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1. Introduction

In the Gaudin model associated with a Lie algebra one considers a commutative family
of linear operators (Hamiltonians) acting on a tensor product of representations of the Lie
algebra. To find common eigenvectors of Hamiltonians one considers a suitable system of
Bethe ansatz equations, and then assigns an eigenvector to each solution of the system. That
construction is called the Bethe ansatz method.

It turns out that the set of solutions of the Bethe ansatz equations is an interesting object.

For example, for the affine Lie algebra ŝlN and its trivial representation the associated system
of the Bethe ansatz equations has the form

∑

i′ 6=i

2

u
(n)
i − u

(n)
i′

−

kn+1∑

i′=1

1

u
(n)
i − u

(n+1)
i′

−

kn−1∑

i′=1

1

u
(n)
i − u

(n−1)
i′

= 0,(1.1)

where n = 1, . . . , N and i = 1, . . . , kn. The system itself depends on the choice of nonnegative
integers k1, . . . , kN , which must satisfy the equation

N∑

j=1

(kj − kj+1)
2

2
−

N∑

j=1

kj = 0 .(1.2)

Here we adopt the notations kN+n = kn and u
(N+n)
i = u

(n)
i for all i, n. The set of solutions of

such a system forms one cell or an empty set. In [VWr] a family of commuting flows, acting
on such a cell, was constructed. The family of flows was identified with the flows of the N
mKdV integrable hierarchy.

The initial goal of this paper was to extend these results to the ŝlN XXX quantum inte-

grable model, associated with the trivial representation of ŝlN . In this case the Bethe ansatz
equations take the form

kn−1∏

ℓ=1

(u
(n)
i − u

(n−1)
ℓ + 1)

kn∏

ℓ=1

(u
(n)
i − u

(n)
ℓ − 1)

kn+1∏

ℓ=1

(u
(n)
i − u

(n+1)
ℓ )(1.3)

+

kn−1∏

ℓ=1

(u
(n)
i − u

(n−1)
ℓ )

kn∏

ℓ=1

(u
(n)
i − u

(n)
ℓ + 1)

kn+1∏

ℓ=1

(u
(n)
i − u

(n+1)
ℓ − 1) = 0 ,

where n = 1, . . . , N , i = 1, . . . , kn, and the parameters k1, . . . , kN still satisfy equation (1.2).

It turns out that we can do much more than just simple identification with a proper
discrete analog of the N mKdV hierarchy. Roughly speaking we explicitly solve equations
(1.3) using interplay with the theory of finite-dimensional integrable systems of particles,
which are known to be equivalent to the theory of rational solutions of basic hierarchies
considered in the framework of the theory of integrable partial differential, differential-
difference and difference-difference equations. One way to write any solution of the Bethe
ansatz equations (1.3) is to start with a suitable matrix A and write the polynomials

(yn(x) =
∏ki

i=1(x−u
(n)
i ))Nn=1 as discrete Wronskians of some auxiliary polynomials in x asso-

ciated with A, see Theorem 7.9. Another way to write any solution is to start with a suitable
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flag in some infinite-dimensional vector space and write these polynomials (yn(x))
N
n=1 as dis-

crete Wronskians of some auxiliary polynomials in x associated with the flag, see Corollary
10.11.

In the remarkable paper [AMM] it was observed that the dynamics of poles of the elliptic
(rational or trigonometric) solutions of the Korteweg – de Vries equation (KdV) can be de-
scribed in terms of commuting flows of the elliptic (rational or trigonometric) Calogero-Moser
(CM) system restricted to the space of stationary points of the CM system. In [K3] and
[K6] this constrained correspondence between the theory of the elliptic CM system and the
theory of the elliptic solutions of the KdV equation was extended to a similar construction of
solutions of the KP equation in terms of the flows of the Calogero-Moser system. Moreover
it was discovered for the first time that this correspondence of solutions can be established
at the level of auxiliary linear problems.

In the rational case, which we consider in this paper, the corresponding result is as follows:
the linear equation

(1.4) (∂t − ∂2x + u(x, t))ψ(x, t) = 0

with a rational in x potential u(x, t) vanishing as infinity, u(x, t) → 0 as x → ∞, has a
rational in x solution if and only if the potential u(x, t) is of the form

(1.5) u(x, t) = 2
k∑

i=1

(x− ui(t))
−2 = −2∂2x ln y(x, t),

and its poles ui(t) (a.k.a. the zeros of the polynomial y(x, t)) as functions of t satisfy the
equations of motion of the rational CM system.

Recall, that the rational CM system with k particles is a Hamiltonian system with co-
ordinates u = (u1, . . . , uk), momentums p = (p1, . . . , pk), the canonical Poisson brackets
{ui, pj} = δij, and the Hamiltonian

(1.6) H =
1

2

k∑

i=1

p2i +
∑

i 6=j

1

(ui − uj)2
.

The corresponding equations of motion,

(1.7) üi = 2
∑

j 6=i

1

(ui − uj)3
, i = 1, . . . , k,

admit the Lax presentation L̇ = [M,L] with

(1.8) Lij = piδij + 2
1− δij
ui − uj

, pi = u̇i .

The commuting flows, generated by the integrals Hk = k−1 trLk, are called the hierarchy of
the rational CM system. Note that the Hamiltonian H equals H2.

It was shown in [KZ] that the linear equation

(1.9) ∂tψ(x, t) = ψ(x+ 1, t) + w(x, t)ψ(x, t)
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with

(1.10) w(x, t) = ∂t ln

(
y(x+ 1, t)

y(x, t)

)
,

where y(x, t) is a polynomial in x, has a solution rational in x if and only if the zeros ui(t) of
y(x, t) satisfy the equations of motion of the rational Ruijesenaars-Schneider (RS) system.

The rational RS system with k particles is a Hamiltonian system with coordinates u =
(u1, . . . , uk), momentums p = (p1, . . . , pk), the canonical Poisson brackets {ui, pj} = δij , and
the Hamiltonian

(1.11) H(u, p) =

k∑

i=1

γi

where

(1.12) γi := epi
∏

j 6=i

(
(ui − uj − 1)(ui − uj + 1)

(ui − uj)2

)1/2

.

It is a completely integrable Hamiltonian system, whose equations of motion,

u̇i = γi,(1.13)

γ̇i =
∑

j 6=i

γiγj

(
1

ui − uj − 1
+

1

ui − uj + 1
−

2

ui − uj

)
, i = 1, . . . , k,(1.14)

admit the Lax representation L̇ = [M,L], where

(1.15) Lij(u, γ) =
γi

ui − uj − 1
, i, j = 1, . . . , k,

(1.16) Mij =

(∑

ℓ 6=i

γℓ
ui − uℓ

+
∑

ℓ

γℓ
ui − uℓ + 1

)
δij + (1− δij)

γi
ui − uj

.

The functions Hm = trLm are integrals of the system. Note that the Hamiltonian H of the
system equals H1. These integrals are in involution, and hence generate commuting flows
called the rational RS hierarchy.

A scheme, in which an integrable system of particles arises as a condition for a linear
equation with elliptic (trigonometric, rational) coefficients to have a double Bloch solution
(trigonometric, rational), was called in [KZ] a generating linear problems scheme.

The next step had been done in [KLWZ]. There the system of linear equations

(1.17) ψn+1(x) = ψn(x+ 1)− vn(x)ψn(x), n ∈ Z,

with respect to unknown functions (ψn(x))n∈Z was considered with

vn(x) =
yn(x)yn+1(x+ 1)

yn(x+ 1)yn+1(x)
,

where (yn(x))n∈Z is a given sequence of polynomials. It was shown that system (1.17) has a
solution (ψn(x))n∈Z rational in x with the poles of ψn(x) only at the zeros of yn(x), if and

only if the zeros (u
(n)
i )kni=1 of yn(x) satisfy the Bethe ansatz equation (1.3).
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We stress that in [KLWZ] the Bethe ansatz equations were considered for sequences of
polynomials without the periodicity assumption that yn(x) = yn+N(x) for some N .

Remark. In [K7] and [K8] all three linear problems with y(x, t) being an entire function in x
were used for the proof of the remarkable Welter’s trisecant conjecture on the characterization
of the Jacobians of smooth algebraic curves.

In this paper we apply these ideas to relate solutions of the N -periodic Bethe ansatz
equations (1.3) with the equations of motion in the N -tuple of coherent rational Ruijesenaars-
Schneider systems with respectively k1, . . . , kN particles.

The paper is organized as follows. In Section 2 we reformulate the Bethe ansatz equations
(1.3) and prove formula (1.2). In Section 3 we describe the procedure of generation of
new solutions of the system of Bethe ansatz equations, if one solution is given. Theorem
3.4 says that all solutions are obtained from the single solution, namely, from the solution
corresponding to the case of k1 = · · · = kN = 0.

In Section 4 we start using the generating linear problem (1.17) and its interplay with
two other generating linear problems. Having a solution of the Bethe ansatz equations we
construct a family of solutions (ψn(x, z)) of (1.17) parameterized by a complex parameter
z, see Theorem 4.2. The construction reveals an unexpected connection with the theory of
the RS system. Namely, one of the steps in the proof of Theorem 4.2 can be seen as a map
from the space of N -tuples of polynomials (yn(x)) representing solutions of the Bethe ansatz
equations to the product of N phase spaces of the rational RS systems with respectively
k1, . . . , kN particles, i.e. as the map

(1.18) (yn) 7−→ (u(n), γ(n)) , n = 1, . . . , N,

where γ
(n)
i are defined in (4.4). On each of these phase spaces we define commuting flows

with some times t = (t1, t2, . . . ). That definition induces commuting flows with times t on
the product of the phase spaces. One of our main results is the statement that the image of
this map is invariant under these commuting flows on the product of the phase spaces, see
Theorem 7.10.

In Section 5 we consider the functions (ψn(x, z)), constructed in Theorem 4.2, and study
their analytic properties with respect to the spectral parameter z. In this way we identify
the functions (ψn(x, z)) with a particular case of more general notion of the so-called Baker-
Akhiezer functions. The results of Section 5 can be seen as a construction of the direct
spectral transform for the rational RS system. To our surprise we were unable to find in the
literature such a construction in its full generality.

The analogous result for the rational CM system was obtained in [W]. Our construction
of the direct spectral transform is different from the one in [W]. It is pure algebraic and does
not require the use of infinite dimensional Grassmanians, whose definition involves elements
of real analysis, in particular, of the theory of Fredholm operators.

In Section 6 we write equations for zeros of the polynomials obtained by the construction of
the Baker-Akhiezer functions corresponding to the spectral data of the rational RS systems.

In Section 7.1 we identify the spectral data corresponding to solutions of the N -periodic
Bethe ansatz equations. The rest of Section 7 is on the inverse spectral transform. First
we construct a family of solutions of the generating linear problem starting from a certain
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matrix A, see Theorem 7.4. That is done without any N -periodicity assumptions. Then in
Section 7.6 we describe the matrices A that give N -periodic answers. Theorem 7.9 can be
seen as one of our main results.

For completeness in Section 8 we briefly present the integrable hierarchy, whose rational
solutions describe the commuting flows on the space of solutions of the Bethe ansatz equa-
tions. We call it the discrete N mKdV hierarchy. Section 8.6 contains a short remark of
discrete Miura opers.

In Section 9 we discuss combinatorial data that will be used in Section 10. In Section 10 we
identify solutions of the Bethe ansatz equations with points of a suitable infinite dimensional
Grassmannian. We introduce a family of commuting flows on the Grassmannian and identify
the flows induced on the space of solutions of the Bethe ansatz equations with the flows of
the discrete N mKdV hierarchy, introduced in Section 8.

2. Incarnations of the Bethe ansatz equations

2.1. Bethe ansatz equations. Let N > 2 be a positive integer, ~k = (k1, . . . , kN) ∈ ZN
>0.

Denote k := k1+ · · ·+kN . Consider C
k with coordinates u collected into N groups, the n-th

group consists of kn variables,

u = (u(1), . . . , u(N)), u(n) = (u
(n)
1 , . . . , u

(n)
kn

).

We adopt the notations kN+n = kn and u
(N+n)
i = u

(n)
i for all i, n.

The Bethe ansatz equations is the following system of k equations:

kn−1∏

ℓ=1

(u
(n)
i − u

(n−1)
ℓ + 1)

kn∏

ℓ=1

(u
(n)
i − u

(n)
ℓ − 1)

kn+1∏

ℓ=1

(u
(n)
i − u

(n+1)
ℓ )(2.1)

+

kn−1∏

ℓ=1

(u
(n)
i − u

(n−1)
ℓ )

kn∏

ℓ=1

(u
(n)
i − u

(n)
ℓ + 1)

kn+1∏

ℓ=1

(u
(n)
i − u

(n+1)
ℓ − 1) = 0 ,

where n = 1, . . . , N , i = 1, . . . , kn.

These are the Bethe ansatz equations associated with the XXX quantum integrable model

of the affine Lie algebra ŝlN and the single representation with zero highest weight. To
study the associated Hamiltonians one assigns an eigenvector of Hamiltonians to a solution
of the Bethe ansatz equations. We will not discuss this topic in this paper. Different
versions of the Bethe ansatz equations associated with Lie algebras see, for example in
[OW, MV2, MV3, MV4].

Remark. Equation (2.1) withN = 2 is the quasi-classical limit of the Bethe ansatz equations
derived in [AL] for the Quantum Internal Long Wave model.

2.2. Polynomials representing a solution. Given u = (u
(n)
i ) ∈ Ck, introduce an N -tuple

of polynomials y = (y1(x), . . . , yN(x)),

yn(x) = cn

kn∏

i=1

(x− u
(j)
i ), cn 6= 0.(2.2)
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We adopt the notations yN+n(x) = yn(x) for any n ∈ Z. Each polynomial is considered up
to multiplication by a nonzero number. The N -tuple defines a point in the direct product
(P(C[x]))N , where P(C[x]) is the projective space associated with C[x]. We say that the
tuple y represents the point u.

Denote

(2.3) Fn(x) :=
yn−1(x+ 1)yn+1(x)

yn(x+ 1)yn(x)
, Ln(x) :=

yn(x+ 1)yn+1(x− 1)

yn(x)yn+1(x)
,

Lemma 2.1. Each equation in (2.1) can be reformulated as one of the following equations:

(2.4) yn−1(u
(n)
j + 1)yn(u

(n)
j − 1)yn+1(u

(n)
j ) + yn−1(u

(n)
j )yn(u

(n)
j + 1)yn+1(u

(n)
j − 1) = 0,

res
x=u

(n)
i

(Fn(x) + Fn(x− 1)) = 0,(2.5)

res
x=u

(n)
i

(Ln(x) + Ln−1(x)) = 0.(2.6)

�

An important corollary of (2.6) is

Corollary 2.2. A generic N-tuple y represents a solution of the Bethe ansatz equations
(2.1) if and only if the following equation holds:

L(x) :=
N∑

n=1

Ln(x) = N.(2.7)

This equation is a discrete version of “the new form” of the Bethe ansatz equations in the
Gaudin model of an arbitrary Kac-Moody algebra, see [MSTV].

Proof. Equation (2.6) is equivalent to the condition that the function L(x) defined in (2.7)
has no poles. Each of the function Ln(x) tends to 1 as x→ ∞. Hence, L(x) = N . �

In its own turn Corollary 2.2 directly implies the following important statement. Consider
the quadratic form

Q(k1, . . . , kN) =
N∑

j=1

kj(kj − 1)− k1k2 − · · · − kN−1kN − kNk1

=
N∑

j=1

(kj − kj+1)
2

2
−

N∑

j=1

kj ,

introduced in [MV3].

Corollary 2.3. If an N-tuple of polynomials (y1, . . . , yN) of degrees (k1, . . . , kN) represents
a solution of the Bethe ansatz equations (2.1), then then

(2.8) Q(k1, . . . , kN) = 0.

Proof. Expanding at infinity, we observe that L(x)−N = Q(k1, . . . , kN)x
−2 +O(x−3). �

Corollary 2.4. If an N-tuple of polynomials (y1, . . . , yN) of degrees k1 = · · · = kN represents
a solution of the Bethe ansatz equations (2.1), then k1 = · · · = kN = 0. �
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Remark. Equations (2.4), (2.5), (2.7) can be thought of as incarnations of the Bethe ansatz
equations (2.1).

3. Generation of solutions of Bethe ansatz equations

3.1. Discrete Wronskian. For arbitrary functions f1(x), . . . , fm(x) introduces the discrete
Wronskian by the formula:

Ŵ (f1, . . . , fm) = detmi,j=1

(
fi(x+ j − 1)

)
.(3.1)

For example,

Ŵ (f1, f2) = f1(x)f2(x+ 1)− f1(x+ 1)f2(x).

Denote

∆f(x) = f(x+ 1)− f(x) , ∆(n+1)f(x) = ∆(∆(n)f)(x) , ∆(0)f(x) = f(x) .(3.2)

Then

Ŵ (f1, . . . , fn) = detni,j=1(∆
j−1fi(x)).(3.3)

Lemma 3.1 ([MV2]). We have

Ŵ (1, f1, ..., fn)(x) = Ŵ (∆f1, . . . ,∆fn) .(3.4)

Lemma 3.2 ([MV2, Lemma 9.4]). For functions f1(x), . . . , fn(x), g1(x), g2(x) we have

Ŵ (Ŵ (f1, . . . , fn, g1), Ŵ (f1, . . . , fn, g2))(x)(3.5)

= Ŵ (f1, . . . , fn)(x) Ŵ (f1, . . . , fn, g1, g2)(x+ 1) .

3.2. Elementary generation. We say that an N -tuple of polynomials y = (y1(x), . . . ,
yN(x)) is generic if for any n, the polynomial yn(x) has no common zeros with the polynomials
yn(x+ 1), yn−1(x+ 1), yn+1(x).

We say that an N -tuple of polynomials y = (y1(x), . . . , yN(x)) is fertile, if for any n the
first order difference equation

Ŵ (yn, ỹn) = yn−1(x+ 1)yn+1(x)(3.6)

with respect to ỹn(x) has a polynomial solution.
If ỹn(x) is a polynomial solution of (3.6), then all other polynomials solutions are of the

form

ỹn(x, c) = ỹn(x) + cyn(x)

for c ∈ C. The tuples

y(n)(c) := (y1(x), . . . , ỹn(x, c), . . . , yN(x)) ∈ (P(C[x]))N(3.7)

form a one-parameter family. This family is called the generation of tuples from y in the n-th
direction. A tuple of this family is called an immediate descendant of y in the n-th direction.

