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PREFACE

Let M be a closed manifold and L { M a closed submanifold of codimen-
@iom 1 with trivial normal bumdle, If ome cuts M open along L one obtains a
manifold M' with boundary oM’ = L + L <{disjoint union}, and by pasting these
two copies of L together again in a different way one can obtain a new closed
manifold Ml. Ml is said to have been obtained by cutting and pasting M.

The theory of sc-called SK-invariants--invariants under cutting and past-
ing of manifolds--was born in a series of papers [13], [14], by Klaus Janich,
characterizing signature amd euler characteristic by additivity properties. Later
Karras and Kreck, in their Diplom theses, extended many of Jinich's results to
cutting and pasting of bundles,

The idea of defining SK-groups brought many simplifications and in
summer, 1971, a study group was organized im which the authors incorporated these
simplifications in a summary of the known results, in particular, of Karras' and
Kreck's Diplom theses. The results were also extended somewhat. A survey lecture
by Neumann for the Bonn-Heidelberg Colloquium (Dec., 1970} served as a2 basis for
this stuedy group, of which these notes are the proceedings.

Chapter L briags the general theory of SK-invariants and SK-groups and
proves Jinich's results in this framework. Basic for the theory are Theorems {1,1)
and (1.2}, which reduce calculations of SK-groups to the solution of preblems of
the following type: which bordism classes in, say, {5, (X) <¢an be represented by
an M -—> X where M is a manifold which fibres over Sl? The results of these
notes solve this in many cases.

Chapter 2 is mainly the Diplom thesis work of Karras and Kreck on SK

cf bundles, An important by-product is results on multiplicativity of signature
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for fibre bundles--this was originally the main motivation for much of this work,

Chapter 3 on unoriented equivariant SK is based on work of Neumann and
Ossa at 2 miniconference in Regensburg in June, 1970. It genmeralizes a result
of Karras from x2 to arbitrary groups. Simce euler characteristics of fixpoint
sets and similar invariant subsets are SK-imvariants, a complete calculation of
equiveriant SK-invariants would give some general Smith-type theorems.

Chapter 4 brings a generalizationm of the concept of SK-invariant, due to
K., Ji#nich, The complete calculation of the corresponding universal group, de-
noted by SKK,, is based on work of K, JHEunich, Ossa and Neumann. OCssa has proved
that SKK_ can be identified with the vector-field bordism groups of Reinhart
{16]. The index of an elliptic operator is an important example for an SXK-
invariant which is generally not am SK-invariant; this was originally the main
motivation for SKK-invariants,

The cutting and pasting concepts which have previously appeared in the
literature differ in some cases from ours, and Chapter 5 fits them into the frame-

work of these notes. Finally in Chapter é some recent results of Neumann which

result from Elmar Winkelnkemper's "open book theorem" are described. 1In particular,

it is shown that in odd dimensions % 5 ail SX-invariants for bundles over orient-
able manifolds vanish, and the connection betweer SK and multiplicativity of
signature is reconsidered.

An appendix by Gottfried Barthel on the extension of the theory to cate-
gories of manifolds with (B, f)-structure completes the notes.

W. D, Neumann was supported in part by Mational Science Foundation
grant GP7952X3 and E. Ossa was supported in part by National Science Foundation
grant GB7952X2,

The work in Bonn was supported in paert by the Sonderforidchungsbereich

"Theoretische ¥athematik".

After these notes were typed it was noticed that the methods of
chapters 2 and & easily lead to the result that for & simply cormected space X,
the orientsd SK-groups sxn(x) are esqual to SKn(pt) for n#£ 4,6 , and that
+hia s3%111 holds up to torsion if X has a non-trivial but finite fundamental
group. This lends s smell smount of credibility to the probably very wild conjee-
ture that SKn(X) only depends on the fundamental group 71(X) . This conjec-
ture hes been cornfirmed for n < 3 .

Since it was toc late to incorporate these latter results into these
notes, they are laeft as exercises for the reader and may possibly appear in a

later paper hy the third nemed author.



CHAPTER 1: Introduction.

In these notes manifold always means smooth wanifold, usually compact,
and an invariant p for n-dimensional manifolds is assumed to take values in an
abelian group and to be additive with respect to disjoint umion +. That is, if
M=M +M, then p(M)= o(M)) + p(M,).

Let p be an inveriant in this sense for closed oriented n-manifolds.
p 1s called an SK-invariant if whemever N and N' are compact oriented

n-manifolds and ¢,y : 3N —> IN' orientation preserving diffeomorphisms, then
(0 -N") = p(Ny -N").
P P p U

Here ~N' means N' with reversed orientation, and NJ ~ N' means N pasted
o

to N' aleng the bourdary by  and smoothed. In other words 0 is invariant

under "“cutting and pasting™ (= Schneiden and Kleben) of the closed manifold

=N -8 along the submanifold L = BN
@D

Note that i 1is 2 l-codimensional two-sided submanifold which separates
M. It is no gain in generality to drop the condition that L separate M, since
the union of L with a second copy of L, suitably embedded near L, will

separate M,

Iz the non-crientable case "cutting and pasting” and "SK-inveriant” are

defined analogously.

Exampies: 1) Euler characteristic e is an SK-invariasnt for arbitrary
manifolds. This follows from the fact that euler characteristic is zero for closed

odd-dimensional manifolds, together with the additivity property



e(XUY) = elX)+el¥Y) -e{XnNY)

which holds for any "nice" spaces X and Y which intersect nicely.
2) Signature ¢ 1is an SK-invariant for orientable manifoids. This

is due to the Novikov additivity property
T(qu‘Nl) = q(¥) - r(§"),

where N,N',p are as above. A proof cam for instance be found in Atiyzh-

Singexr [3].

