ovals a1, . . . , a2g0 and each of the segments a2g0+i contains at least one zero,
and the total number of zeros equals g + n = 2g0 + 2n. The fact that there is at least one zero on
each of the ovals and segments (at whose endpoints the values of the function ψ are equal) is a
corollary of the fact that the total number of zeros and poles of a periodic function is always even
and the assumption that each of the ovals and the segments contains one pole.

The second type of conditions sufficient for the potential to be regular is similar to that in the
theory of the KP1 equation (see [6]).

Theorem 4.7. Suppose that the antiholonomic involution στ is of separating type, i.e., the
complement to its fixed ovals a1, . . . , ak is a disjoint union of two domains Γ± , στ(Γ+) = Γ− .
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Suppose also that pi± ∈ Γ± , the differential dΩ defining an admissible divisor D is positive on the
ovals as with respect to the orientation induced from the domain Γ+ , and ci := resp+i

dΩ < 0. Then

the corresponding potential of the Schrödinger operator is real and nonsingular.

Proof. Consider the nonnormalized Baker–Akhiezer function

φ(x, y, p) := θ(zU+ + z̄U− + Z|Π)ψ(x, y, p).
It satisfies the same analytical conditions as ψ except the normalization condition (4.4). We have
already proved that the first factor in the definition of φ is real. Hence the function φ satisfies the
relation φ(x, y, τ(p)) = φ̄(x, y, p). By definition the ovals as are fixed under στ , and their union is

the boundary Γ+ . Hence, for the differential dΩ̂ = φφσdΩ, we have
∮

∂Γ+

d̂Ω−
n
∑

i=1

respi+ d
̂Ω =

∮

∂Γ+

|φ|2 dΩ −
n
∑

i=1

ci|φ(x, y, pi+)|2 > 0 (4.18)

for any values of x and y. Suppose that the potential is singular at (x0, y0). Then φ(x0, y0, P+) = 0.

Hence the differential dΩ̂(x0, y0, p) has no pole at P+ , i.e., in the domain Γ+ it has poles only at
the points pi+ . Therefore, the left-hand side of Eq. (4.18) equals zero for x = x0 , y = y0 . This is a
contradiction.

In conclusion, as an example, we present Schrödinger operators integrable at the zero eigenlevel
corresponding to hyperelliptic curves. They are a particular case of the curves considered in the
framework of the generalized Novikov–Veselov construction. Without loss of generality we can
assume that a hyperelliptic curve Γ with n+ 1 pairs of branch points is given by the equation

Y 2 = X
n
∏

i=1

(X − pi+)(X − pi−).

We identify the branch points X = 0,∞ with the marked points P+ and P− , respectively. As
the basis a-cycles we choose the preimages of the cuts between the points pi± and denote the
corresponding matrix of b-periods of the normalized holomorphic differentials on Γ by B . Then
the Prym matrix introduced above equals Π = 2B .

The values of ψ in Lemma 4.2 at the points pj± equal

ψj(x, y) :=
θ(Bj + zU+ + z̄U− + Z|2B)θ(Z|2B)

θ(zU+ + z̄U− + Z|2B)θ(Bj + Z|2B)
ezU

j
++z̄Uj

− . (4.19)

Corollary 4.8. The functions ψi given by formula (4.19) are solutions of the Schrödinger
equation (1.2) with potential

u(z, z̄) = −2Δ ln θ(zU+ + z̄U− + Z|2B) + E, E = 4
dΩ−
d(k−1

+ )
(P+).

The two types of sufficient conditions for the potential to be real and regular that were presented
above correspond to two types of real hyperelliptic curves. The first one corresponds to real branch
points pi± = p̄i± and the second one, to the case pi± = p̄i∓ .
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