For example, the N -tuple

y∅ = (1, . . . , 1)(3.8)

of constant polynomials is fertile, and y∅,(n)(c) = (1, . . . , 1, x+ c, 1 . . . , 1).
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It is convenient to think that y∅ represents a solution of the Bethe ansatz equations with
k = 0, see (2.5).

Theorem 3.3 ([MV2], cf. [MV1]).

(i) A generic tuple y = (y1, . . . , yN) represents a solution of the Bethe ansatz equations
(2.1) if and only if y is fertile.

(ii) Let y represent a solution of the Bethe ansatz equations (2.1), n ∈ {1, . . . , N}, and
y(n)(c) an immediate descendant of y, then y(n)(c) is fertile for any c ∈ C.

(iii) If y is generic and fertile, then for almost all values of the parameter c ∈ C the
corresponding n-tuple y(n)(c) is generic. The exceptions form a finite set in C.

3.3. Degree increasing generation. For n = 1, . . . , N , let kn = deg yn. The polynomial
ỹn in (3.6) is of degree kn or k̃n = kn−1+ kn+1+1− kn. We say that the generation is degree

increasing if k̃n > kn. In that case deg ỹn = k̃n for all c.

If the generation is degree increasing, we will normalize the family (3.7) and construct a
map Yy,n : C → (C[x])N as follows. First we multiply the polynomials y1, . . . , yN by numbers
to make them monic. Then we choose a monic polynomial yn,0(x) satisfying the equation

Ŵ (yn, yn,0) = const yn−1(x+1)yn+1(x) and such that the coefficient of xkn in ỹn,0(x) equals
zero. We define

ỹn(x, c) = yn,0(x) + cyn(x)(3.9)

and

Yy,n : C → (C[x])N , c 7→ y(n)(c) = (y1(x), . . . , ỹn(x, c), . . . , yN(x)).(3.10)

All polynomials of the tuple y(n)(c) are monic.

3.4. Degree-transformations and generation of vectors of integers. For j = 1, . . . , N ,
the degree-transformation

~k = (k1, . . . , kN) 7→ ~k(j) = (k1, . . . , kj−1, kj−1 + kj+1 − kj + 1, kj+1, . . . , kN)(3.11)

corresponds to the shifted action of the affine reflection wj ∈ WAN−1
, where WAN−1

is the
affine Weyl group of type AN−1 and w1, . . . , wN are its standard generators, see Lemma 3.11
in [MV1] for more detail.

We take formula (3.11) as the definition of degree-transformations:

wj : ~k = (k1, . . . , kN) 7→ ~k(j) = (k1, . . . , kj−1 + kj+1 − kj + 1, . . . , kN)(3.12)

for j = 1, . . . , N . The degree-transformations act on arbitrary vectors ~k = (k1, . . . , kN).

In this formula we consider the indices of the coordinates modulo N , that is, we have
kN+j = kj for all j.

We start with the vector ~k∅ = (0, . . . , 0) and a sequence J = (j1, j2, . . . , jm) of integers,

1 6 ji 6 N . We apply the corresponding degree transformations to the vector ~k∅ and obtain

a sequence of vectors ~k∅, ~k(j1) := wj1
~k∅, ~k(j1,j2) := wj2wj1

~k∅,. . . ,

~kJ := wjm . . . wj2wj1
~k∅.(3.13)

We say that the vector ~kJ is generated from (0, . . . , 0) in the direction of J .
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We call the sequence J degree increasing if for every i the transformation wji applied to

wji−1
. . . wj1

~k∅ increases the ji-th coordinate.

3.5. Multistep generation. Let J = (j1, . . . , jm) be a degree increasing sequence of inte-
gers. Starting from y∅ = (1, . . . , 1) and J , we construct, by induction on m, a map

Y J : C
m → (C[x])N .

If J = ∅, the map Y ∅ is the map C0 = (pt) 7→ y∅. If m = 1 and J = (j1), the map
Y (j1) : C → (C[x])N is given by formula (3.10). More precisely,

Y (j1) : C 7→ (C[x])N , c 7→ (1, . . . , 1, x+ c, 1 . . . , 1),

where x+ c stands at the j1-th position. By Theorem 3.3 all tuples in the image are fertile
and almost all tuples are generic (in this example all tuples are generic).

Assume that for J̃ = (j1, . . . , jm−1), the map Y J̃ is already constructed. To obtain Y J

we apply the generation procedure in the jm-th direction to every tuple of the image of Y J̃ .
More precisely, if

Y J̃ : c̃ = (c1, . . . , cm−1) 7→ (y1(x, c̃), . . . , yN(x, c̃)).(3.14)

Then

(3.15)

Y J : Cm 7→ (C[x])N , (c̃, cm) 7→ (y1(x, c̃), . . . , yjm,0(x, c̃) + cmyjm(x, c̃), . . . , yN(x, c̃)),

see formula (3.9). The map Y J is called the generation of N-tuples from y∅ in the J-th
direction.

All tuples in the image of Y J are fertile and almost all tuples are generic. For any c ∈ C
m

the N -tuple Y J(c) consists of monic polynomials. The degree vector of this tuple equals ~kJ ,
see (3.13).

The set of all tuples (y1, . . . , yN) ∈ (C[x])N obtain from y∅ = (1, . . . , 1) by generations in
all degree increasing directions will be called the population of N-tuples generated from y∅.

3.6. Population generated from y∅.

Theorem 3.4 ([MV4]). If an N-tuple of polynomials y = (y1, . . . , yN) with degree vector ~k
represents a solution of the Bethe ansatz equations (2.1), then y is a point of the population
generated from y∅ by degree increasing generations, that is, there exist a degree increasing
sequence J = (j1, . . . , jm) and a point c ∈ Cm such that y = Y J(c).

Moreover, for any other N-tuple y′, representing a solution of the Bethe ansatz equations

(2.1) and having the same degree vector ~k, there is a point c′ ∈ C
m such that y′ = Y J(c′).

By Theorem 3.4 the N -tuples y, representing solutions of the Bethe ansatz equations (2.1)

with the same degree vector ~k, form one cell Cm.

Proof. The proof of Theorem 3.4 is word by word the same as the proof of [MV5, Theorem
3.8], although the generation procedure in [MV5] is slightly different from the generation

procedure in this paper. The key point of the proof is the equality Q(~k) = 0, which is proved
in Corollary 2.8 for our generation procedure and was proved in the proof of [MV5, Theorem
3.8]. See also the proof of [VW1, Theorem 6.4]. �



12 I.KRICHEVER, A.VARCHENKO

Remark. The condition of fertility of an N -tuple y can be also thought of as another
incarnation of the Bethe ansatz equations (2.1), see Theorem 3.3.

4. Generating linear problem

4.1. Non-periodic sequences of polynomials. In this section we consider sequences of
polynomials y = (yn(x))n∈Z , not assuming that the sequences are N -periodic. Let

yn(x) = cn

kn∏

i=1

(x− u
(n)
i ), cn 6= 0.

The system of the Bethe ansatz equations in this case is the infinite system of equations:

kn−1∏

ℓ=1

(u
(n)
i − u

(n−1)
ℓ + 1)

kn∏

ℓ=1

(u
(n)
i − u

(n)
ℓ − 1)

kn+1∏

ℓ=1

(u
(n)
i − u

(n+1)
ℓ )(4.1)

+

kn−1∏

ℓ=1

(u
(n)
i − u

(n−1)
ℓ )

kn∏

ℓ=1

(u
(n)
i − u

(n)
ℓ + 1)

kn+1∏

ℓ=1

(u
(n)
i − u

(n+1)
ℓ − 1) = 0,

where n ∈ Z, i = 1, . . . , kn.

We say that the sequence y is generic if for any n the polynomial yn(x) has no common
zeros with the polynomials yn(x+ 1), yn−1(x+ 1), yn+1(x).

As in the periodic case the system of the Bethe ansatz equations (4.1) can be reformulated
as the infinite system of equations (2.4), or equations (2.5), or equations (2.6).

Remark. Let the degrees (kn)n∈Z of the polynomials (yn(x))n∈Z be all equal. Then for each

n system (4.1) can be regarded as a system of equations for (u
(n+1)
i ) with (u

(n)
i ) and (u

(n−1)
i )

given. Hence, system (4.1) can be seen as a second order discrete time dynamical system. In
such a form these equations were introduced in [NRK] as an integrable time-discretization of
the Ruijesenaars-Schneider system, which in its turn was introduced as a relativistic analog
of the Calogero-Moser (CM) system.

In [KLWZ] for system (4.1) the discrete time Lax representation with a ”spectral parame-
ter” was found with the help of a ”generating linear problem”, see Theorem 6.1 in [KLWZ].
The Hamitonian approach for this system was developed in [K6].

Notice that the case of all (kn)n∈Z being equal is not allowed in the periodic case by
Corollary 2.4. This fact can be interpreted as the statement that the time-discretization of
the Ruijesenaars-Schneider system has no periodic orbits.

Given a generic sequence of polynomials y = (yn(x))n∈Z the associated generating linear
problem is the infinite system of equations

(4.2) ψn+1(x) = ψn(x+ 1)− vn(x)ψn(x), n ∈ Z,

with respect to the unknown sequence of functions ψ = (ψn(x))n∈Z with v = (vn(x)) given
by the formulas

vn(x) =
yn(x) yn+1(x+ 1)

yn(x+ 1) yn+1(x)
.(4.3)
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We say that a solution ψ = (ψn(x))n∈Z of system (4.2) is admissible if for any n the
function yn(x)ψn(x) is holomorphic.

Define the nonzero numbers

γ
(n)
i := res

x=u
(n)
i −1

vn(x) =
yn(u

(n)
i − 1) yn+1(u

(n)
i )

∏
j 6=i(u

(n)
i − u

(n)
j ) yn+1(u

(n)
i − 1)

,(4.4)

where i = 1, . . . , kn, and nonzero numbers

ε
(n)
i := res

x=u
(n+1)
i

vn(x) =
yn(u

(n+1)
i ) yn+1(u

(n+1)
i + 1)

yn(u
(n+1)
i + 1)

∏
j 6=i(u

(n+1)
i − u

(n+1)
i )

,(4.5)

where i = 1, . . . , kn+1.

Lemma 4.1. The infinite system of equations

γ
(n+1)
i + ε

(n)
i = 0, n ∈ Z, i = 1, . . . , kn+1,(4.6)

is equivalent to the infinite system of equations (2.4). �

In its turn the property of the infinite system of equations (2.4) to have a solution y is
equivalent to the property of y to represent a solution of the Bethe ansatz equations (4.1),
see Lemma 2.1.

Theorem 4.2. Let y = (yn(x))n∈Z be a generic sequence of polynomials. Then the system of
equations (4.2) has an admissible solution ψ = (ψn(x))n∈Z if and only if y represents a solu-
tion of system (4.1). Moreover, if a generic sequence y represents a solution of system (4.1),
then there exists a unique one-parameter family Ψ(z) = (Ψn(x, z)) of admissible solutions of
system (4.2), which has the form

(4.7) Ψn(x, z) = zn(1 + z)x

(
1 +

kn∑

i=1

ξ
(n)
i (x)z−i

)
, n ∈ Z,

where ξ
(n)
i (x) are rational functions in x such that the functions yn(x) ξ

(n)(x) are holomorphic
in x.

Remark. The first statement of the theorem is an analog of Lemma 5.1 in [K8], and the
second statement is a stronger version of Lemma 5.2 in [K8].

Remark. The equivalence in Theorem 4.2 of the existence of an admissible solution ψ of
system (4.2) and the property of y to represent a solution of system (4.1) may be thought
of as another incarnation of the Bethe ansatz equations.

Proof. Let ψ be an admissible solution of the generating linear problem equation (4.2). For

any n ∈ Z and i = 1, . . . , kn, consider the Laurent expansion of ψn(x) at x = u
(n)
i ,

ψn(x) =
α
(n)
i

x− u
(n)
i

+O (1) , α
(n)
i ∈ C .(4.8)
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The comparison of the residues of the left and right-hand sides of equation (4.2) at x = u
(n)
i −1

and x = u
(n+1)
j gives us the equations

α
(n)
i = γ

(n)
i ψn(u

(n)
i − 1) ,(4.9)

α
(n+1)
j = − ε

(n)
j ψn(u

(n+1)
j ) ,(4.10)

respectively. We obtain the third set of equations

ψn+1(u
(n+1)
j − 1) = ψn(u

(n+1)
j ) , j = 1, . . . , kn+1,(4.11)

by substituting x = u
(n+1)
j − 1 to equation (4.2) and taking into account that vn(u

(n+1)
j − 1)

= 0. Shifting the index (n, i) → (n + 1, j) in (4.9) we obtain

α
(n+1)
j = γ

(n+1)
j ψn+1(u

(n+1)
j − 1).(4.12)

Using (4.10), (4.11), (4.12) we obtain equations γ
(n+1)
i + ε

(n)
i = 0 for n ∈ Z and j =

1, . . . , kn+1, which are equations (4.6). By Lemma 4.1 this means that the sequence y rep-
resents a solution of the Bethe ansatz equations (4.1). That proves the ”only if” part of the
first statement of the theorem.

Now the goal is to construct the family ψ(z) of admissible solutions of (4.2) assuming that
y is generic and represents a solution of (4.1). The construction has two steps. First, we
construct a certain sequence of functions ψ(z) by using the generic y, but not using the fact
that y satisfies (4.1). Then we prove that ψ(z) has the form (4.7) and is a solution of (4.2),
if y represents a solution of (4.1).

Lemma 4.3. Let y be a generic sequence of polynomials. Then for n ∈ Z there exists a
unique function ψn(x, z) of the form

(4.13) ψn(x, z) = zn(1 + z)x

(
1 +

kn∑

i=1

C
(n)
i (z)

x− u
(n)
i

)

such that the function

(4.14) ϕn(x, z) := ψn(x+ 1, z)− vn(x)ψn(x, z)

has no residues at x = u
(n)
i − 1 for all i = 1, . . . , kn,

(4.15) res
x=u

(n)
i −1

ϕn(x, z) = 0 .

Remark. Notice that C
(n)
i (z) are some functions in z. The proof shows that C

(n)
i (z) are

rational functions in z.

Remark. Notice that ϕn(x, z) would be equal to ψn+1(x, z) if the sequence (ψn(x, z)) were
a solution of the system of the generating linear problem equations (4.2).

Proof. By (4.13) the function ψn(x, z) is regular at x = u
(n)
i − 1. We also have

(4.16) res
x=u

(n)
i −1

ψn(x+ 1, z) = res
x=u

(n)
i

ψn(x, z) .

Hence, equation (4.15) is equivalent to the equation

(4.17) res
x=u

(n)
i

ψn(x, z)− γ
(n)
i ψn(u

(n)
i − 1, z) = 0.
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Let C(n)(z) be the kn-vector with coordinates C
(n)
i (z) appearing in (4.13). Let γ(n) be the

kn-vector with coordinates γ
(n)
i . Let L(n)(z) be the kn × kn-matrix with entries

(4.18) L
(n)
ii (z) = 1 + z + γ

(n)
i , L

(n)
ij (z) =

− γ
(n)
i

u
(n)
i − u

(n)
j − 1

, i 6= j .

Then the substitution of (4.13) into (4.17) gives an inhomogenous linear equation

(4.19) L(n)(z)C(n)(z) = γ(n)

with respect to C(n)(z). Indeed, the substitution gives us

(1 + z)C
(n)
i (z) − γ

(n)
i

(
1 +

kn∑

j=1

C
(n)
j (z)

u
(n)
i − u

(n)
j − 1

)
= 0,

which implies (4.19). It is clear that for generic z we have detL(n)(z) 6= 0 and equation (4.19)
has a unique solution C(n)(z). The lemma is proved. �

Below we give a determinant formula for ψn(x, z). By Cramer’s rule we have

(4.20) C
(n)
i (z) =

detL
(n)
i (z)

detL(n)(z)
,

where L
(n)
i (z) is the matrix obtained from L(n)(z) by replacing the i-th column by the

vector γ(n).

Define a (kn + 1) × (kn + 1) matrix L̂(n)(x, z), whose rows and columns are labeled by
indices 0, . . . , kn and entries are given by the formulas:

L̂
(n)
0,0 = 1 , L̂

(n)
0,j =

1

x− u
(n)
j

, L̂
(n)
i,0 = −γ

(n)
i ,(4.21)

L̂
(n)
i,j = L

(n)
i,j , i, j = 1, . . . , kn .

Using the determinant expansion of L̂(n)(z) relative to the 0-th row we obtain the formula

(4.22) ψn(x, z) = zn(1 + z)x
det L̂(n)(x, z)

detL(n)(z)
.

Lemma 4.4. If y represents a solution of the Bethe ansatz equations (4.1), then the sequence
Ψ(z), constructed in Lemma 4.3, is an admissible solution of (4.2).

Proof. By definition of ψn(x, z) and ϕn(x, z), the function

Rn(x, z) := ϕn(x, z) z
−n(1 + z)−x

is a rational function of x with at most first order poles at the zeros of yn+1(x). Since
vn(x) → 1 as x → ∞, we have Rn(x, z) → 1 + z − 1 = z as x → ∞. Hence, the function
ϕn(x, z) has the form

(4.23) ϕn(x, z) = zn+1(1 + z)x

(
1 +

kn+1∑

i=1

D
(n)
i (z)

x− u
(n+1)
i

)

with suitable functions D
(n)
i (z).
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Since the function ψn(x+ 1, z) is regular at x = u
(n+1)
i , it follows from (4.14) that

(4.24) res
x=u

(n+1)
i

ϕn(x, z) = − ε
(n)
i ψn(u

(n+1)
i , z) .

From the equation vn(u
(n+1)
i − 1) = 0 it follows that

(4.25) ϕn(u
(n+1)
i − 1, z) = ψn(u

(n+1)
i , z).

Hence

res
x=u

(n+1)
i

ϕn(x, z) + ε
(n)
i ϕn(u

(n+1)
i − 1, z) = 0 .(4.26)

Using equations (4.6) we rewrite this as

res
x=u

(n+1)
i

ϕn(x, z) − γ
(n+1)
i ϕn(u

(n+1)
i − 1, z) = 0 .(4.27)

By Lemma 4.3 the function ψn+1(x, z) is uniquely determined by the equations

res
x=u

(n+1)
i

ψn+1(x, z) − γ
(n+1)
i ψn+1(u

(n+1)
i − 1, z) = 0 .(4.28)

Hence ϕn(x, z) = ψn+1(x, z) and the lemma is proved. �

For any n ∈ Z, let qn(z) be the monic polynomial of minimal degree such that qn(0) 6= 0

and the function qn(z)
det L̂(n)(x,z)

detL(n)(z)
is a function in z holomorphic on C − {0}. Clearly the

polynomial qn(z) does exist, it divides the polynomial detL(n)(z), and deg qn(z) 6 kn.