If G is a compact Lie group one can also consider equivariant cutting
2nd pasting of G-manifolds. The case that ¢ acts freely is of particular
interest, as cleariy the problem of calculating SK-invariants for free G-actions
with oriented (vesp, arbitrary) orbit space is the same as the problem of calculat-
ing invariants for cutting and pasting of locally trivial fibre bundles with fixed
fibre, structure group G, and oriented (resp. arbitrary) closed base manifold,

If the total space of the fibre bundle is 2lso a closed orientable
manifold, then r(Base manifold)} and ¢(Total space) are both SK-invariants, so
non-multiplicity of signature will show up in the Sk—invariants. This will be

discussed in more detail in Chapter 2,

We now construct the basic tecls for caleculating SK-invariants,

Let ¥ be z space. A singular oriented n-manifold in X is an equi-
valence ciass {M,f), where M is a closed oriented n-manifold, £ : M -—> X a

continuous map, and (M,f} is equivalent to {M',f') if there is an orientation

preserving diffeomorphism M —> M' such that
M s M
f\/
X
commtes. Let
}Elio(x): = {singular oriented n-manifolds in X}.
g?bzo(x) is a commstative semigroup with respect te disjoint union + and has a

zero given by M = 4.

Let Mi =NJ - W' and M2 = ¥J, - ¥ be closed orientable manifolds
P ¥

obtainable from each other by cutting and pasting along OR C;Ml. Let f; : M;=>X

1

be continuous maps. We say the singular manifold {Mz,fz) is obtained from
(Hi’fl) by cutting and pasting in X if there are homotopies

£ [N,

L £oIN =~ £y N

50
Two singular oriented n-manifolds (Ml,fl), (Mz,fz) € ??IH (X) are called

SK-equivalent if there is an (M,f) € H?izo(x) such that the disjoint union

(MZ’fZ} + (M,f) can be obtained from (Ml,fl} + (M,£} by a sequence of cutting and

pastings in X (Ed Miller atHarvard has recently observed that for non-empty M, ,M

17
this definition is equivalent to the "umstabilized version"--without adding (M, f).

See end of Chapter 5.) The quotient semigroup

Xvio(X): = g?tiO(X)/SK—equivalence

is a cancellative semigroup. Define

v



S0 . SO
SK_"(X}: = Grothendieck group of &“ﬂ {X).

Since Xﬁo(x} is cancellative, it injects into SKiO{X), $0 two singular

manifolds represent the same element in SKSO

o (X) if and only if they are SK-

equivalent. In fact it follows from Theorem {1.1) below that Xﬁo(x) actually
equals SKio(X}, but we won't need this,
By coustruction, any SK-invariant for singular oriented n-marifolds

in X factors over the natural map
50 S0
M — s,

and this map is itself an SK-invariant, Thus SKEO{X) yields the universal

SK~invariant,

Example: X = BG (classifying space for G) where ¢ is z Lie group.
Then SK:O(BG) gives the universal SK-invariant for fibre bundles with fixed fibre
and structure group G, over oriented n-manifolds,

X = * (the one-point space). SKEO(*) gives the universal SK-invariant

for eriented m-manifolds.
One can make completely analogous definition in the not-necessarily-
: . : . - 0 0
oriented case, to obtain a universal SK-invariant ]?1n(x)-—> SKH(X).

Conventions: 1In the oriented case we omit the superscript S50 and write

SKn(X): = SKEG(X). Furthermore, we write

H

SK_: = SK (%},

) o
. £
SKn' SKn( ¥,

the SK-groups for oriented resp. arbitrary n-manifolds.
Remarks: SKn clearly defines a covariant functor from the homotopy

category of topological spaces te the category of abelian groups. Product of

singuiar manifolds induces a functoriai bilinear map
SKn(X) X SKn(Y)——~> SK_, (X % ¥).

In particular SK, = il SK, 1is a graduated ring, and for any X, SK, (X} is a
- T

graduated SK,-medule. There is an augmentation
g SK, (X} —> SK,

induced by X —> %,

Similar remarks hold in the uncriented case.

Statement of Results,

Let §§$(X) be SKn{X) factored by the bordism relatioms, that is,
SKH(X) factored by the subgroup generated by all elements which have a Tepresen=~
tative (M,f) which bounds in X, SKn(X) is defined analogously, A basic tool

in these notes will be:
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THEOREM (1.1): Let X be path-connected, There is a split exact THEOREM (1.2): The sequences

sequence 0 —= F_(X) —> Q, (X} —= ﬁn(x) — 0

0 — I, —> SK (X) — 5K (X} — 0, R Fg(x) Tﬁn(x) ﬁﬁ()ﬁ) > 0

h I is th B+ *
where 1 is the subgroup of SKn(X) generated by [S ,*] (here denotes are exact.

the -unique up to homotopy- comstant wap - X} and

This theorem reduces the calculation of SK_(X) and SK (X) to a
In—_gz n even, n T

bordism problem.

0 n odd.

In the non-orientable case exactly the same holds except that the sequence does

not split for n  even. The calculation of the absolute SK-groups is as follows:

THEOREM (1.3a}: For n odd both SK  and SKS are zero, For even

A useful corollary of Theorem (1.1) is: n one has:

iUl

. . em R .
THEOREM (1.1b): If [M,£] = [M',£'] in 's'fc'n(x) and (M) = e(M'), fz B Z with basis [§"], [Pn/zc_], for n = 0 (mod &4);

SK o
then [M,f] = [M',f'] in S%_(X). The same also in the acn-oriented case. o 1 z with basis {Sn- » for n =2 (mod 4);
SI{?1 ~ E with basis [Pn!] , for n =0 (mod 2}.
Indeed, the assumptions of (3.1b) imply IM,f] - [M',£'] €
Ker(SKn(X) _>ﬁn(xn = In and e({M,f_] - [M*',£7) = 0. Since euler character- Recall that for oriented manifolds euler characteristic and signature
istic clearly classifies the elements of In by Theorem (1.1), it follows that are congruent module 2. The claim as to what one cam choose as bases of the
[M,£] - [8",f'] is zero in 1, and hence certainly in SKn(X). above groups is clearly equivalent to: the above three isomorphism can be given
by %-T-@ Ts %, e respectively, Thus
There are obvious epimorphisms ﬂn(X) — ﬁn(x) and nn(x) o 5_1(2()(}. . COROLLARY (1.4): Any SK-inveriant for smooth manifolds is a linear
Let Fﬂ(X) C Qn(x) ang Fg(}() Cnn{x) be the subgroups of all elements which combination of euler characteristic, and signature in the oriented case,

admit a representative (M,f} such that M fibres over the circle SI'



12 view of Theorems (1.1) and (1.2) we can give two equivalent formula-

tions of Theorem (1.3a):

THEQREM (1.3b): ¥For n odd both gﬁ; and SK_  are zero. For even

o

L 0 n=

. one has isomorphisms

il

0 {mod 4};

T Kn

RR:

it
n

(mod &}

e{mod 2) : 5?2,

:

22 n

3
o

(mod

i
r
N

THEOREM (1,3c):

ey
1]

o = M) € a fr(0 = 0

]
Y

{[¥] € 3 Je() = 0 (mog 2)}.

Theorem (1.3c) has been proved by Conner and Floyd [9] in the non-
oriented case, and up to torsion by Conner and Burdick [8] and [5] in the oriented
case (that is Fo+ Tors(ﬂn} = [TM] € Qn|T(M) = 0}J. Thus to prove (1.3c¢), and

hence also (1.3b) and (L.3a), it suffices to prove
Tors(ﬂn) C'Fn'

The proof we shall give is based on Jinich's proof F141 of (1.3b).
Actually Janich works with invariants and uses a different concept of SK-invariant
but as we shall show in Chapter 3, his concept is equivalent to "SK-invariant.”
Essentially the same proof of (1.3b) has also been found independently by Rowlett

[17], who also had independently had the idea of defining SK-proups. He also had

a different SK-concept, which also turas out to give precisely SK {see Chapter
5). An independent proof of (1.3¢c) in the oriented case for n > 53 can be

found in H. BE. Winkelokemper's dissertation [19] (see also [20]). Theorems {1.1)
and {1.2), which show the equivalence of the three formuliations of (L.3), are of
later vintage, though they are latent already inm the work of Janich, Burdick and

others.,

The proof of Theorem (1.1):

We first give some lemmas on cutting and pasting which will alsoc be
useful later on, If (M,f) is a singular manifold in X we write [M,f}SK,
[M,E}Q, ete., for the class of {(M,f) in SK {X), O_(X), etc., but omit the

subscript if mo confusion can occur. If X = % is the one-point space, we

simply write {M}SK’ [MjQ, etc., for classes in the respective groups.

LEMMA (1.5}: For any space X we have in SK {X) and SKQ(X):
1) [Sl,fj =0 for any f : st—s x.
i) If M fibres over §" with typical fibre F and f : ¥ —> X then
[#,£] = [S®][F,£]F] (recall that SK,(X) is an SK, -module}.
iii) If M fibres over P L with typical fibre F and £ : M3 X then

[¥,£] = [p c][F, £]F}.

iv) In the non-oriented case i5i) also holds with PSC replaced by Pnk.
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Proof: We prove the orientable case; in the non-orientable case the

proofs are the same,

i) Let N=-§'"=1+1, where I ={0,1] is the unit interval, We can

paste N to -N' in two ways to obtain either S1 or Sl + SI:

N w'

()

f’/\\ _
w N o

Hence {Sl] = 2[51], so [Si] = 0, This cutting and pasting can clearly alsc be
done in any space X,

ii} We can write st = Dn ] -Dn, pasted along the boundary Sn—l. Since a
fibration over the disec D" is trivial, we have M = (D" x F) U -(d® x F). If
f:M¥-—>3X is any map, then restricted to each piece " x F, f 1is homotopic
to * X fIF. On the other hand (§" x B, ¥ X f[F) is also of the form
(@ xF) U - x P, *+x £]F), so [M£] = (S x F, # x £]¢] = [s"I[F, £|s).

iii) We prove iii) by induction on n; for = = 0 it is trivial. Suppose

M fibres over Pnc with fibre F. We can write PnC as

n :
where -N is diffeomorphic to the normal disc bundle of P, 1€ in P L. Let
- n

2
My =MD 4 N x P =D X P4 N X B

i

=
]

) Min+ 0% x v L

If £:M—> X is a map, we define maps of M, and M

9 1 te X by taking the

2
" and M|N and taking * x E]F on N X F and

restriction of £ on M;D

11,

D™ x F. On the boundaries Sn—1 X F of these pieces all these maps are homo-

topic to * X f]F, so we can paste MO to M, in twe ways in X to obtain

(MO% =ML E) = (4,0) + (-RE x F, * x £[F),

n
(U, - M) = (Eg) + (877 x £, * x £[F).

In the second case we have pasted the first part of MO to the second part of

Ml and vice versa. E is a fibration over the double £IN = NUid - N of N

with fibre F, and g is a map with g|F = £[F. However, £N fibres over

2

P_ € with fibre F', where F' fibres over 8° with fibre F. By part ii})

n~-1
we have [F',gi{F'] = ESZEfF,g|F} = [Szj[F,f}F], s0 by induction hypothesis
[E,g] = [p _ellF,gi{r] = {pnqlu:]{sz]{F,fIF}_ The above cutting and pasting

thus shows

el

[m,£] + (-2 €)(r,£|F] = [p__€l0s*I[F, £[r] + [s™™{r,£]F].

That is,

[w,£] = (e €)% + {57 - [~ eD[r, £]5].

n-1
It hence only remains to prove that

: apo2a 2
{pc] = [p,_€][s°] + {s*"

)
EX ] - [-egcl,

but this follows by taking F = % in the above. The proof of iv) is completely

analogous to Lii). Q.E.D,

LEMMA (1.6): Suppose the singular manifold (M',f'} in X results

from (M,f) by surgery of type (k+l,n-k) in X. Then in SKH(X) (resp. SKS(X))
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(w,6] + [s%,%] = D, 6] + [s% x 577050

Proof: We wmst look closely st the surgery and its trace. Let
t:sx s

be the embedding on which surgery was done, Then

Moo= (M - (85 x DTN - (0 x st

where "I is the obvious identification of boundaries Sk X Sn-k—l‘ The trace

T of the surgery can be constructed as follows.

Recall that

Sn - (Sk % Dn_k)U - (Dk+1 % Sn—k—l)

pasted by the obvious idemtification of boundaries (think of 5™ as a(Dk+1 X Dn-k)!).
T is the manifold obtazined by taking the disjoint union of M X f0,1]1 and

Wl | n-k - -
ot % 0™% and then idemtifying 5 x D = (1(s® x 0%y, 1) (M x [0,1] with

k -k -k
sSx " " = B(Dkﬂ x D }, and then smpothing cormers,

M x [0,1] pitl o pu-k ’ T
Ty

The boundary of T is clearly 3D = M + (-M'). The fact that we did surgery in

X means by definition that we have z continucus map

gz T—>X

13.

with glM=¢ and gi¥' = £'.