Lemma 4.5. The polynomial qn(z) does not depend on n ∈ Z.

Proof. Equation (4.2) implies

z
det L̂(n+1)(x, z)

detL(n+1)(z)
= (1 + z)

det L̂(n)(x+ 1, z)

detL(n)(z)
− vn(x)

det L̂(n)(x, z)

detL(n)(z)
.(4.29)

Given ζ 6= 0, let dn be the multiplicity of the root z = ζ of the polynomial qn(x). We need
to show that dn = dn+1. Clearly the inequality dn < dn+1 contradicts to equation (4.29).
Now we assume that dn > dn+1 and also will obtain a contradiction. Namely, consider the
expansions

det L̂(n)(x, z)

detL(n)(z)
= cn(x)(z − ζ)−dn +O

(
(z − ζ)−dn+1

)

=
(
bxa +O(xa−1)

)
(z − ζ)−dn +O

(
(z − ζ)−dn+1,

where the first equality is the Laurant expansion of det L̂(n)(x,z)

detL(n)(z)
at z = ζ , and cn(x) = bxa +

O(xa−1) is the Laurent expansion of c(x) at x = ∞. Here a is a suitable integer and b a
nonzero number. We also have vn(x) = 1 + O(x−1) as x → ∞. Considering the leading
coefficients of these double expansions for each of the three summands in (4.29) we obtain
the equation 0 = ζ + 1− 1, which is impossible. The lemma is proved. �
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The n-independent polynomial qn(z) will be denoted by q(z). Let κ be the degree of q(z).

Introduce new functions

(4.30) Ψn(x, z) :=
q(z)

zκ
ψn(x, z) = zn(1 + z)x

q(z)

zκ

(
1 +

kn∑

i=1

C
(n)
i (z)

x− u
(n)
i

)
.

Clearly the sequence (Ψn(x, z)) is an admissible solution of (4.2) and

q(z)

zκ

(
1 +

kn∑

i=1

C
(n)
i (z)

x− u
(n)
i

)
= 1 +

kn∑

i=1

ξ
(n)
i (x)z−i,(4.31)

where ξ
(n)
i (x) are rational functions of x with at most first order poles at the zeros of yn(x).

Thus the sequence of functions (Ψn(x, z)) has the properties listed in Theorem 4.2. Theorem
4.2 is proved. �

4.2. Example. Consider the sequence y∅ = (yn(x))n∈Z, where yn(x) = 1 for all n, see (3.8).
As discussed in Section 3.2, this sequence represents a solution of the Bethe ansatz equations
(4.1) with kn = 0 for all n. In this case, the generating linear problem equations (4.2) take
the form

ψn+1(x) = ψn(x+ 1)− ψn(x), n ∈ Z,(4.32)

and the admissible solution Ψ∅(z) = (Ψ∅
n(x, z))n∈Z of Theorem 4.2 is

Ψ∅
n(x, z) = zn(1 + z)x, n ∈ Z.(4.33)

4.3. Solutions Ψ(z) and the operation of generation. Let y = (yn(x))n∈Z be a generic
sequence of polynomials, which represents a solution of the Bethe ansatz equations (4.1).
Then there exists a unique one-parameter family Ψ(z) = (Ψn(x, z)) of solutions of the
generating linear problem equations (4.2) given by Theorem 4.2.

Choose m ∈ Z. Consider the one-parameter family y(m)(c) = (ỹn(x, c))n∈Z, obtained from
y by generation in the m-th direction, see (3.7). Here ỹn(x, c) = yn(x) for n 6= m and the
polynomial ỹm(x, c) satisfies the equation

ỹm(x, c)ym(x+ 1)− ỹm(x+ 1, c)ym(x)) = ym−1(x+ 1) ym+1(x) .(4.34)

Choose the value c = c0 so that the sequence y(m)(c0) is generic. Then y
(m)(c0) represents

a solution of the Bethe ansatz equations (4.1) by Theorem 3.3. Define the sequence ỹ =

(ỹn(x))n∈Z by the formula ỹ = y(m)(c0). Denote k̃n = deg ỹn(x) for n ∈ Z.

Starting from ỹ define a sequence of rational functions ṽ = (ṽn(x)) by formula (4.3). We
have ṽn(x) = vn(x) if n 6= m− 1, m and

ṽm−1(x) =
ym−1(x)ỹm(x+ 1)

ym−1(x+ 1)ỹm(x)
,(4.35)

ṽm(x) =
ỹm(x)ym+1(x+ 1)

ỹm(x+ 1)ym+1(x)
.

Apply Theorem 4.2 to the sequence ṽ and obtain the unique one-parameter family Ψ̃(z) =

(Ψ̃n(x, z)) of admissible solutions of the generating linear problem equation (4.2) with the
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chosen sequence ṽ,

(4.36) Ψ̃n(x, z) = zn(1 + z)x


1 +

k̃n∑

i=1

ξ̃
(n)
i (x)z−i


 ,

where ξ̃
(n)
i (x) are rational functions in x with at most first order poles at the zeros of ỹn(x).

Theorem 4.6. We have Ψ̃n(x, z) = Ψn(x, z) for n 6= m and

Ψ̃m(x, z) = Ψm(x, z) + g(x)Ψm−1(x, z) ,(4.37)

where

g(x) =
ym−1(x)ym+1(x)

ym(x)ỹm(x)
.(4.38)

Proof.

Lemma 4.7. We have

ṽm(x)g(x) = vm−1(x)g(x+ 1) ,(4.39)

ṽm(x)− vm(x) = g(x+ 1) .(4.40)

Remark. Equations (4.39) and (4.40) imply the equation

vm(x)g(x)− vm−1(x)g(x+ 1) + g(x)g(x+ 1) = 0 .(4.41)

This equation with respect to g(x) is called the discrete Riccati equation, see [MV3]. This
discrete Riccati equation has a rational solution g(x), given by (4.38). On discrete Riccati
equations with rational solutions see [MV3].

Proof. The proof of (4.39) is straightforward. We also have

ṽm(x)− vm(x) =
ỹm(x)ym+1(x+ 1)

ỹm(x+ 1)ym+1(x)
−
ym(x)ym+1(x+ 1)

ym(x+ 1)ym+1(x)

=
ym+1(x+ 1)

ym+1(x)

ỹm(x)ym(x+ 1)− ỹm(x+ 1)ym(x)

ỹm(x+ 1)ỹm(x+ 1)

=
ym+1(x+ 1)

ym+1(x)

ym−1(x+ 1)ym+1(x)

ỹm(x+ 1)ỹm(x+ 1)
= g(x+ 1) .

�

Let us check that the functions Ψm+1(x, z), Ψm(x, z) + g(x)Ψm−1(x, z), Ψm−1(x, z) satisfy
equations (4.2) with ṽm−1(x), ṽm(x). Indeed, we have

Ψm(x, z) + g(x)Ψm−1(x, z) = Ψm−1(x+ 1)− ṽm−1(x)Ψm−1(x, z)

by formula (4.40) and

Ψm+1(x, z) = Ψm(x+ 1, z) + g(x+ 1)Ψm−1(x+ 1, z)− ṽm(x)
(
Ψm(x, z) + g(x)Ψm−1(x, z)

)
.

by formulas (4.39) and (4.40).
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Lemma 4.8. We have

Ψm(x, z) + g(x)Ψm−1(x, z) = zm(1 + z)x

(
1 +

∑

i>0

r̃i(x)z
−i

)
,(4.42)

where r̃i(x) are rational functions of x with at most first order poles at the zeros of ỹm(x).

Proof. It is enough to show that the left-hand side in (4.42) is regular at the roots of the
polynomial ym(x). Indeed,

Ψm(x, z) + g(x)Ψm−1(x, z)

= Ψm−1(x+ 1, z)− vm−1(x)Ψm−1(x, z) + g(x)Ψm−1(x, z)

= Ψm−1(x+ 1, z)− (vm−1(x)− g(x))Ψm−1(x, z)

= Ψm−1(x+ 1, z)−
g(x)

g(x+ 1)
vm(x)Ψm−1(x, z)

= Ψm−1(x+ 1, z)−
ym−1(x)ỹm(x+ 1)

ym−1(x+ 1)ỹm(x)
Ψm−1(x, z) ,

and the last expression is regular at the roots of ym(x). �

Theorem 4.6 is proved. �

Remark. Let y = (yn(x))n∈Z be a generic N -periodic sequence of polynomials representing
a solution of the Bethe ansatz equations (2.1). Let Ψ(z) = (Ψn(x, z))n∈Z be the associated
one-parameter family of admissible solutions determined by Theorem 4.2. By Theorem 3.4
the sequence y = (yn(x))n∈Z can be obtained from the sequence y∅ by the iterated generation
procedure of Section 3. Theorem 4.6 shows how to obtain the family of admissible solutions
Ψ(z) from the family of admissible solutions Ψ∅(z) in (4.33) by transformations of Theorem
4.6.

5. Spectral transforms for the rational RS system

5.1. Lax matrices. In Section 4 for any sequence of polynomials (yn(x))n∈Z, whose roots
satisfy the Bethe ansatz equations (4.1), we constructed solutions (ψn(x, z))n∈Z of the gener-
ating linear problem equation (4.2) depending on the spectral parameter z. Formulas (4.18),
(4.19) of that construction reveal a’priory unexpected connections of the construction with
the theory of the rational RS system. In this section we develop the direct and inverse
spectral transforms for the rational RS system.

We identify the phase space of the k-particle rational RS system with the subspace Pk ⊂
Ck × (C×)k of pairs of vectors u = (u1, . . . , uk) and γ = (γ1, . . . , γk), such that

(5.1) ui 6= uj, ui 6= uj + 1 for i 6= j .

A point (u, γ) ∈ Pk defines the k × k Lax matrix L(u, γ),

(5.2) Lij(u, γ) =
γi

ui − uj − 1
, i, j = 1, . . . , k .

Notice that the Lax matrix has already appeared in (4.18), where

L(n)(z) = 1 + z − L(u(n), γ(n)).
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The matrix L(u, γ) is a particular case of the Cauchy matrix. Its determinant equals

(5.3) detL(u, γ) =

k∏

i=1

γi
∏

i<j

(ui − uj)
2

(ui − uj)2 − 1
.

It satisfies, the so-called displacement equation

(5.4) [U, L(u, γ)] = L(u, γ) + ΓF ,

where U = diag(u1, . . . , uk), Γ = diag(γ1, . . . , γk), F = (fij) with fij = 1 for all i, j. Equation
(5.4) can be easily checked directly.

Let E be the k × k unit matrix. Denote

L(z | u, γ) := (1 + z)E − L(u, γ) .(5.5)

Let L̂(x, z | u, γ) be the (k + 1) × (k + 1)-matrix, whose rows and columns are labeled by
indices 0, . . . , k and entries are given by the formulas:

L̂0,0 = 1 , L̂0,j =
1

x− uj
, L̂i,0 = −γi ,(5.6)

L̂i,j = Li,j(z | u, γ) , i, j = 1, . . . , k .

cf. formulas (4.21). Define the function ψ(x, z | u, γ) by the formula

(5.7) ψ(x, z | u, γ) = (1 + z)x
det L̂(x, z | u, γ)

detL(z | u, γ)
.

5.2. Direct transform in generic case. We define the direct spectral transform first for
points (u, γ) of the following open subset P ′

k ⊂ Pk.

Let µ = (µ1, . . . , µk) be the set of eigenvalues of the matrix L(u, γ). We have µj 6= 0 for
all j by formula (5.3). Hence µ ∈ (C×)k.

Define

P ′
k = {(u, γ) ∈ Pk | µ1, . . . , µk are distinct}.(5.8)

Clearly P ′
k is nonempty, since for big distinct u1, . . . , uk the matrix L(u, γ) is close to the

diagonal matrix − diag(γ1, . . . , γk).

The function ψ(x, z | u, γ) has at most simple pole at z = µj − 1. Consider the Laurent
expansion of ψ(x, z | u, γ) at z = µj − 1,

(5.9) ψ(x, z | u, γ) =
ϕ
(0)
j (x | u, γ)

z − µj + 1
+ ϕ

(1)
j (x | u, γ) +O(z − µj + 1) .

Theorem 5.1. For (u, γ) ∈ P ′
k, there exists a unique a = (a1, . . . , ak) ∈ Ck such that

(5.10) ϕ
(1)
j (x | u, γ) + ajϕ

(0)
j (x | u, γ) = 0 , j = 1, . . . , k .

Proof. The function ψ(x, z | u, γ) has the form

(5.11) ψ(x, z | u, γ) = (1 + z)x

(
1 +

k∑

i=1

Ci(z)

x− ui

)
,
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cf. (4.13). The vector C(z) with coordinates Ci(z) is given by (4.20). The vector C(z) solves
equation (4.19). Consider the Laurent expansion of C(z) at z = µj − 1,

(5.12) C(z) =
cj

z − µj + 1
+ dj +O(z − µj + 1) ,

where cj , dj are k-vectors with coordinates denoted by cij , dij, respectively. The substitution
of (5.12) into (4.19) gives the relations:

(µj − L) cj = 0 ,(5.13)

(µj − L) dj + cj = γ ,(5.14)

where L = L(u, γ).

Let c̃j be a nonzero eigenvector of L with eigenvalue µj. It is unique up to multiplication
by a nonzero constant. Using (5.4) we get

(5.15) (µj − L)Uc̃j = [U, L]c̃j = (L+ ΓF )c̃j = µj c̃j + νjγ ,

where νj :=
∑k

i=1 c̃ij . We have νj 6= 0. Indeed, if νj = 0, then (5.15) shows that L has
a nontrivial Jordan block with eigenvalue µj . That contradicts to the assumption that
(µ1, . . . , µk) are distinct. Since νj 6= 0. We can uniquely define the vector c̃j by the normal-
ization νj = −µj.

Lemma 5.2. The vector cj defined in (5.12) is nonzero.

Proof. If cj = 0, then (5.14) gives

(µj − L) dj = γ.

Formula (5.15) with νj = −µj gives

µ−1
j (µj − L)Uc̃j = c̃j − γ .

Adding the two formula gives

(5.16) (µj − L)(µ−1
j Uc̃j + dj) = c̃j ,

which means that L has a nontrivial Jordan block with eigenvalue µj. Contradiction. �

Lemma 5.3. Let c̃j = (c̃ij), d̃j ∈ Ck be a solution of the system of equations

(µj − L) c̃j = 0 ,(5.17)

(µj − L) d̃j + c̃j = γ ,(5.18)

such that c̃j 6= 0. Then

k∑

i=1

c̃ij = −µj , d̃j = −µ−1
j Uc̃j − aj c̃j ,

for some aj ∈ C.

Corollary 5.4. The vectors cj , dj in (5.12) satisfy the equations

k∑

i=1

cij = −µj , dj = −µ−1
j Ucj − ajcj ,(5.19)

for some aj ∈ C.
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Proof of Lemma 5.3. The vector c̃j is an eigenvector of L with eigenvalue µj. Fix c̃j by the

condition
∑k

i=1 c̃ij = −µj. Then (5.15) and (5.14) show that c̃j and d̃j = −µ−1
j Uc̃j give a

solution to the system of equations (5.17) and (5.18). For that c̃j the general solution of
(5.18) has the form

(5.20) d̃j = −µ−1
j Uc̃j − aj c̃j ,

where aj is an arbitrary constant.

Let (c̃j , d̃j) and (ĉj, d̂j) be two solutions of system (5.17), (5.18). Then

(µj − L) (c̃j − ĉj) = 0 ,

(µj − L) (d̃j − d̂j) + (c̃j − ĉj) = 0 .

If c̃j − ĉj 6= 0, then L has a nontrivial Jordan block with eigenvalue µj. This leads to
contradiction. Hence c̃j = ĉj. The lemma is proved. �

By formula (4.13) the first two coefficients of the Laurent expansion of ψ(x, z | u, γ) at
z = µj − 1 are

ϕ
(0)
j (x | u, γ) = µx

j

(
k∑

i=1

cij
x− ui

)
(5.21)

ϕ
(1)
j (x | u, γ) = µx

j

(
1 +

k∑

i=1

xµ−1
j cij + dij

x− ui

)
.(5.22)

Using (5.19) we get

ϕ
(1)
j (x | u, γ) = µx

j

(
1 +

k∑

i=1

(µ−1
j (x− ui)− aj)cij

x− ui

)
(5.23)

= µx
j

(
1 +

k∑

i=1

(
µ−1
j cij − aj

cij
x− ui

))
= − ajϕ

(0)
j (x | u, γ) .

The theorem is proved. �

Theorem 5.1 gives us the correspondence

(5.24) S : (u, γ) 7→ (µ, a) ,

where (u, γ) ∈ P ′
k ⊂ Ck × (C×)k and (µ, a) ∈ (C×)k × Ck.

Below we will need the following stronger version of Lemma 5.2.

Lemma 5.5. Let µj be an eigenvalue of L(u, γ) (of any multiplicity). Then the function
ψ(x, z | u, γ) is not holomorphic at z = µj − 1.

Proof. The function ψ(x, z | u, γ) has the form (5.11) with the vector C(z) that solves equa-
tion (4.19). If ψ(x, z | u, γ) is holomorphic at z = µj−1, then the vector C(z) is holomorphic
at z = µj − 1 as well. Let dj := C(µj − 1), then (4.19) gives the relation:

(5.25) (µj − L) dj = γ ,

where L = L(u, γ).



XXX ŝlN BETHE ALSATZ EQUATIONS AND INTEGRABLE HIERARCHIES 23

Let cj,s, s = 1, . . . , ℓ, be a Jordan chain of the operator L = L(u, γ) of maximal length ℓ
with eigenvalue µj. Let cj,s,i be coordinates of the vector cj,s. Then

(5.26) (µj − L) cj,1 = 0 , (µj − L)cj,s = cj,s−1 .