Now

n k n-k k n-k k n-k Lkt n-k-1
M+8 = (M-S xD YW-{8" x D )+ (8" %D }U-(D i ¥ 5 )
A)

weow 8% x 0P = ot - 8% x 0P U= x Py 4 R x 0 Bu-sRa™ T,
always with the obvious identification of boundaries, so M+ Sk % Du_k results
by cutting and pasting M+ s™. But we must cut and paste in X. For this, con-
sidex Sk X Dn_k and D¥+1 X Sr-krl as subsets of B(Dk+1 X Dn-k) C Dk+1 X Dn“k
CT. Then we have maps into X of all the pieces on the right hand side of A} by
restricting the map g. The cutting and pastimg is compatible with these maps aed
the resulting maps of M and M’ intc X are the ones we wamt. The resulting
maps of s°  and Sk X Sn-k into X factor over g Dk+1 X I}ﬂ_k : Dk+l X Du_k—€> X,

and zre hence both homotopic to the comstant map. This completes the proof of the

lemma, Q.E.D.

As an application of this lemma note that Sk+l X Sn-k“1 results from

g™ by surgery of type (k+l,n-k), since

i+l u-k-1 ktl

s w s = (p n-k-1

« 2Ly Lol g )

(Sn _ Sk « Dn-k}U—(D¢+1 X Snﬂk-l)_

H

Thus the lemma gives
[Sﬂ’*} + Es'ﬂ’_’.‘_‘} - {Sk‘?i X Sn-k«-l,*j + [Sk X Sn—k.,*:l.

Putting k = 0 (alternmatively, by Lemma (1.5) i) and ii})} we have
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st x Su"l,*} = 0, and a simple induction now shows

[l

COROLLARY (1.7): 1I=m SK*(X):

r n
v 2[s

[s® x s“'k,*] =
i 0 , k odd .

L.

,*], k even

COROLLARY (1.8): Let ({Y¥,g) be a hordism in X between the singular

manifolds {Ml,fl) and (MZ,EZ). Then in SK*(X):

M. 6] = (M, 6,3 - (e(¥) - e(Ml)}[Sn,w].

Proof: First suppose Y 1is an elementary bordism, that is the trace of

a surgery of type (ktl,n~k) say. Then by Lemma (1.6) and Corollary (1.7)
kron
M, 6] = M, 6,7 + (-1)7{s%,],

so it suffices to prove that e{Y) - e(Ml) = (—1)k+l. But Y is obtained by
: et - -
pasting D oy ot K to M, XTI along submanifolds Sk x ¥ K of
k-1 n-k .
3(D XD 7Y and 3(M; % I) eand then smoothing the result, so

e(, x 1) + (DT x ™Ky L o(sk x pPK

e(Y)

3

)

e(M) + (-1)FH

proving this case,
in the general case we can split Y up into a sequence of elementary

bordisms and the corollary then follows easily from the case Just proved and the

additivity property of euler characteristic, Q.E.D.

15.

Theorem {1.1) is now easily proved. Namely, tke kermel L of
SK (X}~ §§n(x) is clearly generated by all classes [M,f] such that (M,f)
bounds in X. By Corollary (1.8) such an [M,f] is a multiple of [s%,%], so
In is genevated by [Sa,*]. If n is odd, say 8 = 2k+l, then s  fibres
over PEE with fibre Sl, so by Lemma {1.5), iii) and i), it follows that

[s™,#]

infinite order in SK*(X), s0 Iu ~X. The same arguments all hold in the non-

0. If n is even the fact that e(S") = 2 shows that {Su,*} has

oriented case, so it orly remains to prove the claim on when the sequence of
Theorem (1.1} splits,
Assume n  is even, In the oriemted case the map (e-7)/2 : SKn(X}-—ﬁ>

I~ I is a retraction of inc—%b SKn(X) which splits the sequence

0 —>= In —> SKn(X) — SKH(X) —> 0,

In the non-oriented case 5° and 2P§l both bound, so they are in the kernel In
] =0
of SKn{X)~"—> SKn(X). But euler characteristic classifies the elements of In
n
and e(57) = 2 = e(2F W), so [s™,%] = ZEPDR,*] in SKS{X). Thus the generator of

In is not imdivisible in sxﬁ(x), so the sequence
0— 1 —> st{g(x) — 75'122(5() = 0

does not split, The proof of Theorem (1,1) is complete.

Fibrations over Sl

Let N be a closed manifold and ¢ : N—> N a diffeomorphism.
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Definition: N  1s the manifold obtained from N x I by identifying
- @
the ends N x 0} and N X {1} via g ; that is (x,1)} is identified with
(p{x},0) for each x € H. %3 is called the mapping torus of g.

The projection W X I —> I induces a fibration

N'—'—>Sl

P

with fibre WN. Conversely any fibration over Sl with fibre N is clearly of
this form fer suitable Q. ﬂw is orientable if and omly if N is orientable
and ¢ orientation preserving. The following lemma holds in the orientable and

in the non-orientable category. We formulate the orientable case,

LEMMA (1.9): If the singular manifold {M',£') results from (M, f)
- s z - - L -
cutting and pasting along N in X, say M = Ml qp M2’ M My U¢ Mz,
Q¥ BMl =N -— aMz are diffeomorphisms, then

{Mr f]n = [M' sf.}n + [anl,gjﬂ

in {1.(X) for suitable g: N _ —>X

Wy
Proof: A bordism is comstructed as foliows. Let Y be the union of
My x [0,1] and M, % {0,1] with the following identifications: for x € N
: - ra L . 1
identify (x,t) € M, x LO,EE with {p(x),t) € aMZ X {0,3] and

2 -
Coe) €3 X [5,1] with  (p0a),t) € oM, x [£,1].

0 i73 273 i

After smoothing it is easily seen that 3Y = M - N

where

i7.

o M', so Y 1is the

Y
required bordism, Since we are doing cutting and pasting in X we have homo-

topies fiMl;f'!Ml and  £[M,

n

f‘]Mz whick can clearly be used to construct

amap h:Y—>X with h{M=F and h|M' = £'_ Puttisg g = h|N the

pé

lemmz is proved, Q.E.D.