Using the displacement equation (5.4) we get

(5.27) (µj − L)Ucj,ℓ = µjcj,l − cj,ℓ−1 + νj,lγ ,

where νj,ℓ :=
∑

i cj,ℓ,i Using equations 5.25, (5.26) with s = ℓ and (5.27) we get

(5.28) (µj − L)(Ucj,ℓ + cj,ℓ − νj,ℓ dj) = µjcj,ℓ ,

which contradicts to the assumption that the Jordan chain is of maximal length. �

5.3. Inverse correspondence. We recall the construction of the correspondence inverse to
(5.24), cf. the construction in [K6]. We define it simultaneously with the construction of
generic solutions to the rational RS system.

Let Ω(x, t, z) be the function in x, z, and t = (t1, t2, . . . ) defined by the formula

Ω(x, t, z) = (1 + z)xe
∑

∞

j=1 tjz
j

,(5.29)

in which we always assume that only a finite number of the variables tj are nonzero. The
function Ω(x, t, z) in more details is considered in Section 7.3.

Let µ ∈ (C×)k with µi 6= µj for i 6= j. Let ψ(x, t, z) be a function of the form

(5.30) ψ(x, t, z) = Ω(x, t, z)

(
1 +

k∑

j=1

rj(x, t)

z + 1− µj

)
.

Consider the Laurent expansions

(5.31) ψ(x, t, z) =
ϕ
(0)
j (x, t)

z − µj + 1
+ ϕ

(1)
j (x, t) +O(z − µj + 1) , j = 1, . . . , k .

Lemma 5.6. If (µ, a) ∈ (C×)k × Ck with µi 6= µj for i 6= j, then there is a unique function

ψ(x, t, z) as in (5.30), such that coefficients ϕ
(0)
j (x, t), ϕ

(1)
j (x, t) satisfy the equations

(5.32) ϕ
(1)
j (x, t) + ajϕ

(0)
j (x, t) = 0 , j = 1, . . . , k .

Notice that the form of the second factor in the right-hand side of (5.30) is just the simple
fraction decomposition of a rational function in z with at most simple poles at the points
z = µi − 1 that equals 1 at z = ∞.

Proof. The lemma is proved by explicit computation of ψ(x, t, z). Let r(x, t) be the k-vector
with coordinates ri(x, t). Taking the first coefficient of the Laurent expansion of ψ(x, t, z) at
z = µj − 1 shows that equations (5.32) are equivalent to the inhomogeneous equation

(5.33) T (x, t) r(x, t) = −e0 ,

where e0 is the k-vector with all coordinates equal to 1 and T = T (x, t) is the k × k-matrix
with entries

(5.34) Tii = ai +

(
xµ−1

i +
∑

s

sts(µi − 1)s−1

)
, Tij =

1

µi − µj

, i 6= j .
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Let T̂ (x, t, z) be the (k + 1)× (k + 1)-matrix with the entries

(5.35) T̂00 = 1, T̂0,j =
1

z + 1− µj

, T̂0,i = 1, T̂ij = Tij , i, j = 1, . . . k .

Then ψ(x, t, z) equals

(5.36) ψ(x, t, z) = Ω(x, t, z)
det T̂ (x, t, z)

y(x, t)
,

where

(5.37) y(x, t) = det T (x, t) .

�

The function y(x, t) will also be denoted by y(x, t |µ, a). It is a polynomial in x of degree
k. Let ui(t |µ, a), i = 1, . . . , k, be its roots. Define γ(t |µ, a) = (γ1(t |µ, a), . . . , γk(t |µ, a))
by the formula

γi(t |µ, a) = ∂t1ui(t |µ, a) .(5.38)

Let S ⊂ (C×)k × Ck be the subset of points (µ, a), such that

(a) µ = (µ1, . . . , µk) has distinct coordinates;
(b) u(0 |µ, a) = (u1(0 |µ, a), . . . , uk(0 |µ, a)) has distinct coordinates.

Theorem 5.7. For (µ, a) ∈ S, the map

(5.39) S̃ : (µ, a) 7→ (u(0 |µ, a), γ(0 |µ, a))

is inverse to the map in (5.24).

Proof. The standard arguments based on the uniqueness of the Baker-Akhiezer function
prove the following statement.

Lemma 5.8. The function ψ(x, t, z) given by (5.36) satisfies equation (1.9) with y(x, t)
defined in (5.37).

Proof. Define the function w(x, t) by the formula

(5.40) w(x, t) = ξ1(x, t)− ξ1(x+ 1, t)− 1 ,

where ξ1(x, t) is the coefficient of the expansion of the second factor in (5.36) at z = ∞, i.e.

(5.41) ψ(x, t, z) = Ω(x, t, z)

(
1 +

∞∑

s=1

ξs(x, t)z
−s

)
.

Then the corresponding expansion for the function

ψ̃(x, t, z) := ∂t1ψ(x, t, z)− ψ(x+ 1, t, z)− w(x, t)ψ(x, t, z)

has the form ψ̃(x, t, z) = Ω(x, t, z)O(z−1), i.e. the simple fraction expansion for ψ̃ has the
form

(5.42) ψ̃(x, t, z) = Ω(x, t, z)

(
k∑

j=1

r̃j(x, t)

z + 1− µj

)
.
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Since aj in (5.10) is a constant, the first two coefficients of the Laurent expansion of ψ̃ at
µj − 1 satisfy equation (5.10), i.e. for the vector r̃ with coordinates r̃j the homogeneous

linear equation T r̃ = 0 holds. Hence, r̃ = 0 and the equation ψ̃ = 0 is proved.
It remains to show that the function w(x, t), defined by (5.40), has the form (1.10) with

y(x, t) given by (5.37). The equation

(5.43) ξ1(x, t) = −∂t1 ln y(x, t)

can be derived from the Cramer’s formulas for the coordinates rj of the vector r and the
equation

(5.44) ξ1(x, t) :=

k∑

j=1

rj(x, t) .

It is more instructive to prove it directly using equation (1.9). Indeed, by definition, ξ1(x, t)
is a rational function in x with poles at the zeros of y(x, t). The comparison of the coefficients
at (x − ui)

−2 of the Laurent expansion of the right and left-hand sides of (1.9) at ui gives
the equation

(5.45) γi(t) := resx=ui
w(x, t) = resx=ui

ξ1(x, t) = ∂t1ui(t) .

The latter implies (5.43). �

The left-hand side of (1.9) has poles only at the zeros of y(x, t). Hence the right-hand side
of (1.9) has no residue at x = ui − 1. From (5.40) it follows that the residue of w(x, t) at
x = ui − 1 equals −γi(t) and we recover the defining condition for ψ(x, t, z) in Lemma 4.3.
Put t = 0. The theorem is proved. �

5.4. Extension of the direct spectral transform. Our goal is to extend the direct spec-
tral transform (5.24) to the whole phase space of the rational RS system.

For (u, γ) ∈ Pk consider the function ψ(x, z | u, γ) defined by (5.7). The function

(5.46) Ψ(x, z | u, γ) = detL(z | u, γ)ψ(x, z | u, γ) = (z + 1)x det L̂(x, z | u, γ)

has the form

(5.47) Ψ(x, z | u, γ) = (1 + z)x

(
zk +

k∑

ℓ=1

ξℓ(x | u, γ)z
k−ℓ

)
.

It is well-defined on the whole phase space. The coefficients ξℓ(x | u, γ) are rational function
in u, γ holomorphic on Pk.

Let (µi = µi(u, γ))
q
i=1 be the set of all distinct eigenvalues of L(u, γ) with respective

multiplicities (mi)
q
i=1. We have

∑q
i=1mi = k and

detL(z | u, γ) =

q∏

i=1

(z − µi + 1)mi , µi 6= µj .

For a positive integer ℓ denote by C[z]ℓ the vector subspace of C[z] of polynomials of
degree less than ℓ. We have dimC[z]ℓ = ℓ.

Let µ ∈ C. We will often identify C[z]ℓ with C[z]/〈(z − µ + 1)ℓ〉 under the isomorphism
g(z) 7→ g(z) + 〈(z − µ+ 1)ℓ〉.
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Theorem 5.9. Let (u, γ) ∈ Pk. Then for j = 1, . . . , q, there is a unique mj-dimensional
vector subspace Wj(u, γ) ⊂ C[z]2mj

such that

(5.48) resz=µj−1
g(z)Ψ(x, z | u, γ)

(z − µj + 1)2mj
= 0 , ∀ g(x) ∈ Wj(u, γ) .

Remark. Let (u, γ) ∈ P ′
k. Then the one-dimensional subspace Wj(u, γ) ⊂ C[z]2 is spanned

by the polynomial aj(z − µj + 1) + 1. Then equations (5.48) take the form

(5.49) resz=µj−1
(aj(z − µj + 1) + 1)Ψ(x, z | u, γ)

(z − µj + 1)2
= 0, j = 1, . . . , k,

which is the same as equations (5.10).

Proof. The coefficients of detL(z | u, γ) are holomorphic functions on Pk. Hence for any
(u′, γ′) ∈ P ′

k in sufficiently small neighborhood of (u, γ) the multiple eigenvalue µj of L(u, γ)
splits into a set of simple eigenvalues of the matrix L(u′, γ′), i.e.

detL(z | u′, γ′) =

q∏

i=1

mj∏

s=1

(z − µi,s + 1)

where |µj,s − µj| < ε for some small ε. We may assume that the ε-neighborhoods of µj,
j = 1, . . . , q, do not intersect.

The set of mj equations (5.49), corresponding to a subset of the eigenvalues µj,s, can be
represented in the form

(5.50)

∮

cj

gj,s(z) Ψ(x, z | u′, γ′)∏
s(z − µj,s + 1)2

dz , s = 1, . . .mj ,

where cj is the circle |z − µj + 1| = ε and

(5.51) gj,s(z) := (aj(z − µj,s + 1) + 1)
∏

ℓ 6=s

(z − µj,ℓ + 1)2 .

It is easy to see that the polynomials gj,s(z) are linear independent and hence span an mj-
dimensional subspace Wj(u

′, γ′) of C[z]2mj
, i.e. Wj(u

′, γ′) can be seen as a point of the
Grassmanian Gr(mj, 2mj).

The Grassmanian is compact. Therefore, for any sequence ((um, γm))∞m=1 ⊂ P ′
k converging

to (u, γ) there is a subsequence of pointsWj(u
m, γm) of the Grassmanian converging to some

point Wj ∈ Gr(mj , 2mj). Since the integral in (5.50) is taken over a constant circle the
equations (5.50) converge to (5.48).

It remains to show that Wj does not depend on the choice of a convergent sequence
((um, γm))∞m=1. Notice that if Ψ(x, z | u, γ) satisfies (5.48), then

(5.52) resz=µj−1
g(z) Ψ(ℓ, z | u, γ)

(z − µj + 1)2mj
= 0 , ℓ = 0, . . . , k − 1, ∀ g(z) ∈ Wj .

The function Ψ(ℓ, z | u, γ) is a monic polynomial of degree k+ℓ. Hence, the tuple of functions
Ψ(ℓ, z) defines a pointW⊥ ∈ Gr(k, 2k). The k-dimensional vector spaceW⊥ defines all spaces
Wj , j = 1, . . . , q, uniquely. �



XXX ŝlN BETHE ALSATZ EQUATIONS AND INTEGRABLE HIERARCHIES 27

Corollary 5.10. By Theorem 5.9, every point (u, γ) ∈ Pk produces the two collections
(µi(u, γ))

q
i=1 and (Wi(u, γ) ∈ Gr(mi, 2mj))

q
i=1. That is an extension of the map (5.24).

Equations (5.48) imply the following lemma.

Lemma 5.11. The function ψ(x, z | u, γ) has a pole of order m 6 mj at z = µj(u, γ) − 1
if and only if the corresponding subspace Wj(u, γ) contains (mj −m)-dimensional subspace
spanned by the polynomials (z − µj + 1)2mj−ℓ−1, ℓ = 0, . . . , m− 1. �

The following statement is used below in the proof of Theorem 7.9. Let f(z) be a function
holomorphic at z = µj − 1. Multiplication by f(z) defines a linear operator

f∗ : C[z]/〈(z − µj + 1)2mj 〉 → C[z]/〈(z − µj + 1)2mj〉, g(z) 7→ f(z)g(z) .(5.53)

Lemma 5.12. If fz(µj − 1) 6= 0, then the only mj-dimensional subspace W of
C[z]/〈(z−µj+1)2mj〉, invariant under the action of f∗, is the subspace spanned by (z−µj+1)ℓ,
ℓ = mj , . . . , 2mj − 1.

Proof. The Jordan normal form of f∗ is the single Jordan block of size 2mj. Such an operator
has a single invariantmj-dimensional subspace. That subspace is described in the lemma. �

5.5. Extension of the inverse transform. The construction of the inverse correspondence
is straightforward. The spectral data is a triple (µ,m,W ), where µ = (µ1, . . . , µq) is a set
of distinct nonzero complex numbers; m = (m1, . . . , mq) a set of positive integers with∑q

i=1mj = k; W = (W1, . . . ,Wq) a set of spaces, where each Wj is an mj-dimensional
subspace of the space of polynomials of degree 2mj − 1.

Lemma 5.13. Given (µ,m,W ) there is a unique function Ψ(x, t, z),

(5.54) Ψ(x, t, z) = Ω(x, t, z)

(
zk +

k∑

s=1

ξℓ(x, t)z
k−s

)
,

such that equations (5.48) hold.

Proof. The proof is by explicit construction, as in its particular case of Lemma 7.3. Choose
a basis gj,k(z) in Wj. Then equations (5.48) can be represented in the form of the inhomo-
geneous linear system of equations

(5.55) M(x, t |µ,m,W ) ξ(x, t) = − e0

with some matrix M , whose entries are explicit expressions that are polynomial in x and
t and linear in the coefficients of the polynomials gj,k(z). As before the function Ψ can be
written in the same determinant form as in (5.35):

(5.56) Ψ(x, t, z |µ,m,W ) =
det M̂(x, t, z |µ,m,W )

y(x, t |µ,m,W )
,

where

(5.57) y(x, t |µ,m,W ) = detM(x, t |µ,m,W ) .

�
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Remark. We emphasize that unlike in the generic case considered in Section 5.3, the degree k
of the polynomial y(x, t |µ,m,W ) in x depends not only on the number of distinct eigenvalues
µj and their multiplicities mj but also on the combinatorial types of cells of Grassmannians
Gr(mj , 2mj), which contain the given subspaces Wj .

Denote the roots of the polynomial y(x, t |µ,m,W ) by ui(t |µ,m,W ), i = 1, . . . , k. Define
γ(t |µ,m,W ) = (γ1(t |µ,m,W ), . . . , γk(t |µ,m,W )) by formula (5.38).

Let Ŝ ⊂ (C×)q ×
∏q

j=1Gr(mj, 2mj) be the subset of points (µ,W ), such that

(a) µ = (µ1, . . . , µq) has distinct coordinates;
(b) u(0 |µ,W ) = (u1(0 |µ,W ), . . . , uk(0 |µ,W )) has distinct coordinates.

Theorem 5.14. For (µ,W ) ∈ Ŝ, the map

(5.58) S̃ : (µ,W ) 7→ (u(0 |µ,W ), γ(0 |µ,W ))

is inverse to the map in Corollary 5.10.

Proof. The proof of Theorem 5.14 is similar to the proof of Theorem 5.7. The key point of
the proof is the following lemma.

Lemma 5.15. Functions Ψ(x, t, z) and y(x, t) given by (5.56) and (5.57), respectively, satisfy
equation (1.9).

The proof of the lemma is based on the uniqueness of the Baker-Akhiezer function corre-
sponding to the data (µ,W ) and almost word by word follows the proof of Lemma 5.8. �

6. Solution of the rational RS hierarchy

The goal of this section is to write explicitly equations describing time dependence of the
roots (ui(t)) of the polynomial y(x, t) corresponding to the spectral data (µ,W ) ∈ Ŝ.

It was proved in [KZ] that the dependence of (ui(t)) in the variable t1 coincides with the
equation of motion of the RS system. Note that in [KZ] this result was proved for the elliptic
RS system. The dependence of (ui(t)) in the variables t̄ = (t̄0, t̄1, t̄2, . . .), defined by formula

(6.1) x(z + 1)−1 +
∞∑

m=1

mtm z
m−1 = t̄0 (z + 1)−1 +

∞∑

m=1

m t̄m (z + 1)m−1,

was identified in [KZ] with the pole dynamics of the elliptic (rational) solutions of the 2D
Toda hierarchy. In [I] and [Z] it was proved that the latter coincides with the flows defined
by the higher Hamiltonians Hk = trLk of the RS system, where L is the corresponding Lax
matrix.

Remark. Note that the change variables (6.1) is well-defined only under the assumption
that there are only finitely many of nonzero time variables. Nevertheless, the corresponding
triangular change of the vector fields is well-defined always:

∂t̄0 = ∂x, ∂t̄1 = ∂t1 , ∂t̄2 = ∂t2 + 2∂t1 , ∂t̄3 = ∂t3 + 3∂t2 + 3∂t1 , . . . .



XXX ŝlN BETHE ALSATZ EQUATIONS AND INTEGRABLE HIERARCHIES 29

6.1. Hierarchies of linear equations. In this section we show that for any spectral data
(µ,W ) the corresponding Baker-Akhiezer function Ψ(x, t, z) given by formula (5.56) satisfies
a hierarchy of linear equations.

Let Tx = e∂x be the shift operator acting on functions of x, Tx : f(x) 7→ f(x+ 1).

Lemma 6.1. Let Ψ(x, t, z) be a formal series of the form

(6.2) Ψ = zkΩ(x, t, z)

(
1 +

∞∑

s=1

ξs(x, t)z
−s

)
,

where k ∈ Z and ξs(x, t) are some functions of x, t. Then for each m > 1 there is a unique
difference operator Dm in the variable x,

(6.3) Dm = Tm
x +

m∑

i=1

wi,m(x, t) T
m−i
x ,

such that

(6.4) DmΨ(x, t, z) = zmΨ(x, t, z) +O(zk−1) Ω(x, t, z) .

The coefficients wi,m(x, t) of these operators Dm are (explicit) difference polynomials in
ξs(x, t), s = 1, . . . , m− 1.

Proof. Divide both sides of (6.4) by Ω(x, t, z) and compare the leading coefficients of Laurent
series. That gives a triangular system of m−1 linear equations for m−1 unknown functions
wi,m(x, t). The system is solved recurrently. �

The following theorem follows from the uniqueness of the Baker-Akhiezer function.