To prove Theorem {1.2) note that Ker{ﬂ*(x)———> EK;(X)) is generated

by classes of the form

EMsf}Q - iM.vf!}Qr
where [M',f'] results from [M,£] by cutting and pasting in X, so by the
above lemma

Rer((3, (%) — SE_(X)) CF, (%),

The reverse inclusion is an immediate consequence of Lemna (1.5) i) and ii), so
Theorem (1.2) is proved in the orientable case. The nen-orientable case is the

same proof, Q.E.D.

Before we prove Theorem (1.3) we need a lemma:

LEMMA (1.10): Suppose Mi = (Ni%p for i =1,...,k, with each N;
i
orientable and each ¢; orientation reversing, Then there exists orientable N

and orientztion reversimg o : N—> N with

Ml X oeea XMk:NCp.

Furthermore if % > 2 then N itseif fibres over Sl
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Proof: The general case follows from k = 2 by a trivial induction, Tn 2 = Tor(ﬂn) C F.»
50 assume k = 2, Let p, 1 M, —= S1 (i = 1,2) be the prejections. Then the
B * so the first thing to do is describe T,. We recall €, T. C, Wall's description

fibration
in [J_SL
: M, X M, —> Sl Let ¥ be a2 closed manifold. Then one car always find a closed
L TG
L l-codimensional submanifold W M such that
(36, 7) = p; (x)p,(¥)
1} M - W is orientable, and
has typical fibre 2} no submanifold of W satisfies 1).
1 C. T. C. Wall proves that if W can be chosen orientable with trivial normal
No=p (1) = {Goy) €M) x M, {p{x) = p,(v)].
bundle in M then the class [W}Q € i, 1is a torsion element which only depends
There is a fibratiom on [M]'BT, € J1,. Uunder these conditions he defines 33@{}}1’ = [Wjy, so 3, isa
) homomorphism from a subgroup of HZ* to T, = Tors({l).
q: N—> 8
(X, y) > pl(x) Example (1.l1): Let ¥ = Ncp with N orientable and @ orientation
reversing. Then clearly B3IMj = {N]i—\.
with typical fibre '
-1
g (1) = {{x,y) €M, x M,|p,{x) = p.(y) = 1} = W, X ¥,, Now let P{m,n) be the quotient manifold of the free involution
1 FALS 2 1 2 4

) (x,2)v—> (-x,2) on ST xPC (the '"Deld manifold") and o : P{m,n) > P{m,n)
and one easily checks that this fibration is given by :

. the involution induced by the map (x,z}+—> (x',z) on g™ X Pnc:, where xt+—2 x'
. : . m
N~ (Nl % Nz)cpl Xl:pz' is reflection in 2n equator of § . Let
Since ©, and 9, both reverse orientations, @) ¥, preserves it, so N is Q(m,n) = P(m,n)a.

orientable. But Ml * M2 is non-orientable, so Ml X MZ must be of the form N
. R . Remark: P(m,n) is orvientable == i
with ¢ orientstion reversing., Q.E.D. R (m,n) > mm s odd.

@ is orientation reversing <=—=> m is odd.

Recall that to prove the three versions a), b), ¢) of Theorem {1.3) it

if . . - r-1 .
enly remains to prove a is a natural number write a 2 (25+l) and define
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r
X, = Qlw,n}, m= 2" - 1, n=2s,

According to Wall (loec, cit,), the torsion T, (TQ* is generated as a ring by
classes of the form
33[}%&l X oou X Xzakj‘

If k> 2 thea by the above remarks, Lemma (1.10) and Example (1.1l},
33£X2ai X o..e X XZak} is represented by a manifold which fibres over Sl, so
33{Xzal X ... X XZak] € F,, as was to be shown. If k =1 then by Example (1.11)
we have 33(X2a) = {P(m,n)]n, so we must show [P(m,n)]ﬂ € F,, or equivalently
{by Theorem (1.2)), [P(mn)] =0 in gﬁ%. The map 8" X PC —> s induces a
fibration P(m,n) —> Pﬁk with fibre P.C, and PR fibres over PdE with
fibre Sl, where gq = (m-1)/2 = Zr_l - 1. Thus 2?(m,n) fibres over Pdﬂ with
fibre F which fibres over S., so by Lewma (1.5} [P(m,n)] = [P&EJ[F] =0 in

SK,, and hence certaialy in SK,. This completes the proof. Q.E.D.
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CHAPTER 2: ©5K gi Fibre Bundles.

Let ¢ be a Lie group. In this chapter we investigate SK for fibre
bundles over closed differentiable manifolds with fixed fibre ¥ and structure
group G. As in Chapter 1, SK-equivalence for fibre bundles is defined by saying
that the fibre bundle E q$ E' is cobtained from E U¢ E' by catting and pasting
if E and E' are fibre bundles with fibre F and structure group G over
compact manifolds M and M' respectively and g,¢ : E[3M —> E'|3M' are bundle
isomorphisms which induce diffeomorphisms &M —> 3M' in the bases, SK-groups
for fibre bundles can then be defined in the obvious way, By the homotopy classi-
fication of fibre bundles it is clear that these groups are SK*(BG} in the
oriented case and SKg{BG) in the non-oriented case,

Remark: 1If the fibre F 1is a smooth manifold one can consider BSK of
smooth fibre bundles. This makes no difference for (as is well known) any con-

tinuous fibre bundle admits a smooth structure, unique up to bundle iscmorphism.

Interpreting SK, (BG) as the SK-group for fibre bundles with structure

group ¢, the augmentation

BG
€ : SK*(BG) —=> 8K, = SK*(pt)

is just the map which sends the SK-class of a bundle (E,n,B) to the SK-class [B}

of its base manifold, We have the trivial lemma;

LEMMA (2.1): There are natural isomorphisms

BG
SK,(BG) ~ SK, @ Ker ¢,

SK,{B&) ~ 5K, @ Ker 8¢,
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Proof: The map pt —> BG, which is unique up to homotopy, induces

a retraction SK, —> SK*(BG) of sBG, proving the first isomorphism., Similarly,

cne has that

= =7 BG

SK*(BG) o~ SK*@ Ker €77,
where EBG : Efﬁ(BG)——éb §E* is the augmentation. But Theorem (1.1} implies
that Ker EBG = Ker EBG, so the second isomorphism is also proved.

This lemma can be interpreted as saying that the SK-invariants for
bundies split im a natural way into the SK-invariants of the base space, which
we already know are euler characteristic and signature, together with certain
bordism invarismts of the whole bundle, given by Ker EBG, As we are about to
state precisely, these latter additional invariants are in most cases torsiom,

and often actually zero,

THEGREM (2.2): i) If G is a Lie group with finitely many components
then Ker EBG is a torsion group.
*
ii) If G is compact and B {BG) torsion free, for instance,

G = (Sl)n, G{n), SU{n), Sp(n}, then Ker 56 = 0."-

Remark: The conclusion of part i) above can be formulated: given any
bundle (E,7,B) with structure group G, some multiple mE of E is SK-equiv-
alent to the trivial bundle with base manifold mB. 1f now the fibre F 1is als;

2 compact manifold, so that the signatures 7(F} and ¢{E) are defined, then it
clearly follows from this that mr(E) = mr(B x ¥) = mr(B)r{F), so 7(E) = r{B)7(F).
That is, signature is multiplicative for E, Atiyah [2] has given an example of

non-multiplicativity of signature, so Theorem (2.2) does not generalize to
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arbitrary G. We will see another example of this later, but first to the proof

of (2.2).

By Lemma (2.1) it is sufficient to prove that

2% ;5K (B6) —> K,

is 2 mod-torsion isomorphism (kernel and cokernel are torsion groups) and an
isomorphism if H*(BG) is torsion-free., We shall prove this first for ¢ a
toxus, then for G compact, and then finally in the gemerality of the thecrem.
Because of the epimorphism (,(X) —> EE;(X), to calculate §E*(X) one need
only do cutting and pasting on a generating set of Q*(X). The basic idea of

the proof is that in our case such a generating set can be represented by products
of projective spaces up to torsion, so Lemma {1.5) iii) gives the result,

Let
g (X)) —= H (X)

be the cancnical map given by ulM, £] = £,0, where ¢ is the fundamental homol-

ogy class of M,

THEOREM (2.3): Let X be a CW-complex such that H,(X) has no torsien,
Let singular manifelds (M;,f;) in X be given such that fulM,£.]} is a
generating set of H,(X). Then {[Mi,fiJ} is a generating set of (L (X} as an
(G, -module,

Proof: See Comner and Floyd [10], §18, p. 49. In fact, Comner and Floyd

prove wmore, namely that if X is z finite CW-complex then the above holds with
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"generating set' replaced by “base" each time, The finiteness of X 1is only
used in proving the independence of the base {[Mi,fi]}: $0 it is not needed

for our formulation,

An easy application of this theorem is the following lemma, whose proof

€ —> BS1 be the classifying map for the

we leave to the reader, Let Ny ¢ P

canonical line bundle over Pkg.

LEMMA (2.4): The set [[Pi Cx...xp; C,nii Xoaeo Xmy 1} generates
7 n
Q*(B(Si)n) as an (], -module (recall that B(Sl}n = (BSi)n). In fact it is an

{,-base, but we do not need this.

It follows that EE%(B(Si)n) is generated as an §Eﬁ—module by the
elements [P, € x ... X P.Cm; X...xm §, soif G is a torus, Theorem (2.2)
n

1 n
now follows by Lemma (1l.5) iii).

Now let G be any compact Lie group arnd T { G its maximal torus. The

projection BT — BG induces a map
p oz K (BT) —= EE*(BG)
and the composition
K, (BT) &> 3K, (86) > SK,_

s s BY : 5 - N
is Just & 7, which we already know to be an isomorphism. Hence to show that EBG

is an isomorphism or mod-torsion isomorphism it suffices to show that p is syr-

jective or mod-torsion surjective respectively., By 2 result of Borel {4] the map
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* *
H(BG) —» H (BT)
*
is mod-torsion injective, and even injective for H (BG) torsion-free. Hence
H,(BT) —= H,(BG)

*
is mod-torsion surjective, and surjective if H (Bg¢) is torsion-free, so all we

need is the following lemma:

LEMMA (2.5): Let £ : X - Y be a map of (W-complexes. If the
induced map H, (X} — H,(Y) is mod-torsior surjective, then so is Q. (X)—> 0 (Y)
and hence also §§;(X) ——9-§E*(Y). If H(X) has no odd torsior and
Hy(X}-—> H, (¥} is surjective, then so is 0, Xy~ . (Y), and hence also

SR (X) —> SK(Y).

Proof: We need the bordism spectral sequence (see for imstance Conner
and Floyd [iO] for details) so we recall the essentials. For a {W-complex X

the Ez-term is

2
E X} = H (X;
P,q( ) p( ’ﬂq)

o
ang the E -term is

=
E (X)) =17 J
P:q ) p,q/ p-l,qtl

where

] CJO,HC C,Jn’o = {1 {X)

n

is the skeleton filtration of ﬂn(X), that is

= p
Jp,q {m{0p+q(x } np+q(x)).
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Furthermore, the bordism spectral sequemce is trivial modulo odd torsiom.
It follows that a map f : X -—> Y which is mod-torsion surjective
: . s co
in homclogy, and hence for the Ez—term, stays mod-torsion surjective up to E,

and hence also for Q*,

proving the first statement of the lemma.
Now suppose H,(X) has no odd torsiom and H (X)) —= H, (Y} is sur~
jective. Thern EZ(X) has no odd torsion, so by triviality modulo odd torsiom

2

of the spectral sequence, the gifferemtial dz(X) : Ep q(X)—~-E> (X) is
3

2

E
pt2,q-1
trivial. Alse EZ(X)—-éb Ez(Y) is surjective, so dz(Y) is also trivial., Hence
Ez(x) = EBCX), EZ(Y) = E3(Y), and repeating the argument we eventually get that

[= ) o3 . - -
both spectral sequences are trivial and E (X) —> E (Y) is surjective, Hence

QX)) — G, (Y} 1is surjective, as was te be proved. Q.E.D.