Theorem 6.2. Let Dm be the operator defined in Lemma 6.1 by the Baker-Akhiezer function
Ψ(x, t, z |µ,W ) given by (5.56). Then

(6.5) (∂tm −Dm) Ψ(x, t, z |µ,W ) = 0 , ℓ > 1 .

Proof. The definition of Dm in Lemma 6.1 implies that the left-hand side of (6.5) has the
form R̃Ω, where R̃ is a polynomial in z of degree k−1. The function R̃Ω satisfies the system
of equations (5.52) defining Ψ. Therefore the coefficients of R̃ satisfy the homogeneous linear

system of equation with matrix M as in (5.55). Hence, R̃ = 0. �

Remark. Lemma 5.15 is a particular case of Theorem 6.2 for m = 1.

The compatibility conditions of equations (6.5) imply:

Corollary 6.3. If the Baker-Akhiezer function Ψ is given by (5.56), then the the correspond-
ing operators Dm satisfy the equations[

∂ti −Di, ∂tj −Dj

]
= 0 ,(6.6)

for all i, j.

Remark. The collection of equations (6.6) is the so-called Zakharov-Shabat presentation of
a part of the 2D Toda hierarchy. We call the collection of equations (6.6) the positive part
of the 2D Toda hierarchy, see Section 8.2.

6.2. Rational RS hierarchy.
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6.2.1. Let (u, γ) ∈ Pk be a point of the phase space. Let L = L(u, γ) be the Lax matrix. We
define recurrently a set of rational functions w̄1,m(x), w̄2,m(x), . . . , w̄m,m(x) by the formula

(6.7) w̄s,m(x) =

k∑

i=1

(
(Ls−1γ)i
x− ui

−
(Ls−1γ)i
x− ui +m

−
s−1∑

ℓ=1

w̄ℓ,m(x)
(Ls−1−ℓγ)i

x− ui +m− ℓ

)
,

a set of matrices H1,m, . . . , Hm,m by the formulas

(6.8) (Hs,m)ij =
resx=ui

w̄s,m(x)

ui − uj +m− s
,

(6.9) (Hm,m)ij = H̃m,iδij + (1− δij)
resx=ui

w̄m,m

ui − uj
,

where H̃m,i is defined by the Laurent expansion of w̄m,m(x) at x = ui,

(6.10) w̄m,m(x) =
resx=ui

w̄m,m

x− ui
+ H̃m,i +O(x− ui),

and the matrix Mm by the formula

(6.11) Mm =
m∑

s=1

Hs,mL
m−s .

6.2.2. Let us return to the situation of Section 5.5. Let the spectral data (µ,m,W ) be
given. Let y(x, t) be the polynomial defined by formula (5.57) and u(t) = (ui(t))

k
i=1 its roots.

Let γ(t) = (γi(t))
k
i=1 with γi(t) = ∂t1ui(t). Having the pair (u(t), γ(t)) we may define all the

objects of Section 6.2.1, which will depend on t.

Let t̄m be the variables defined in (6.1).

Theorem 6.4. The pair (u(t), γ(t)) satisfies the equations of motion of the hierarchy of the
k particle rational RS system. Namely, for all m > 1 we have

(6.12) ∂t̄mui = resx=ui
w̄m,m(x) ,

(6.13) ∂t̄mγi =

k∑

j=1

(
(Mm)ijLji − Lij(Mm)ji

)
.

Proof. The following lemma gives the Lax presentation of these flows in terms of the RS
system.

Lemma 6.5. Let the linear equation

(6.14)

(
∂t̄m − Tm

x −
m∑

s=1

w̄s,m(x, t̄) T
m−s
x

)
ψ(x, t̄, z̄) = 0

with some (a’priory unknown) coefficients w̄s,m(x, t̄) has a solution of the form

(6.15) ψ(x, t̄, z̄) =

(
1 +

kn∑

i=1

Ci(t̄, z̄)

x− ui

)
z̄ xe

∑
m t̄ z̄m,
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where z̄ = z + 1 and C is given by (4.20) with the matrix L defined in (4.18) with γi =
γi(t̄m), ui = ui(t̄m). Then equations (6.12), (6.13) hold.

Proof. The vector C with the coordinates Ci given by (4.20) solves equation (4.19), i.e.

(6.16) (z̄L0 − L)C = γ,

where L0 = E is the identity matrix. This equation easyly implies that for any s the equation

(6.17) (z̄sL0 − Ls)C =
s−1∑

ℓ=0

z̄Ls−ℓ−1γ

holds.
The substitution of (6.15) into (6.14) gives the equation

k∑

i=1

(
z̄mCi

x− ui
+

(∂t̄mui)Ci

(x− ui)2
+
∂t̄mCi

x− ui

)
(6.18)

=
k∑

i=1

z̄mCi

x− ui +m
+

m∑

s=1

z̄m−sw̄s,m

(
1 +

k∑

i=1

Ci

x− ui +m− s

)
.(6.19)

Using (6.17) and then equating the coefficients at z̄ℓ for ℓ = m−1, m−2, . . . , 0 at both sides
of the equation we recurrently find that w̄s,m(x) are given by formulas (6.7). The remaining
part of the equations (of order O(z̄−1)) are linear equations containing C(z̄). Equating the
coefficients at (x− ui)

−2 we get equation (6.12). Equating the coefficients at (x − ui)
−1 we

get that the vector C satisfies the equation

(6.20) ∂t̄mC = (Mm − Lm)C ,

where the matrix Mm is defined in (6.11). Comparing the leading coefficients at of the
expansions in z̄−1 of the both sides of (6.20) we get

(6.21) (Mm − Lm)γ = 0 .

From (6.16) and (6.20) it follows that

(6.22) [∂t̄m −Mm, L]C = −(Mm − Lm)γ = 0 .

Since equation (6.22) holds for C = C(z) we have

(6.23) ∂t̄mL = [Mm, L] .

The latter is the Lax presentation of equations (6.12) and (6.13).
In the framework of the dynamical r-matrix approach the matrices Mm were obtained in

[Su]. �

Now Theorem 6.4 follows from Theorem 6.2. �
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7. Spectral transform for N-periodic Bethe ansatz equations

7.1. Spectral data for solutions of the Bethe ansatz equations. We begin this section
by identification of the spectral data corresponding to solutions of the N -periodic Bethe
ansatz equations. Recall that for a given sequence of generic polynomials (yn(x))n∈Z whose
roots satisfy the Bethe ansatz equations the solutions (ψn(x, z))n∈Z of the generating linear
problem constructed in Section 4 are equal to

(7.1) ψn(x, z) = znψ(x, z | u(n), γ(n)) ,

where (u
(n)
i )kni=1 are roots of yn(x) and (γ

(n)
i )kni=1 are defined in (4.4). Notice that γ(n) depends

on the polynomials yn(x) and yn+1(x), only. By definition of generic polynomials, we have
(u(n), γ(n)) ∈ Pkn.

Lemma 7.1. If (yn(x))n∈Z represents a solution of the N-periodic Bethe ansatz equations,
then the matrix L(u(n), γ(n)) has only one eigenvalue µ = 1 (of multiplicity kn).

Proof. By Theorem 5.9 the function

Ψ(x, z | u(0), γ(0)) = detL(u(0), γ(0))ψ0(x, z)

satisfies equations (5.48) with W
(0)
j := Wj(u

(0), γ(0)). From equation (4.2) it then fol-

lows that for functions detL(u(0), γ(0))ψn(x, z) for n > 0 equations (5.48) with W
(0)
j :=

Wj(u
(0), γ(0)) hold, as well. The N -periodicity of (yn) implies that ψN = zNψ0(x, z). Hence,

Ψ(x, z | u(0), γ(0)) satisfies equation (5.48) and the equations

(7.2) resz=µj−1
g(z)zNΨ(x, z | u(0), γ(0))

(z − µj + 1)2kj
= 0, ∀g ∈ Wj(u

(0), γ(0))

Since Ψ(x, z | u(0), γ(0)) defines W
(0)
j uniquely, equations (7.2) imply that W

(0)
j is invariant

under the action of the operator of multiplication by zN . It follows from Lemmas 5.11 and
5.12 that Ψ(x, z | u(0), γ(0)) has zero of order mj at z = µj − 1 for any µj 6= 1, or equivalently
that the function ψ(x, z | u(0), γ(0), z) is holomorphic at z = µj − 1.

Now the reference to Lemma 5.5 finishes the proof. �

Remark. In Lemma 4.5 we proved that the poles of solutions (ψn(x, z))n∈Z of the generating
problem corresponding to a sequence of polynomials (yn(x))n∈Z (possibly non-periodic) are
n-independent away from z = 0. The lemma above gives a stronger statement: for periodic
sequences of polynomials the solutions (ψn(x, z))n∈Z are holomorphic at z 6= 0.

7.2. The inverse spectral transform: construction. By Theorem 5.9 and Lemma 7.1
the functions ψn(x, z) constructed in Section 4 are uniquely defined by a sequence of points
W (n) ∈ Gr(kn, 2kn) corresponding to the only eigenvalue µ = 1 of the matrix L(u(n), γ(n)).
In this section we explicitly describe the data defining such sequences and present in a closed
form the construction of the solutions of the N -periodic Bethe ansatz equations.

The parameters of the construction are nonnegative integers ν, D, and an (N+ν)×(D+1)-
matrix

A = (ak,j) , k = 1, . . . , N + ν, j = 0, . . . , D .
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We say that the matrix A is nondegenerate if for any n = 0, . . . , N , the matrix A(n) composed
of the first n + ν rows of the matrix A has rank n+ ν.

Two matrices A,A′ are called equivalent if A = GA′ where G is an (N + ν) × (N + ν)
nondegenerate matrix of the form

(7.3) G =

(
g 0
∗ g1

)

where g is a ν × ν-matrix and g1 is lower-triangular.
We call A reducible if there is a nondegenerate ν × ν-matrix H such that

(7.4) HA(0) =

(
E 0
0 ∗

)

where E is the ℓ× ℓ unit matrix with ℓ > 1. We call A irreducible otherwise.

7.3. Function Ω(x, t, z). Below we present some notations and properties of the function
Ω(x, t, z) defined in (5.29),

Ω(x, t, z) = (1 + z)xe
∑

∞

j=1 tjz
j

.(7.5)

The function Ω(x, t, z) satisfies the equation

(z + 1)Ω(x, t, z) = Ω(x+ 1, t, z) = ∂t1Ω(x, t, z)(7.6)

and, more generally, the equations

zℓ Ω(x, t, z) =

ℓ∑

m=0

(−1)ℓ−m

(
ℓ

m

)
Ω(x+m, t, z) = ∆(ℓ)Ω(x, t, z) .(7.7)

Ω(x+ ℓ, t, z) = ∂ℓt1Ω(x, t, z) = ∂tℓΩ(x, t, z) , ℓ > 1.

Introduce the polynomials χn(x, t), n ∈ Z>0, by using the expansion

Ω(x, t, z) =

∞∑

n=0

χn(x, t)z
n,(7.8)

where χ0(x, t) = 1,

χn(x, t)|t=0 =

(
x

n

)
, χn(x, t)|x=0, t′=0 = tn1 , degx χn(x, t) = degt1 χn(x, t) = n .(7.9)

For n > 0, we have

χn(x+ 1, t)− χn(x, t) = ∂t1χn(x, t) = χn−1(x, t),(7.10)

where χ−1(x, t) = 0. More generally, we have

∆(ℓ)χk(x, t) = ∂ℓt1χn(x, t) = ∂tℓχn(x, t) = χk−ℓ(x, t) .(7.11)

Let us write

e
∑

∞

j=1 tjz
j

=
∞∑

k=0

hk(t)z
k ,
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where h0(t) = 1. Then

χn(x, t) =

n∑

k=0

hn−k(t)

(
x

k

)
.(7.12)

Given the spectral data A = (ak,j), define the polynomials fk(x, t) by the formula

fk(x, t) =

D∑

j=0

ak,j χj(x, t), k = 1, . . . , N + ν .(7.13)

For k = 1, . . . , N + ν, introduce the differential operators

Dk =
D∑

j=0

ak,j
j!

∂j

∂zj
.(7.14)

Then [
DkΩ(x, t, z)

]
z=0

= fk(x, t).(7.15)

Lemma 7.2. If A is nondegenerate, then for every n = 0, . . . , N ,

(i) the discrete Wronskian Ŵ (f1, . . . , fn+ν) is nonzero;
(ii)

Ŵ (f1, . . . , fn+ν) = Wrt1(f1, . . . , fn+ν),(7.16)

where Wrt1(f1, . . . , fn+ν) = detmi,j=1

(
∂j−1
t1 fi

)
is the standard Wronskian with respect

to the variable t1;
(iii)

degx Ŵ (f1, . . . , fn+ν) = degt1 Ŵ (f1, . . . , fn+ν) .(7.17)

�

7.4. Baker-Akhiezer functions. For every n = 0, . . . , N , consider a polynomial of degree
n+ ν in z of the form

Rn(x, t, z) = zn+ν

(
1 +

n+ν∑

ℓ=1

ξ
(n)
ℓ (x, t) z−ℓ

)
,(7.18)

whose coefficients are some functions in x, t.

Lemma 7.3. If A is nondegenerate, then for any n = 0, . . . , N , there exists a unique function
ψn(x, t, z) of the form

ψn(x, t, z) = Ω(x, t, z)Rn(x, t, z),(7.19)

such that

(7.20)
[
Dkψn(x, t, z)

]
z=0

= 0, k = 1, . . . , n+ ν .

For fixed n, x the function ψn(x, t, z) is a particular case of the Baker-Akhiezer functions
introduced in [K5] to construct rational solutions of the KP equation.
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Proof. Using equation (7.7), we rewrite equation (7.20) as

[
Dk

( n+ν∑

m=0

(−1)n+ν−m

(
n+ ν

m

)
Ω(x+m, t, z)(7.21)

+
n+ν∑

ℓ=1

ξ
(n)
ℓ (x, t)

n+ν−ℓ∑

m=0

(−1)n+ν−ℓ−m

(
n + ν − ℓ

m

)
Ω(x+m, t, z)

)]
z=0

= 0 .

Using (7.8) and (7.13) we rewrite (7.21) as

n+ν∑

m=0

(−1)n+ν−m

(
n+ ν

m

)
fk(x+m, t)(7.22)

+
n+ν∑

ℓ=1

ξ
(n)
ℓ (x, t)

n+ν−ℓ∑

m=0

(−1)n+ν−ℓ−m

(
n + ν − ℓ

m

)
fk(x+m, t) = 0 .

The system of equations (7.22) is the systems of n + ν inhomogeneous linear equations for

the coefficients ξ
(n)
ℓ (x, t),

(7.23)
n+ν∑

ℓ=1

M
(n)
k,ℓ (x, t) ξ

(n)
ℓ (x, t) = F

(n)
k (x, t),

where

M
(n)
k,ℓ (x, t) =

n+ν−ℓ∑

m=0

(−1)n+ν−ℓ−m

(
n+ ν − ℓ

m

)
fk(x+m, t) = ∆n+ν−ℓfk(x, t)(7.24)

F
(n)
k (x, t) = −

n+ν∑

m=0

(−1)n+ν−m

(
n+ ν

m

)
fk(x+m, t) = −∆n+νfk(x, t).

Using (7.10) we may rewrite

M
(n)
k,ℓ (x, t) =

D∑

j=ℓ−1

ak,j χj−ℓ+1(x, t),(7.25)

F
(n)
k (x, t) = −

D∑

j=n+ν

ak,j χj−n−ν(x, t),

cf. formula for fk(x, t) in (7.13).
Formula (7.24) implies that the determinant of the matrix M (n)(x, t) equals

(7.26) yn(x, t) := detM (n)(x, t) = Ŵ (f1, . . . , fn+ν),

the discrete Wronskian of the polynomials f1(x, t), . . . , fn+ν(x, t) with respect to x. By
Lemma 7.2 the determinant is a nonzero polynomial. Hence equations (7.20) determine
uniquely a function ψn(x, t, z). The lemma is proved.

Below we give a determinant formula for ψn(x, t, z). Define an (n + ν + 1)× (n + ν + 1)

matrix M̂ (n)(x, t, z), whose rows and columns are labeled by indices 1, . . . , n + ν + 1 and
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entries are given by the formulas:

M̂
(n)
n+ν+1,ℓ = zℓ−1, ℓ = 1, . . . , n+ ν + 1,(7.27)

M̂
(n)
ℓ,n+ν+1 = −F

(n)
ℓ , ℓ = 1 . . . , n + ν,

M̂
(n)
k,ℓ = M

(n)
k,ℓ , k, ℓ = 1, . . . , n+ ν.

Using the determinant expansion of M̂ (n)(x, t, z) by the last row we obtain

ψn(x, t, z) = Ω(x, t, z)
det M̂ (n)(x, t, z)

yn(x, t)
.(7.28)

Here is a useful formula for ξ
(n)
1 (x, t),

ξ
(n)
1 (x, t) = −

∆yn(x, t)

yn(x, t)
= −

∂t1yn(x, t)

yn(x, t)
.(7.29)

�

Theorem 7.4. The Baker-Akhiezer functions (ψm(x, t, z))
N
m=0 satisfy equations (4.2) with

indices n = 0, . . . , N − 1 in which the functions vn(x, t) are given in terms of yn(x, t) and
yn+1(x, t) by formula (4.3).

Proof. Consider the function

(7.30) ψ̃n+1(x, t, z) = ψn(x+ 1, t, z)− vn(x, t)ψn(x, t, z)− ψn+1(x, t, z) .

We need to show that ψ̃n+1(x, t, z) is the zero function.
We have

ψ̃n+1(x, t, z) = Ω(x+ 1, t, z)Rn(x+ 1, t, z)

− vn(x, t)Ω(x, t, z)Rn(x, t, z)− Ω(x, t, z)Rn+1(x, t, z)

= Ω(x, t, z)
(
(1 + z)Rn(x+ 1, t, z)− vn(x, t)Rn(x, t, z)− Rn+1(x, t, z)

)
.

= Ω(x, t, z) R̃n+1(x, t, z),

where R̃n+1(x, t, z) is a polynomial in z of degree at most n+ ν,

(7.31) R̃n+1(x, t, z) =

n+ν+1∑

ℓ=1

ξ̃
(n+1)
ℓ (x, t) zℓ−1 .

Each of the three functions ψn(x+1, t, z), vn(x, t)ψn(x, t, z), ψn+1(x, t, z) satisfy the equa-

tions (7.20) for k = 1, . . . , n + ν. Hence the function ψ̃n+1(x, t, z) satisfies equations (7.20)
for k = 1, . . . , n+ ν.

Lemma 7.5. The function ψ̃n+1(x, t, z) satisfies equation (7.20) for k = n+ ν + 1.

Proof. Recall the function detM (n)(x, t, z)Ω(x, t, z), see (7.27). Then

Dn+ν+1

[(
detM (n)(x, t, z)

)
Ω(x, t, z)

]
z=0

= detM (n+1)(x, t) = yn+1(x, t),(7.32)
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see formulas (7.7) and (7.15). Now we apply the operator Dn+ν+1[ ]z=0 to both sides of
equation (7.30). We have Dn+ν+1

[
ψn+1(x, t, z)

]
z=0

= 0 by definition of ψn+1(x, t, z). Hence

Dn+ν+1

[
ψ̃n+1(x, t, z)

]
z=0

= Dn+ν+1

[
ψn(x+ 1, t, z)− vn(x, t)ψn(x, t, z)

]
z=0

= Dn+ν+1

[(det M̂ (n)(x+ 1, t, z)

yn(x+ 1, t)
− vn(x, t)

det M̂ (n)(x, t, z)

yn(x, t)

)
Ω(x, t, z)

]
z=0

=
yn+1(x+ 1, t)

yn(x+ 1, t)
−

yn(x, t)yn+1(x+ 1, t)

yn(x+ 1, t)yn+1(x, t)

yn+1(x, t)

yn(x, t)
= 0.

�

Comparing the system of equations (7.23) with k = 1, . . . , n + ν for the coefficients

(ξ
(n)
ℓ (x, t))n+ν

ℓ=1 with the system of equations (7.20) with k = 1, . . . , n + ν + 1 for the co-

efficients (ξ̃
(n+1)
ℓ (x, t))n+ν+1

ℓ=1 we conclude that the coefficients (ξ̃
(n+1)
ℓ (x, t))n+ν+1

ℓ=1 satisfy the
system of homogeneous equations

(7.33)
n+ν+1∑

ℓ=1

M
(n+1)
k,ℓ (x, t) ξ̃

(n+1)
ℓ (x, t) = 0,

with k = 1, . . . , n+ ν + 1. According to our previous reasonings the determinant
detM (n+1)(x, t) = yn+1(x, t) of the matrix of this homogeneous system is a nonzero polyno-

mial. Hence all the functions ξ̃
(n+1)
ℓ (x, t) are the zero functions, the function ψ̃n+1(x, t, z) is

the zero function, the functions ψn(x, t, z) with n = 0, . . . , N − 1 satisfy equations (4.2), and
the theorem is proved. �

7.5. Reconstruction of A. Let A and Ã be two nondegenerate (N+ν)× (D+1)-matrices,

A = (ak,j) , Ã = (ãk,j) , k = 1, . . . , N + ν, j = 0, . . . , D .

Let (ψm(x, 0, z))
N
m=0 and (ψ̃m(x, 0, z))

N
m=0 be the corresponding Baker-Akhieser functions

given by the above construction.

Theorem 7.6. Assume that

ψn(x, 0, z) = ψ̃n(x, 0, z), n = 0, . . . , N.(7.34)

Then A = GÃ for a matrix G as in (7.3).

Proof. For any n the function ψn(x, 0, z) is given by the formulas (7.23), (7.24). Consider
the linear difference operator of order n+ ν,

∆(n+ν) + ξ(1)(x, 0)∆(n+ν−1) + ξ(2)(x, 0)∆(n+ν−2) + · · ·+ ξ(n+ν)(x, 0) .(7.35)

By formulas (7.23), (7.24) the kernel of this difference operator is generated by the polyno-
mials f1(x, 0), . . . , fn+ν(x, 0) given by formula (7.13).

If two matrices A, Ã have the same ψn(x, 0, z) and ψ̃n(x, 0, z), then the n+ ν-dimensional
space generated by the polynomials f1(x, 0), . . . , fn+ν(x, 0) coincides with the space generated

by the polynomials f̃1(x, 0), . . . , f̃n+ν(x, 0). Hence A = GÃ for suitable G. �
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7.6. Periodicity constraint. Given spectral data A = (ak,j), the construction of Section
7.4 gives y0(x, t), . . . , yN(x, t) and ψ0(x, t, z), . . . , ψN(x, t, z). We say that these functions
extend periodically if there exist sequences (yn(x, t))n∈Z and (ψn(x, t, z))n∈Z such that

yn+N(x, t) = yn(x, t), ψn+N (x, t, z) = zNψn(x, t, z), n ∈ Z,

and the sequence (ψn(x, t, z))n∈Z satisfies equations (4.2) with (vn(x, t))n∈Z given by (4.3) in
terms of (yn(x, t))n∈Z.

It is clear that the periodic extension is possible if and only if

(7.36) yN(x, t) = y0(x, t), ψN(x, t, z) = zNψ0(x, t, z) .

Our goal is to identify matrices A for which the periodicity equations (7.36) hold.

7.7. Construction of matrices A. Given ν, let W be an (N + ν)× (N + ν) matrix such
that its upper-right ν × ν corner U is nilpotent,

(7.37) W =

(
V U
∗ ∗

)
and U r = 0 for some r < ν .

Using W we construct an (N + ν)×N(ν + 1)-matrix A = A(W ) in three steps.

First using V and U we construct a ν × Nν matrix Q as follows. Let V = (v1, . . . , vN)
be column vectors of V and Q = (q1, . . . , qNν) column vectors of Q. Define qj = vj for
j = 1, . . . , N . Define qj for j > N recursively by the formula

(7.38) qN+j = Uqj .

Define an (N + ν)×N(ν + 1)-matrix P by the formula

(7.39) P =

(
E 0
0 Q

)
,

where E is the N ×N unit matrix. Define the matrix A by the formula

A = WP .(7.40)

It is easy to see that the matrix A has the form

(7.41) A =

(
Q 0
∗ ∗

)

7.8. Properties of the construction.

Lemma 7.7. If a matrix A = A(W ) is given by the construction of Section 7.7, then the
functions y0(x, t), . . . , yN(x, t) and ψ0(x, t, z), . . . , ψN(x, t, z) extend periodically.

Proof. The functions y0(x, t), ψ0(x, t, z) are determined by the first ν rows of A. That gives
ν equations (7.20) for ψ0(x, t, z). The functions yN(x, t), ψN (x, t, z) are determined by the
full matrix A. That gives N + ν equations (7.20) for ψN (x, t, z). The periodicity constraint
(7.36) holds if the space of linear combinations of equations defining ψN(x, t, z) contains N

equations ∂
(j)
z ψN(x, t, z)|z=0 = 0, j = 0, . . . , N−1, and ν equations (7.20) defining ψ0(x, t, z)

in which the operators Dk =
∑

j
ak,j
j!

∂j

∂zj
are replaces with the operators Dk =

∑
j
ak,j
j!

∂j+N

∂zj+N .

The relations (7.39), (7.40), (7.41) mean exactly that. The lemma is proved. �
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Let A = (aij) be a nondegenerate (N + ν)× (D+1)-matrix. Let y0(x, t), . . . , yN(x, t) and
ψ0(x, t, z), . . . , ψN (x, t, z) be the associated functions. Let m be a positive integer. Define

the (N + ν)× (D + 1 +m)-matrix Â = (âij) by the formula

âij = aij , j 6 D,

âij = aij , j > D.

We call Â the m-extension of A. Let ŷ0(x, t), . . . , ŷN(x, t) and ψ̂0(x, t, z), . . . , ψ̂N(x, t, z) be

the functions associated with Â. Clearly, we have

ŷn(x, t) = yn(x, t), ψ̂n(x, t, z) = ψn(x, t, z), n = 0, . . . , N.(7.42)

Let A = (aij) be a nondegenerate (N + ν) × (D + 1)-matrix with associated functions

y0(x, t), . . . , yN(x, t) and ψ0(x, t, z), . . . , ψN (x, t, z) which extend periodically Let Â be the

N -extension of the matrix of A. According to (7.42) the matrix Â has the same associated
functions y0(x, t), . . . , yN(x, t) and ψ0(x, t, z), . . . , ψN(x, t, z) which extend periodically.

Lemma 7.8. Under these assumptions the matrix Â is given by the construction of Section
7.7, namely, we have Â = Â(Ŵ ) for a suitable Ŵ .

Proof. We have ψN (x, 0, z) = zNψ0(x, 0, z) and the function ψN (x, 0, z) is defined by the

(N + ν) × (D + 1 + N)-matrix Â. The same function ψN (x, 0, z) is defined also by the
(N + ν)× (D + 1 +N)-matrix

(7.43) P =

(
E 0
0 A(0)

)
,

where E is the N ×N unit matrix and A(0) is the ν × (D + 1)-matrix formed by the first ν

rows of the matrix A. By Theorem 7.6 this means that Â = ŴP for a suitable matrix Ŵ . It
remains to show that the upper-right ν corner of Ŵ , denoted in (7.37) by U is nilpotent. As
it was already noted above from equations (7.39), (7.40) and 7.41 it follows that the columns
qj of A(0) should satisfy equation (7.38). Since A(0) is of rank ν and qj = 0 for j > D we get
that U r = 0 for some r. If that holds for some r then r < ν. From the latter it follows that
the integer D used in the construction in the N periodic case is bounded by D 6 Nν. �

Theorem 7.9. If an N-periodic sequence of polynomials (y01(x), . . . , y
0
N(x)) represents a

solution of the Bethe ansatz equations (2.1), then there exists a matrix A = A(W ) given
by the construction of Section 7.7 such that the associated polynomials y0(x, t), . . . , yN(x, t)
have the property:

yn(x, 0) = y0n(x), n = 1, . . . , N.(7.44)

Proof. By Lemma 7.1 the function ψ0(x, z) corresponding to a sequence polynomials (yn(x))n∈Z
representing a periodic solutions of the Bethe ansatz equation has the form

(7.45) ψ0(x, z) = ψ(x, z | u(0), γ(0)) = (z + 1)x

(
1 +

ν∑

i=1

ξ
(0)
i (x)z−i

)

with ξ
(0)
ν 6= 0. The integer ν 6 k0 is the order of the pole of ψ0 at z = 0. By Theorem 5.9

the function zm0ψ0(x, z) satisfies (5.48) for any g ∈ W0(u
(0), γ(0)). The space W0(u

(0), γ(0))
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is a k0-dimensional subspace of polynomials of degree 2k0 − 1. The function zk0ψ0(x, z)
has zero of order k0 − ν at z = 0. Then, by Lemma 5.11 the polynomials z2k0−1−ℓ for
ℓ = 0, . . . , k0 − ν − 1 are in W0(u

(0), γ(0)). Hence, the space W0(u
(0), γ(0)) contains a ν-

dimensional subspace W̃ (0) ⊂W0(u
(0), γ(0)) of polynomials of degree k0+ ν−1 such that the

function

(7.46) zνψ(x, z | u(0), γ(0)) = (z + 1)x

(
zν +

ν∑

i=1

ξ
(0)
i (x)zν−i

)

satisfies the equations

(7.47) resz=0
g(z)zk0ψ0(x, z)

z2k0
= resz=0

g(z)(zνψ0(x, z))

zk0+ν
= 0 , ∀g ∈ W̃ (0) .

Choose a basis gk(z), k = 1, . . . ν, in the space W̃ (0). The coefficients ak,j of these polynomials

(7.48) gk(z) =

m0+ν−1∑

j=0

ak,jz
m0+ν−j−1

define a ν × (k0 + ν)-matrix Ã(0), which for any D > k0 + ν − 1 can be trivially extended to
a ν × (D + 1)-matrix A(0) by setting ak,j = 0 , j > k0 + ν. Then equations (7.47) coincide
with equations (7.20) defining the Baker-Akhiezer function ψ0(x, 0, z |A

(0)), where we have
included in the notation the dependence of the Baker-Akhiezer function on the defining
matrix A0, i.e.

(7.49) zνψ0(x, z) = ψ0(x, 0, z |A
(0)).

Applying recurrently equation (4.2) we get that for n > 0 the solution of the linear generating
problem has the form

(7.50) zνψn(x, z) = (z + 1)x

(
zn+ν +

n+ν∑

i=1

ξ
(n)
i (x)zn+ν−i

)
.

Since zνψn(x, t) = zn+νψ(x, z | u(n), γ(n)), we a’priory know that the coefficients ξ
(n)
i (x) are

defined by a nondegenerate system of equations of the form (4.2) defined by an (n+ν)×(D+1)
matrixA(n) for sufficiently largeD. From (4.2) it follows that zνψn+1(x, z) satisfies the system
of (n + ν) linear equations defining zνψn(x, z). Hence, A(n+1) can be chosen such that its
first (n + ν) rows coincides with the matrix A(n). Then we define A in the construction of
Section 5 to be equal to A(N). Theorem 7.9 is proved. �

7.9. Remark on difference operators. In formula (7.35) we identified, roughly speaking,
the Baker-Akhiezer function ψn(x, 0, z) with the linear difference operator of order n + ν,
whose kernel is spanned by the polynomials f1(x, 0), . . . , fn+ν(x, 0). From that point of
view, the Baker-Akhiezer function ψn+1(x, 0) is identified with the linear difference operator
of order n + ν + 1, whose kernel is spanned by the polynomials f1(x, 0), . . . , fn+ν(x, 0) and
one new polynomial fn+ν+1(x, 0). The main formula of this paper, that is, formula (4.2),
is the formula expressing the second of these difference operators in terms of the first one.
The periodicity property of the functions ψ0(x, t, z), . . . , ψN(x, t, z) can be reformulated as a
special relation between the kernels of the differential operators corresponding to ψ0(x, t, z)
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and ψN(x, t, z). That property is implicitly explained in Sections 7.6 – 7.8. A version of this
point of view is developed in Section 10.

7.10. Main theorem on commuting flows. By Theorem 7.9 any solution of the N -
periodic Bethe ansatz equations is defined by some matrix A. Theorem 7.4 implies that
the space of solutions of the N -periodic Bethe ansatz equations is invariant with respect
to times t under the deformations defined by the Baker-Akhiezer functions. For each n
the corresponding function Ψn(x, t, z) is a particular case of the Baker-Akhiezer function
corresponding to the rational kn-particle rational RS system. Hence, by Theorem 6.4 the
dependence of roots of the corresponding polynomial yn(x, t) is described by equations of
the rational RS system. Therefore we have the following theorem.

Theorem 7.10. Let (yn(x))n∈Z be an N-periodic sequence of polynomials of degrees (kn)
representing a solution of the N-periodic Bethe ansatz equations. The correspondence

(7.51) (yn) 7−→ (u(n), γ(n)),

where γ = (γ
(n)
1 , . . . , γ

(n)
kn

) is given by (4.4), is an embedding of the space of solutions of the
Bethe ansatz equations into the product of N phase spaces of the kn-particle rational RS
systems, n = 1, . . . , N . The image of this map is invariant under the hierarchy the rational
RS systems (6.12), (6.13) acting diagonally on the product of the phase spaces.

Consider the extension of the sequence y = (yn(x))n∈Z to the family y(t) = (yn(x, t))n∈Z,
defined by Theorems 7.4 and 7.9. Then the correspondence in (7.51) sends the family y(t)
to a solution of the rational RS hierarchy. �

8. Bethe ansatz equations and integrable hierarchies

The existence of the one parameter family Ψ(z) of solutions of equations (4.2) having the
form (4.7) reveals the connection of the Bethe ansatz equations (4.1) with basic hierarchies
of the soliton theory. We begin this section with a brief review of the hierarchy, which is
referred throughout the paper as the positive part of the 2D-Toda hierarchy.

8.1. Pseudo-difference operators. We regard sequences g = (gn)n∈Z with gn ∈ C as
elements of the ring of functions of the discrete variable n. In particular we have addition
f + g and multiplication fg of sequences defined by the formulas (f + g)n = fn + gn,
(fg)n = fngn. Let T be the shift operator acting on sequences g = (gn)n∈Z by the formula
T : f 7→ Tg, where (Tg)n = gn+1.

The space of pseudo-difference operators is the space F of Laurent polynomials in T−1,
whose coefficients are functions of the variable n ∈ Z, i.e.

(8.1) F =
∞∑

s=−M

fsT
−s , fs = (fn,s), n ∈ Z,

for some integer M . Recall that the coefficient f0 in (8.1) is called the residue of F ,

(8.2) resT F := f0 .

The ring structure on F is defined by the ring structure on the space of coefficients and the
composition rule

(8.3) T (fTm) := (Tf)Tm+1,
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where f is a sequence.
In what follows we will apply the pseudo-differential operators to sequences ϕ(z) =

(ϕn(z))n∈Z, whose elements are formal Laurent series in z of the form

(8.4) ϕn(z) = zn

(
∞∑

s=−K

ϕn,sz
−s

)
,

where K is some integer.

8.2. Positive part of the 2D Toda hierarchy. The difference analog of the KP hierarchy
is defined almost verbatim to the definition in the continuous case, cf. [SW], [Di]. It leads
us to the positive part of the 2D Toda hierarchy.

Consider the affine space of monic pseudo-difference operators of degree 1, i.e., the space
of pseudo-difference operators of the form

(8.5) L = T +

∞∑

s=0

wsT
−s.

The positive part of the 2D Toda hierarchy has time variables t = (t1, t2, . . . ). The flow
corresponding to the time variable tm is defined by the equation

(8.6) ∂mL = [Lm
+ ,L], ∂m := ∂tm ,

where Li
+ is the nonnegative part of the operator Lm, i.e. the difference operator such that

Lm
− = Lm − Lm

+ = O(T−1).
The standard arguments show that (8.6) is a well-defined system of equations on the

coefficients of the operator L. For that one needs to show that the right-hand side of
(8.6) is a pseudo-difference operator of degree at most zero. That follows from the equality
[Lm

+ ,L] = −[Lm
− ,L] and the fact that Lm

− is a pseudo-difference operator of degree 6 −1.
The flows commute. The proof of the commutativity of the flows, i.e. the proof that

equations (8.6) imply the equations

(8.7) [∂m − (Lm
+), ∂ℓ − (Lℓ

+)] = 0,

is standard and word by word follows its continuous variant, see [Di].

Remark. The hierarchy of commuting flows (8.6) is a part of the 2D Toda hierarchy. Recall
that the full 2D Toda hierarchy is defined on the space of pairs of pseudo-difference operators,
one of which is as in (8.5) and the other is a pseudo-difference operator with respect to T ,

(8.8) L− =

∞∑

s=−1

w−
s T

s .