Theorem (2.2} is thus proved for compact G, If G is comnected but
not necessarily compact, choose a maximal conrected compact subgroup H C G.
Since the structure group of any bundle with structure group G can be reduced

to H,

SK, (BH) — SE, (BC)

is surjective. Since the composition with EBG : Ei*(BG)v~€i §E* is EBH, which

we know to be a mod-torsion isomorphism, EBG is itself a mod-torsion iscmorphism
Finally if G has finitely many, say 1n, connected components and GO

is the component of unity, then BGO-——b BG 15 an n-fold covering. Hence

H,(8Gy ) —> H, (36)

is med-torsion surjective (the n-fold of any homology class in BE clearly comes

from BGO)’ By Lemma {2.5)

SK,.(86) — 5K, (B6)
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BG BGO

is mod-torsion surjective, so again, since the composition with ¢ is & 7,

. - . - s BG - . -
which we know is a mod-torsion isomorphism, € is a moed-torsion isomorphism,

Q.E.D.

We now shall calculate SK,{BG) in some of the cases not covered by

the previcus theorem.

THEOREM (2.6): For ¢ =% pr P an odd prime, and for G =12

P
Ker eBG = 0.

27

Proof: For amy X we have the short exact sequence of Theorem (1.2):
¢ —> F(X) — 0, (X} — S (X) —> 0,

Denote Ker{F*(X) e F*(pt)) by ?;(X). The above sequence surjects at all

three places onto the short exact sequence
0 — F, —> 0 _—-= 5K, —» 0,

so the kernel sequence

(2.7 00— ?*(X) — ﬁ*(}{) —= Ker EBG —> 0

is also exact. In particular Ker EBG is the image of TQ(X) ('ﬂ*(x).

We first consider the case X = 86 with ¢ =Z ‘ (p an odd prime),
P
where we consider ¢ as a subgroup of the circle group Sl. S1 acts freely
on the unit sphere SZn-l in by
t(zl,...,zn) = (tzl,,..,czn), (]ti = 1).

This gives 2 free action of € on SZn—l, inducing & singular manifold (Szn'l

/6, £)
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[Szn"]‘/G, £] generate

im BG, By Comner and Floyd [l0], p. 99, the elements

BG bl
T, (BG) as an (1, -module, They hence also generzte Ker ¢ as an 3K, -module.

- - . 1 i
But SZn !'/G fibres over SZn l/Si = Pn-].c with fibre 3$7/G~ 57, so by

3G

[Szn_l/G,f} is zevo in SK, (BG), and hence certzinly im Ker & .

Lemma (1,5),

The case G =2, is rather more difficult, and we must first recall

2

some facts on free ifaveolutions and bordism of Bi.z.

let 7w : M—=>M bea principal Zz-bundle, T:¥W—»¥ the covering

transformation, Recall that a l-codimensional submanifeld W { M is called a

1

characteristic submanifold if W= m (W) is the boundary BA of a compact

submanifold A of ¥ satisfying:s AUTA =% and AN TA =¥, It is easy to

see that such a W exists and is unique up to nou-oriented bordism (for instance,
by showing that W is a transversal self-intersection of the zero-section of the
real line bundle E —» M associated with ™ -—=> M). The characteristic submani-

fold in fact defines a map
w o3 QU(BZZ)*—%HLH_]_-
By Burdick [6] (see also Hirzebruch and Jinich [11]) the restriction
n’n( E"":'2) T %n—-i
is an isomorphism whose inverse
* :nn—-l — ﬁn{&l)

is given as follows. For [NW] € 'ﬂn_l et E-—= N be the line bundle associatéd
with the orientation covering N —% N, and S the sphere bundle of the Whitney

sum E@ 1 of E with a trivial line bundle. § is oriented and has a2 free orieata-
tion preserving involution given by the antipedal map in the fibres Sl. The induced

singular manifold [Sﬂz,f] in BE, vepresents i[n].

Observe that this geometric description of i is compatible with

cutting and pasting, so we have an induced map

BZ
i’ 1 8K —= Ker ¢ 2.
n-1 n
BZ

By (2.7} ahove, 'ﬁn(Bzz)—“év Ker & 2 is surjective, so the commtative square

—0
n"n-— 1 SKn— 1

[N

~ i

sz
'{‘fn(lﬂz)-e— Ker €

:+ 4
shows that 1i' is surjective. Thus for n even it follows that Ker €, z. o,

since Si{ﬁ_.1 = 0 (Theorem {1.3b}}.

We can hence assume 1 is odd. Then by (1.3b) the diagram hecomes
Wy ——= z
i

B .
~ ol it (n odd)
J J

BX,
T () — Ker ¢
It 2 n

2

where e 1is euler characteristic modulo 2., Since i' is syrjective, we must

only show that it maps 1 € 22 onto zero.

Let a : ij—%- B, (j = 1,3) be the classifying map for the double
covering §7 —3 PJ.B. Then for k= {n/4] and j =n-4k =1 or 3, we have that

[PZkG: X Pjﬂ, * X a] represents an element of Tfn(ER.z). Simce il =w is given by

. S . .1 -
taking a characteristic submanifeld, ei [sz& X PJB, * X aj = e[sz(C‘. X Pj_fk} =
1 €22. On the other hand, PJ.IR, and hence also P& x P}R fibres over S° for

i =3 and over § for j =1, so by Lemma (1.5) ii) we have that
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r : = . - BG
LPZEC X Pji, * X a] =0 in SK*(BZZ), and hence certainly also in Ker & . By
the commtativity of the diagram it follows that i'(l) = 0, as was to be proved,

Q.E.D.

To close the discussion of 3K of bundles in the oriented case we men-
tion some isolated results in low dimensioms. In dimemsions O and 1 everything

is trivial,

THEOREM (2.8)}: i) If ¢ is a Lie group with G/GG abelian then
Ker £, = 0, i.e., SKz(BG) = 85K, =&,

2
ii) If ¢ is connected them also Ker agc =90, so SKS(BG) = SK 0.

5=
Proof: i) BG has fundamental group ﬂl(BG) = nG{G) = G/GO, which is

hence abelian. We shall in fact show more than required, namely
SKZ(X) =0

for any space X with abelian fundamental group.
Let (Fn,f) be a simgular 2-manifold in X, vwhere Fn is the oriented
surface of . i = ! ! 1
of genus n. We can write F, as F_ Fo1 #4{s' x 8. 1et s ( F,
be the circle alomg which the conrected sum operation # was carried out. Si

represents the zero homology class in Hl(Fn)’ 50 f{Sl) represents gzero in

1 . P
B (X) = m(X). Thas £(§7) is null-homotopic in X and we can do surgery of type

{2,1) ia X on this circle, reducing (F_,£) to (F,_ + (5" x5%,8) for some .