The full set of time variables of the 2D Toda hierarchy consists of the variables t = (t1, t2, . . .)
as above and the variables t− = (t−1 , t

−
2 , . . .). We do not give further details, see [TU], since

the second part of the 2D Toda hierarchy is not relevant for our purposes.

For any pseudo-difference operator L of the form (8.5) there is a unique formal solution
Ψw(z) = (Ψw

n (z))n∈Z of the equation

(8.9) LΨw(z) = zΨw(z)
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of the form

(8.10) Ψw
n (z) = zn

(
1 +

∞∑

s=1

ξn,sz
−s

)
,

normalized by the condition

(8.11) Ψw
0 (z) = 1 ⇔ ξ0,s = 0, s > 0.

The solution Ψw(z) is called the wave solution.

Let the pseudo-difference operator L depend on times, L = L(t). One can check that
this pseudo-difference operator is a solution of the hierarchy equation (8.6) if and only if the
following equations hold:

(8.12) ∂mΨ
w(t, z) = Lm

+(t)Ψ
w(t, z) + hm(t, z)Ψ

w(t, z),

where hm(t, z) is a scalar (not a sequence) Laurent series in z. The comparison of the right
and left-hand sides shows that hm(t, z) has the form

(8.13) hm(t, z) = zm +O(z−1).

From equation (8.7) it follows that

(8.14) ∂mhℓ(t, z) = ∂ℓhm(t, z) .

Hence, there is a unique Laurent series h(t, z) such that ∂mh(t, z) = hm(t, z) and normalized
by the condition h(0, z) = 1. Then equation (8.13) implies that

(8.15) h(t, z) =

∞∑

m=1

tmz
m +O(z−1).

It is easy to see that the sequence Ψ(t, z) := Ψw(t, z)e−h(t,z) satisfies the equations

(8.16) L(t)Ψ(t, z) = zΨ(t, z), (∂m −Lm
+ )Ψ(t, z) = 0 .

The elements Ψn(t, z) of the sequence Ψ(t, z) have the form

(8.17) Ψn(t, z) = zn

(
1 +

∞∑

s=1

χs(t)z
−s

)
e
∑

∞

m=1 tmzm.

8.3. Discrete N mKdV hierarchy. Consider sequences of functions g = (gn(x))n∈Z. There
are two shift operators acting on them: T and Tx. The action of T is as above. The operator
Tx = e∂x is the shift in the x variable, (Txg)n(x) = gn(x+ 1).

Recall the generating equation (1.17), that can be written in the form

(8.18) HΨ = 0 ,

where

(8.19) H = T − Tx + v , v = (vn(x))n∈Z ,

is a difference operator in x and n.

The hierarchy, which we call the discrete N mKdV hierarchy, is the compatibility condition
of the positive part of the 2D Toda hierarchy, defined in (8.6), with the generating equation
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(8.18). More precisely, the full set of equations of the discrete N mKdV hierarchy are
equations (8.6) and equations

(8.20) [∂m −Lm
+ , H ] = DmH, m > 1,

where Dm is some difference operator in x and n depending on m.

Remark. The meaning of (8.20) is that the operators ∂m−Lm
+ and H commute on the space

of solutions of equation (8.18). In the theory of integrable systems this type of representation
is called an L,A,B triple, see [DKN].

By division with remainder it is easy to see that any difference operator D in x and n of
degree M has a unique presentation

(8.21) D = DH +D1 ,

where D1 is a degree M difference operator in n only, i.e. D1 is a polynomial of degree M
in T with coefficients that are sequences of functions (gn(x)). Equation (8.20) says that the
corresponding operator D1 equals zero. Therefore, for any given monic difference operator
B in n,

(8.22) B = TM +

M∑

s=1

bsT
M−s,

the equation

(8.23) [∂m − B,H ] = DH

with some D is a system of M + 1 equations on M + 1 unknown coefficients b1, . . . , bM
and v. The first M of them are difference equations. Unlike in the differential case, where
the corresponding equations allow us to express the coefficients b1, . . . , bM as the differential
polynomials in v and get a well-defined system of equations for the coefficients of H only,
in the difference case the reconstruction of b1, . . . , bM in terms of v requires some additional
assumptions, see more on that below.

Equations (8.6) and (8.20) is a system of equations on the coefficients of the pseudo-
difference operator L and the sequence v. These equations can be written more explicitly
following the argument identical to the one in the proof of equation (5.66) in [K8]. Namely,
let

(8.24) Fm := resT Lm, Fm = (Fm,n)n∈Z .

Lemma 8.1. The system consisting of equations (8.6) and (8.20) is equivalent to the system
consisting of equations (8.6) and equations

(8.25) ∂m(ln vn(x)) = Fm,n(x)− Fm,n(x+ 1) , m > 1 .

�
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8.4. Remark. Notice again that the system of equations (8.25) is not a closed system with
respect to v(x) since the right-hand sides are expressed in terms of the operator L.

A possible approach to eliminate L from equations (8.25) is as follows. Having an arbitrary
N -periodic v(x) determine a family of solutions ψ(x, z) of equation the Hψ = 0. Then L
is uniquely determined from the equation Lψ(x, z) = zψ(x, z). Put that L into (8.25) and
obtain a system of equations on v(x) only. Such an approach works well in similar situations
but not in this one since the desired family of solutions ψ(x, z) to equation Hψ = 0 is not
unique.

Below we explain a construction of ψ(x, z) from v(x) and indicate why ψ(x, z) is not
unique. That fails this attempt to eliminate L from equations (8.25). The problem of
elimination of L from (8.25) deserves further analysis.

Lemma 8.2. Let v = (vn(x))n∈Z be any N-periodic sequence of functions, vn(x) = vn+N(x).
Then there is a formal solution ψ = (ψn(x, z))n∈Z of equation (1.17),

(8.26) Hψ = 0

with ψn(x, z) of the form

(8.27) ψn(x, z) = zn(z + 1)x

(
1 +

∞∑

s=1

ξn,s(x)z
−s

)

with periodic coefficients

(8.28) ξn,s(x) = ξn+N,s(x) .

Proof. The substitution of (8.27) into (8.26) gives a system of equations for the unknown
coefficients ξn,s(x) in (8.27)

(8.29) (Tx − T ) ξs+1 = − (v + Tx) ξs ,

i.e.,

(8.30) ξn,s+1(x+ 1)− ξn+1,s+1(x) = −vn(x) ξn,s(x)− ξn,s(x+ 1) , s = 1, 2, . . . .

We prove the existence of N -periodic solutions of these equation by induction. The in-
duction starts with ξ0 = (ξn,0)n∈Z and ξn,0 = 1 for all n. Suppose that ξs = (ξn,s) is known

and is N -periodic. Let us apply the operator TN :=
∑N−1

i=0 TN−i−1
x T i to both sides of (8.29).

Using the periodicity of ξs and v we get the equation

(8.31) (TN
x − 1)ξs+1 = TN(Txξs − v) .

Invert the operator TN
x − 1,

(8.32) (TN
x − 1)−1 :=

∞∑

i=1

T−iN
x .

Then the N -periodic solutions of (8.29) can be recurrently defined by the formula

(8.33) ξs+1 = (TN
x − 1)−1TN(Txξs − v) .

The lemma is proved. �



46 I.KRICHEVER, A.VARCHENKO

The choice of (Tx − 1)−1 is not unique. It can be replaced by

(8.34) (TN
x − 1)−1 := −

∞∑

i=0

T iN
x .

It is easy to see that for any formal solution ψ(x, z) of (8.26) of the form (8.27) there is a
unique pseudo-difference operator L such that

(8.35) Lψ(x, z) = zψ(x, z) .

Hence any choice of such a ψ(x, z) makes the discrete N -periodic mKdV equations a well-
defined system of equations for the functions (vn(x))n∈Z only.

Notice that if a sequence (vn(x)) is not an arbitrary N -periodic sequence of functions, but
a sequence defined by formula (4.3) with (yn(x)) satisfying the Bethe ansatz equations, then
Theorem 4.2 gives us another way to construct the family of solutions ψ(x, z) to equation
Hψ(x, z) = 0. In that case by constructing L from (8.35) we may eliminate L from (8.25)
and then solve the resulting equations on (vn(x)) only.

8.5. Deformations are solutions. Let y = (yn(x)) be an N -periodic sequence of polyno-
mials representing a solution of the Bethe ansatz equations. By Theorems 7.4 and 7.9 we can
extend y to a family y(t) = (yn(x, t)). Consider the corresponding solution of the generating
problem (Ψn(x, t, z)),

(8.36) Ψn(x, t, z) = zn

(
1 +

∞∑

s=1

ξs(x, t)z
−s

)
Ω(x, t, z).

This solution satisfies the hierarchy of linear equations (6.5). Equations (6.4) identify the
difference operatorsDm in (6.5) with the operators Lm

+ . Hence we have the following theorem.

Theorem 8.3. The N-periodic sequence (vn(x, t)) defined in terms of y(t) by (4.3) is a
solution the discrete N mKdV hierarchy. �

8.6. Remark on discrete Miura opers. Denote by L(z), V (x) the N ×N -matrices

L(z) = E2,1 + E3,2 + · · ·+ EN,N−1 + z−NE1,N ,(8.37)

V (x) = v1(x)E1,1 + · · ·+ vN (x)EN,N ,

where v1(x), . . . , vN(x) are some given functions of x. The first order linear difference oper-
ator

T − L− V(8.38)

is called a discrete Miura oper, cf. [MV3]. Assume that (yn(x))n∈Z is an N -periodic se-
quence of polynomials representing a solution of the Bethe ansatz equations (2.1), yN+n(x) =
yn(x). Consider the corresponding N -periodic sequence (vn(x)) defined by formula (4.3)
and the N -periodic sequence of Baker-Akhieser functions (Ψn(x, z))n∈Z given by Theorem
4.2, ΨN+n(x, z) = zNΨn(x, z). Consider the N column vector Ψ(x, z) with coordinates
Ψ1(x, z), . . . ,ΨN(x, z). Then

(Tx − L(z)− V (x)) Ψ(x, z) = 0 .(8.39)
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For example, if N = 3, then

Ψ1

Ψ2

Ψ3


(x+ 1, z) =



v1(x) 0 z−3

1 v2(x) 0
0 1 v3(x)





Ψ1

Ψ2

Ψ3


(x, z) .

Our study in this paper of periodic sequences of (yn(x))n∈Z, (Ψn(x, z))n∈Z is the study of the
difference equation (8.39).

The discrete Miura opers are discrete analogs of differential Miura opers, which are the
first order differential operators of the form

d

dx
− Λ− V .(8.40)

These differential operators play an important role in the theory of the N mKdV hierarchy,
see for example [DS, VWr].

9. Combinatorial data

In this section we follow Section 6 in [VWr] and review some combinatorial data, which will
be used in Section 10 to describe Baker-Akhieser functions of points of an infinite-dimensional
Grassmannian.

9.1. Subsets of virtual cardinal zero. By a partition we mean an infinite sequence of
nonnegative integers λ = (λ0 > λ1 > . . . ) such that all except a finite number of the λi are
zero. The number |λ| =

∑
i λi will be called the weight of λ.

Following [SW], we say that a subset S = {s0 < s1 < s2 < . . . } ⊂ Z is of virtual cardinal
zero, if sj = j for all sufficiently large i. If n is such that sj = j for all j > n, then we say
that S is of depth n.

If S is of depth n, then it is also of depth n+ 1.

Lemma 9.1 ([SW]). There is a one to one correspondence between elements of S and par-
titions, given by S ↔ λ where

λi = i− si .

For a subset S = {s0 < s1 < s2 < . . . } ⊂ Z and an integer k ∈ Z we denote by S + k the
subset {s0 + k < s1 + k < s2 + k < . . . } ⊂ Z.

Let S be a subset of virtual cardinal zero. Let A = {a1, . . . , ak} ⊂ Z be a finite subset of
distinct integers.

Lemma 9.2 ([VWr]). If {a1, . . . , ak} ∩ (S + k) = ∅. Then {a1, . . . , ak} ∪ (S + k) is a subset
of virtual cardinal zero.

9.2. KdV subsets. Fix an integer N > 1. We say that a subset S of virtual cardinal zero
is a KdV subset if S +N ⊂ S. For example, for any N > 1,

S∅ = {0, 1, 2, . . .}

is a KdV subset.

Lemma 9.3 ([VWr]). Let S be a KdV subset. Then there exists a unique N-element subset
A = {a1 < · · · < aN} ⊂ Z such that S = A ∪ (S +N).
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The subset A of the Lemma 9.3 will be called the leading term of S.

The leading term A uniquely determines the KdV subset S, since S is the union of N
non-intersecting arithmetic progressions {ai, ai +N, ai + 2N, . . . }, i = 1, . . . , N .

Let S be a KdV subset with leading term A. For any a ∈ A the subset

S[a] = {a+ 1−N} ∪ (S + 1)(9.1)

is a KdV subset with leading term A[a] = (A+ 1)∪ {a+ 1−N} − {a+ 1}. The subset S[a]
will be called the mutation of the KdV subset S at a ∈ A.

Lemma 9.4 ([VWr]).

(i) Let S1 be a KdV subset with leading term A. Let S2 be a KdV subset such that
S1 + 1 ⊂ S2. Then S2 is the mutation of S1 at some element a ∈ A.

(ii) Any KdV subset S can be transformed to the KdV subset S∅ by a sequence of muta-
tions.

(iii) A subset A = {a1 < · · · < aN} is the leading term of a KdV subset if and only if
equation

N∑

i=1

ai =
N(N − 1)

2
(9.2)

holds true and ai − aj is not divisible by N for any i 6= j.

9.3. mKdV tuples of subsets. We say that an N -tuple S = (S1, . . . , SN) of KdV subsets
is an mKdV tuple of subsets if Si + 1 ⊂ Si+1 for all i, in particular, SN + 1 ⊂ S1.

For example, for any N , the N -tuple

S∅ = (S∅, . . . , S∅)

is an mKdV tuple of subsets.

If S = (S1, . . . , SN) is an mKdV tuple, then (Si, Si+1, . . . , SN , S1, S2, . . . , Si−1) is an mKdV
tuple of subsets for any i.

Let S be a KdV subset with leading term A = {a1 < · · · < aN}. Let σ be an element of
the permutation group ΣN . Define an N -tuple SS,σ = (S1, . . . , SN), where

Si = {aσ(1) + i−N, aσ(2) + i−N, . . . , aσ(i) + i−N} + (S + i), i = 1 . . . , N.(9.3)

In particular, SN = A ∪ (S +N) = S.

Lemma 9.5 ([VWr]).

(i) The N-tuple SS,σ is an mKdV tuple.
(ii) Every mKdV tuple is of the form SS,σ for some KdV subset S and some element

σ ∈ ΣN .

9.4. Mutations of mKdV tuples.

Lemma 9.6 ([VWr]). Let S = (S1, . . . , SN) be an mKdV tuple. Then for any i = 1, . . . , N ,
there exists a unique mKdV tuple

S(i) = (S1, . . . , Si−1, S̃i, Si+1, . . . , SN)(9.4)

which differs from S at the i-th position only.
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The mKdV tuple S(i) will be called the mutation of the mKdV tuple S at the i-th position.
Denote by wi : S 7→ S(i) the mutation map.

Let λi, λ̃i be the partitions corresponding to the KdV subsets Si, S̃i, respectively. The
mutation wi : S 7→ S(i) will be called degree decreasing if |λ̃i| < |λi|.

Theorem 9.7 ([VWr]). Any mKdV tuple S can be transformed to the mKdV tuple S∅ =
(S∅, . . . , S∅) by a sequence of degree decreasing mutations.

10. Tau-functions and Baker-Akhieser functions

In this section we follow Section 7 in [VWr] although we define the tau-functions as discrete
Wronskians while in [VWr] the standard Wronskians are used. The tau-functions in this
paper are different from the tau-functions in [VWr].

10.1. Remarks on the construction of Section 7.2. In Section 10 below we assign tau-
functions and Baker-Akhieser functions to vector subspaces of an infinite dimensional vector
space. The assignment is based on the construction of Section 7.2. We formulate two remarks
on the construction.

In Section 7.4 starting from an (ν +N)× (D + 1)-matrix

A = {ak,j} , k = 1, . . . , N + ν, j = 0, . . . , D ,

we constructed the functions yn(x, t), ψn(x, t, z) for n = 0, . . . , N .

Choose n, 0 6 n 6 N . Consider the (n + ν) × D-matrix A(n) formed by the first n + ν
rows of the matrix A. Then the functions yn(x, t) and ψn(x, t, z) are determined by formulas
(7.26) and (7.28) in terms of the matrix A(n) only.

Let B be a nondegenerate (n + ν) × (n + ν)-matrix. Let yn,B(x, t) and ψn,B(x, t, z)
be the functions determined by formulas (7.26) and (7.28), respectively, in which the en-
tries of the matrix A(n) are replaced with the corresponding entires of the matrix BA(n).
Then yn,B(x, t) = yn(x, t) and ψn,B(x, t, z) = ψn(x, t, z). That is, the functions yn(x, t) and
ψn(x, t, z) are determined by the (n+ ν)-dimensional vector space spanned by the first n+ ν
rows of the matrix A and do not depend on the choice of a basis in that space.

Consider the new (ν +N + 1)× (D + 2)-matrix

Ã = {ãk,j} , k = 0, . . . , N + ν, j = 0, . . . , D + 1 ,

defined by the formulas

ã0,j = δ0,j , j = 0, . . . , D + 1 ,(10.1)

ãk,0 = 0 , k = 1, . . . , N + ν ,

ãk,j = ak,j−1, j = 1, . . . , D + 1.

Apply the construction of Section 7.4 to the matrix Ã and construct the functions ỹn(x, t)

and ψ̃n(x, t, z) for n = 0, . . . , N .

Lemma 10.1. We have

ỹn(x, t) = yn(x, t), ψ̃n(x, t, z) = z ψn(x, t, z) , n = 0, . . . , N .(10.2)

�
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Lemma 10.1 says that the functions yn(x, t) and ψn(x, t, z), determined by the (n + ν)-
dimensional vector space spanned by the first n+ ν rows of the matrix A, do not change up
to multiplication of ψn(x, t, z) by z, if the (n + ν)-dimensional vector space is extended to
the (n+ ν + 1)-dimensional vector space by formulas (10.1).

10.2. Grassmannian Gr0(H). For a Laurent polynomial v =
∑

i viz
i, the number ord v =

min{i : vi 6= 0} will be called the order of v.

Following [SW], let H be the Hilbert space L2(S1) with orthonormal basis {zj}j∈Z. Let
H+ be the closure of the span of {zj}j>0 and H− the closure of the span of {zj}j<0. We have
the orthogonal decomposition H = H+ ⊕H−.

We consider the set of all closed subspaces W ⊂ H such that

zqH+ ⊂W ⊂ z−qH+(10.3)

for some q > 0. Such subspaces can be identified with subspaces W/zqH+ of z−qH+/z
qH+.

We say that W is of virtual dimension zero if dimW/zqH+ = q. Denote by Gr0(H) the set
of all subspaces of virtual dimension zero.

Any W ∈ Gr0(H) has a basis {vj}j>0 consisting of Laurent polynomials. We may assume
that the numbers sj = ord vj form a strictly increasing sequence SW = {s0 < s1 < s2 < . . . }.
The assignment W 7→ SW is well-defined. The subset SW will be called the order subset of
W . The order subset SW is of virtual cardinal zero.

For W ∈ Gr0(H), a basis {vj =
∑

i>sj
vj,iz

i}j>0 of W is called special of depth n, if it

consists of Laurent polynomials such that vj = zj for j > n and vj,i = 0 if i > n and j 6 n.

If {vj}j>0 is a basis of depth n, then it is also a basis of depth n + 1.

10.3. Points in Gr0(H) and finite-dimensional spaces of polynomials in x, t. Let
S = {s0 < s1 < . . . } be a set of virtual cardinal zero of depth n. For W ∈ Gr0(H) with
order subset S let {vj =

∑
i>sj

vj,iz
i}j>0 be a special basis of depth n.

Introduce the n + 1-dimensional complex vector space VW,n of polynomials in x, t as the
space spanned by the polynomials fj,n(x, t), j = 0, . . . , n, where

fj,n(x, t) =

n−sj∑

i=0

vj,n−i χi(x, t) , j = 0, . . . , n .(10.4)

We have degx fj(x, t) = n− sj .

It is clear that the space VW,n does not depend on the choice of a special basis of W with
depth n.

The same basis of depth n is also a basis of depth n+1. Then the space VW,n+1 is spanned
by the polynomials

fj,n+1(x, t) =

n−sj∑

i=0

vj,n−i χi+1(x, t) , j = 0, . . . , n,(10.5)

fn+1,n+1(x, t) = χ0(x, t) .

Therefore, the n + 2-dimensional space VW,n+1 consists of all linear combinations g(x, t) of
polynomials χi(x, t) such that ∆g(x, t) ∈ VW,n.
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The space VW,n+2 is related to the space VW,n+1 in a similar way, and so on. Thus, to a
space W ∈ Gr0(H) we assigned a sequence of spaces VW,n, VW,n+1, . . . related by formulas
(10.4) and (10.5).

The construction in the opposite direction goes as follows. Let S be a set of virtual
cardinal zero. Let n be such that sj = j for all j > n. Let V be an n + 1-dimensional
complex vector space spanned by linear combinations of polynomials χi(x, t), such that V
has a basis (fj(x, t))

n
j=0 with degx fj(x, t) = n− sj. To this vector space V with such a basis

fj,n(x, t) =

n−sj∑

i=0

vj,n−i χi(x, t) , j = 0, . . . , n,(10.6)

we assign WV ∈ Gr0(H) with special basis {vj}j>0 of depth n, where

vj =
∑

i

vj,iz
i , for j = 0, . . . , n ,(10.7)

and vj = zj for all j > n. The set S is the order subset of WV . We also have VWV ,n = V .

For W ∈ Gr0(H) with order subset S = {s0 < s1 < . . . } of depth n, we have W =WVW,n
.

10.4. Tau and Baker-Akhieser functions. LetW ∈ Gr0(H) have order subset S = {s0 <
s1 < . . . } of depth n. Let {vj =

∑
i>sj

vj,iz
i}j>0 be a special basis ofW of depth n. Consider

the polynomials (fj(x, t))
n
j=0 defined in (10.4).

Define the tau-function of W by the formula

τW (x, t) = Ŵ (f0(x, t), . . . , fn(x, t)),(10.8)

cf. [SW]. The tau-function is independent of the choice of n up to multiplication by a
nonzero number, see Lemma 10.1.

Let the order subset S = {s0 < s1 < . . . } corresponds to a partition λ. Then

τW (x, t) = a x|λ| + (low order terms in x),(10.9)

where a is a nonzero number independent of x, t.

Define the Baker-Akhieser function of W by the formula

ψ
(n)
W (x, t, z) = Ω(x, t, z)

det M̂
(n)
W (x, t, z)

τW (x, t)
,(10.10)

where the matrix M̂
(n)
W (x, t, z) is defined as follows.

First we define an (n+ 1)× (n+ 1)-matrix M
(n)
W (x, t) by the formula

M
(n)
W,k,ℓ(x, t) = ∆(ℓ)fk(x, t), k, ℓ = 0, . . . , n,(10.11)

cf. (7.24). Define an (n + 2) × (n + 2)-matrix M̂
(n)
W (x, t, z), whose rows and columns are

labeled by indices 0, . . . , n+ 1 and entries are given by the formulas:

M̂
(n)
W,k,ℓ = M

(n)
W,k,ℓ, k, ℓ = 0, . . . , n,(10.12)

M̂
(n)
W,n+1,ℓ = zℓ, ℓ = 0, . . . , n+ 1,

M̂
(n)
W,ℓ,n+1 = ∆(n+1)fk(x, t), ℓ = 0 . . . , n,
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cf. formula (7.27).

Lemma 10.2.

(i) Let {vj =
∑

i>sj
vj,iz

i}j>0 be a special basis ofW of depth n. Then the Baker-Akhieser

function ψ
(n)
W (x, t, z) does not depend on the choice of the special basis.

(ii) If another number n′ is chosen such that sj = j for all j > n′, then

ψ
(n′)
W (x, t, z) = zn

′−n ψ
(n)
W (x, t, z) .(10.13)

Proof. The lemma follows from Lemma 10.1. �

10.5. mKdV tuples of subspaces. Fix an integer N > 1. We say that a subspace W ∈
Gr0(H) is a KdV subspace if zNW ⊂W .

For example, for any N the subspace H+ is a KdV subspace.

Lemma 10.3 ([VWr]). Let W be a KdV subspace with order subset S. Then S is a KdV
subset.

We say that an N -tuple W = (W1, . . . ,WN) of KdV subspaces is an mKdV tuple of
subspaces if zWi ⊂ Wi+1 for all i, in particular, zWN ⊂ W1. Denote by GrmKdV the set of
all mKdV tuples of subspaces.

For example, for any N the tuple W ∅ = (H+, . . . , H+) is an mKdV tuple.

If W = (W1, . . . ,WN) ∈ GrmKdV , then (Wi,Wi+1, . . . ,WN , W1,W2, . . . ,Wi−1) ∈ GrmKdV

for any i.

LetW = (W1, . . . ,WN) ∈ GrmKdV . Let Si be the order subset ofWi and S = (S1, . . . , SN).
Then S is an mKdV tuple of subsets.

Let W be a KdV subspace with order subset S. Let A = {a1 < · · · < aN} be the leading
term of S. Let v = (v1, . . . , vN) be a tuple of elements of W such that ord vi = ai for all i.
Let σ ∈ ΣN . Define an N -tuple WW,v,σ = (W1, . . . ,WN) of subspaces by the formula

Wi = 〈zi−Nvσ(1), z
i−Nvσ(2), . . . , z

i−Nvσ(i)〉+ ziW,(10.14)

in particular, WN = zNW + span〈v1, . . . , vN〉 =W .

Theorem 10.4 ([VWr]). The N-tuple WW,v,σ is an mKdV tuple of subspaces. Moreover,
every mKdV tuple of subspaces is of the form WW,v,σ for suitable W, v, σ.

Here is another description of mKdV tuples of subspaces.

Theorem 10.5 ([VWr]). Let W be a KdV subspace. Let zNW = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂
VN−1 ⊂ VN = W be a complete flag of vector subspaces such that dimVi/Vi−1 = 1 for all i.
Set

Wi = zi−NVi, i = 1, . . . , N.(10.15)

Then W = (W1, . . . ,WN−1,WN = W ) is an mKdV tuple of subspaces. Moreover, every
mKdV tuple of subspaces is of this form.

Let W be a KdV subspace. It follows from Theorem 10.5 that the set of mKdV tuples of
subspaces with prescribed last term WN = W is identified with the set of complete flags in
the N -dimensional complex vector space W/zNW .
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10.6. Relations between Baker-Akhieser functions. Let (W1, . . . ,WN) ∈ GrmKdV . Let
(τW1(x, t), . . . , τWN

(x, t)) and (ψW1(x, t, z), . . . , ψWN
(x, t, z)) be the corresponding tau and

Baker-Akhieser functions.

Recall that each Baker-Akhieser function τWi
(x, t) is defined up to multiplication by a

monomial zm, see Lemma 10.2. A Baker-Akhieser function with a choice of this factor will
be called a graded Baker-Akhieser function of Wi.

Theorem 10.6. There exist graded Baker-Akhieser functions ψW1(x, t, z), . . . , ψWN
(x, t, z)

such that

ψWi−1
(x, t, z) = ψWi

(x+ 1, t, z)−
τWi

(x, t) yWi−1
(x+ 1, t)

yWi
(x+ 1, t) yWi−1

(x, t)
ψWi

(x, t, z),(10.16)

for i = 2, . . . , N , and

zNψWN
(x, t, z) = ψW1(x+ 1, t, z)−

τW1(x, t) yWN
(x+ 1, t)

yW1(x+ 1, t) yWN
(x, t)

ψW1(x, t, z).(10.17)

Denote yn(x, t) := τWN−n+1
(x, t), n = 1, . . . , N , and extend this sequence by periodicity,

yN+n(x, t) = yn(x, t) for all values of n ∈ Z. Denote ψn(x, t, z) := ψWN−n+1
(x, t, z), n =

1, . . . , N , and extend this sequence by periodicity, ψN+n(x, t, z) = zNψn(x, t, z) for all values
of n ∈ Z. Introduce the sequence (vn(x, t))n∈Z by formula

vn(x, t) =
yn(x, t) yn+1(x+ 1, t)

yn(x+ 1, t) yn+1(x, t)
,(10.18)

see (4.3).

Corollary 10.7. For any fixed t, the functions (vn(x, t))n∈Z and (ψn(x, t, z))n∈Z satisfy re-
lations (4.2). �

Proof of Theorem 10.6. Since the tuple (W2,W3, . . . ,WN , W1) is also an mKdV tuple, it is
enough to prove (10.16) for i = N only.

By Theorem 10.4 the pair WN−1, WN has the following form. Let S = {s0 < s1 < . . . }
be the order subset of WN . Let A = {a1 < · · · < aN} be the leading term of S. Choose one
element a ∈ A.

Let S be of depth n. Let {vj =
∑

i>sj
vj,iz

i}j>0 be a special basis of W of depth n. Let

w =
∑

i wiz
i be the element of the basis with ordw = a. Then WN−1 is the space with basis

{z1−Nw} ∪ {zvj}j>0. This basis of WN−1 is a basis of depth n+ 1.

The tau and Baker-Akhieser functions of WN are defined in terms of the basis {vj}j>0 of
depth n by polynomials fj,n(x, t), j = 0, . . . , n, see formula (10.4).

The tau and Baker-Akhieser functions ofWN−1 are defined in terms of its basis {z1−Nw}∪
{zvj}j>0 of depth n+ 1 by the same polynomials fj,n(x, t), j = 0, . . . , n, and one additional
polynomial fn+1(x, t) corresponding to the basis element z1−Nw,

fn+1(x, t) =
∑

i

wN+n−iχi(x, t).

Now the functions τWN−1
, τWN−1

, ψWN−1
, ψWN−1

satisfy (10.16) for i = N by Theorem 7.4. �
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10.7. Generation of new mKdV tuples of subspaces. Let W = (W1, . . . ,WN) ∈
GrmKdV . By Theorem 10.5, the tuple W is determined by a flag

zNWN = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ VN−1 ⊂WN .

The quotient V2/V0 is two-dimensional. Any line Ṽ1/V0 in V2/V0 determines a flag zNWN =
V0 ⊂ Ṽ1 ⊂ V2 ⊂ · · · ⊂ VN−1 ⊂ WN , which in its turn determines an mKdV tuple W (1) =
(W̃1,W2, . . . ,WN) with W̃1 = z1−N Ṽ1. Thus we get a family of mKdV tuples of subspaces
parameterized by points of the projective line P (V2/V0). The new tuples are parametrized
by points of the affine line A = P (V2/V0) − {V1/V0}. We get a map X(1) : A → GrmKdV

which sends a ∈ A to the corresponding mKdV tuple W (1)(a) = (W̃1(a),W2, . . . ,WN). This
map will be called the generation of mKdV tuples from the tuple W in the first direction.

Similarly, for any i = 2, . . . , N , we construct a map X(i) : A → GrmKdV , where A =
P (Vi+1/Vi−1) − {Vi/Vi−1} which sends a ∈ A to the corresponding mKdV tuple W (i)(a) =
(W1, . . . , W̃i(a), . . . ,WN). This map will be called the generation of mKdV tuples of subspaces
from the tuple W in the i-th direction.

We say that the generation in the i-th direction is degree increasing if for any a ∈ A, we
have degx τW (i)(a)(x, t) > degx τW (x, t).

The tau-function τW̃i(a)
depends on a linearly in the following sense. Let {vi}i>1 be a

basis of Vi−1. Let v0 ∈ Vi be such that {vi}i>0 is a basis of Vi. Let ṽ0 ∈ Vi+1 be such
that {ṽ0, v0, v1, v2, . . . } is a basis of Vi+1. Then the points of A = P (Vi+1/Vi−1)− {Vi/Vi−1}
are parametrized by complex numbers c. A number c corresponds to the line generated
by the subspace Ṽi(c) with basis {ṽ0 + cv0, v1, v2 . . . }. This c is an affine coordinate on A.

Calculating the tau-function of the subspace W̃i(c) = zi−N Ṽi(c) with respect to the basis
{zi−N (ṽ0 + cv0), z

i−Nv1, z
i−Nv2 . . . } we get the formula

τW̃i(c)
= τW̃i(0)

+ cτWi
.(10.19)

Theorem 10.8. For the generation in the i-th direction, the tau-functions of the subspaces
W̃i(c),Wi,Wi−1,Wi+1 satisfy the equation

Ŵ (τWi
(x, t), τW̃i(c)

(x, t)) = const τWi−1
(x, t) τWi+1

(x+ 1, t) ,(10.20)

where const is a number independent of x, t.

Proof. The proof of this theorem is word by word the same as the proof of Theorems 6.10
and 7.10 in [VWr], see also the proof of Theorem 10.6. �

Define an infinite N -periodic sequence of polynomials (yn(x, t))n∈Z by the formula

yn(x, t) := τW−n
(x, t) .(10.21)

Corollary 10.9. For any mKdV tuple W = (W1, . . . ,WN) and any fixed t, the sequence
(yn(x, t))n∈Z of polynomials in x is fertile. �

Remark. Theorem 10.8 says that the generation of mKdV tuples in the i-th direction from
the tuple W corresponds to the generation of tuples of polynomials in the i-th direction
from the tuple (τW1(x, t), . . . , τWN

(x, t)), where the latter generation procedure is described
in Section 3.2. In other words, the two generation procedure and the functor, which assigns
to a point of Gr0(H) its tau-function, commute.



XXX ŝlN BETHE ALSATZ EQUATIONS AND INTEGRABLE HIERARCHIES 55

10.8. Transitivity of the generation procedure.

Theorem 10.10 ([VWr]). Any mKdV tuple W ∈ GrmKdV can be obtained from the mKdV
tuple W ∅ = (H+, . . . , H+) by a sequence of degree increasing generations.

Combining this theorem and Theorem 3.4 we obtain the following corollary.

Corollary 10.11. If a tuple (y1(x), . . . , yN(x)) represents a solution of the Bethe ansatz
equations (2.1), then there exists an mKdV tuple of subspaces (W1, . . . ,WN) such that

(y1(x), . . . , yN(x)) = (τW1(x, 0), . . . , τWN
(x, 0)) .(10.22)

In particular, the tuple (y1(x), . . . , yN(x)) can included into the family (τW1(x, t), . . . , τWN
(x, t))

of tuples depending on t, and then extended to the sequences of functions (vn(x, t))n∈Z
and (ψn(x, t, z))n∈Z, as explained in Corollary 10.7, and those sequences (vn(x, t))n∈Z and
(ψn(x, t, z))n∈Z give a solution of the generating linear problem equation (4.2) depending on
t as stated in Corollary 10.7.

10.9. Commuting flows on Gr0(H). For a subspace W ∈ Gr0(H), the subspace

W (t) := e
∑

∞

i=1 tiz
i

W(10.23)

is a well-defined subspace in Gr0(H). Given W , the space W (t) depends only on finitely
many of t1, t2, . . . . This construction gives us a family of commuting flows on Gr0(H) with
times t1, t2, . . . . We will call them the discrete mKdV flows.

The discrete mKdV flows on Gr0(H) induce a family of commuting flows on the space
of N -tuples (τW1(x, 0), . . . , yWN

(x, 0)), representing solutions of the Bethe ansatz equations
(2.1). The construction goes as follows.

Let (W1, . . . ,WN) ∈ Gr0(H). Let (τW1(x, t), . . . , yWN
(x, t)) be the collection of tau-

functions assigned to (W1, . . . ,WN) in Section 10.4. The collection of polynomials (τW1(x, 0),
. . . , τWN

(x, 0)) in x will be called the tuple of reduced tau-functions of (W1, . . . ,WN). When
the tuple (W1, . . . ,WN) becomes dependent on t we obtain a family of tuples of reduced
tau-functions (τW1(t)(x, 0), . . . , τWN (t)(x, 0)). Thus we obtain a family of commuting flows on
the space of tuples of reduced tau-functions, which will also be called the discrete mKdV
flows.

Lemma 10.12. For any (W1, . . . ,WN) ∈ Gr0(H) we have

(τW1(t)(x, 0), . . . , τWN (t)(x, 0)) = (τW1(x, t), . . . , τWN
(x, t)) .(10.24)

�
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