In this way one sees that any oriented singular Z-manifold inm X is co-
bordant to a sum of singular tori in X, and hence equal to zero in §Eé(x) by

Theorem (1.2), Thus i) is proved.

LN

ii) We again prove wmore than required, namely

for any simply connected X.

Recall that any connected oriented 3-manifold M is bordant te SE,
and can be reduced to 33 by surgeries of type (2,2), If (M,f) is a connected
singular 3-manifold in X, then restricted fo each solid torus., f is null-

3

homotopic. 30 we can do surgery in X to reduce {(M,f) to (57,2} for some g.

By Lemma (1.5) we deduce that IM,{: =0 in §"}Z3(x). Q.E. b.
; : BC Ll o an i bis _—
Firally we give an example where ¢ is not an isomorphism, not even

medulo torsion., Let F be an orientable surface of genus = Z. The universal

cover of F is contractible so F = Brl(F).

THEOREM (2.9): Tf F is an orientable surface of genus » 2 then
B Py
Ker e, = 5K, {8 {F)) 2.

Proof: The bordism spectral sequence shows for any CW-complex X that
QZ{X) = HZ(X;Z). Since &1L(F) = F and Hz(F,Z) = %, we sust show that FZ{F) =
and the theovem then follows by Theecrem (1.2). That is, we must show that any
singular torus in F bounds.

Since Sl X Sl and F  are K+, l)-spaces, the homotopy classes of maps
Sl % Sl — F  are classified by the set lom{Z P Z. ﬁi(F)) (see for insktance

Mosher and Tangora [13]. p. 3). But it is well known thal any abelian subgroup of

"i(F) is trivial ox infinite cyclic, so any [ € HomiZ $Z, fl(F)) factors as

z®z ez o w (F),
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where f is, without loss of gemerality, surjective. By a change of splitting of
1 . .

SL X 8~ as a product if necessary, and hence & change of base in Z &£ X, we can

- . Vel 5 fhus

assume that f 1is the projection Py- The corresponding map S X § -—>» [ thus

splits as

p
1
SL X S”A—}u-,—:-w S1 i F

. 1 2
and hence extends to the solid torus S X B, Q.E.D.

The above proef inm fact shows that for any discrete group G, all of
whose abelian subgroups are cyclic, giz(BG) = QZ(BG) = HZ{BG;Z). The finite groups
of this type are just the groups with pericdic cohomology (see Cartan-Eilenberg [71),
which all have zero second homology and hence do not yield anything interesting

here,

The Non-orvientable Case,

In the non-orientable case, the analog of Lemma (2.1) of course still holds.

=0
The analog of Theorem (2.2) i) is trivial: Ker ex, being a subgroup of SK (X} ,
is always a tersion group for any connected space X, We hence have:
Triviality (2,10): Fof any comnected space X
o} o] - .
SKn(X) = SKHGB 2-Torsion,

o . fert . . .
where SKu is #, given by euler characteristic, in even dimensions aund ze¢ro

otherwise,
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. G 8] [ B -
THEOREM {2.11}: The argumentation- € = ¢ SK*(BG)~—+> SK, is an iso-
morphism for G = (zz)k, a(k), so{k), (S')k, U(k), SU(k), Sp(k), and products of

these groups.,

The proof is by showing that come can generate Blk(BG) as a )z%—moduie,
and hence EEg(BG) as an Eiz-mudule by singular manifelds (M,f), where M is a
product of real and complex projective spaces. Lemma (1.5) iii} and iv) then shows
€ 5 §§g(BG)——%> §Eg is an isomorphism, so the theorem follows by (1.1).

It is convenient to work with vector bumdles having G as structure
group rather than with singular manifolds im 86, If @ = {(nj,...,n) 1is a tuple
of positive integers. Let E be the bundle S S Enk over

1

Pw = Pnll X .o X Pnkl, where §ni is the canmonical lirne bundle over Pnil.
LEMMA {2.12): The following bundles Tepresent a gemerating set of azﬁ—mod—
ule FK\E*(BG):
i} the bundles §w for G = (Zz)k,
ii} the bundles §w with 0y 2 ... 20
iii} the bundles £ @ det §w with n

for G = 0{k),

> .. I

R for G = SO(k+1).

1

In cases 1) and ii) the gemerating set is even a base.

Proof: The analogen of Theorem {(2.3) holds in the nop-oriented case
(see for instance Conner and Floyd [10], Theorem 8.3). Hence we need only show

that under the canonical map

s ¥L(B0) —— H,(BG;Z,)

the set in question goes over to a gemerating set or base of H*(BG;ZZ).
The proof of i) is completely analogous to Lemma (2.4) and therefore

also left as an exercise,
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For ii} recall that H*(Bo(k);zz) .3 the polynomial ring zZ{WI”"’Wk]
. K .
in the Stiefel-Whitney classes. In fact the inclusion {12) { 0(k) induces an
: ; * # k . P
inclusion H {BO{k) ;ZZ) CH (B(Ziz) ;2.2) = 22“1"“”‘;‘;1 and w, is the i-th

elementary symmetric polynomial in tl,g.., For w = (ni,...,uk) with

tk.
> ... >y et Sy be the smallest symmetric polymemial in the t; containing
n n
%
the monomial £y e tkk. The S, cleariy form a base of H (so{k);zz). 0n the

other hand the homology class represented by the bundle E  is (f )0 , where

fm 2 op,—> B0(k} 1is the classifying map for §w and G the fundamental Z,-

homology class of For & trivial computation shows

l,w=uw

*
<s ,,{f)0>=<fs ,,0>=
w W’ uf W'’ 0, wdw
so Lhe set {(fm)*cw} is the basis of H,(BO(k) ;22) dual to {Sm}'
14
iii) Let Yk be the universal Bk—bundie aver BO{k). Then ka det y
is orientable, hence has a classifying map g : BO{k) —> BSO(k+l). Now

B (BSO(KHL) ) = Z,{wy, ... o] and
g+ K (880(IHL)sm,) —> H(BO(K)s2,)

#
for i<k and g (wk+1)

: : koL .
elements are algebraically independent, g is injective, Thus 8y 1is surjective

*
is given by g (wi) =W T oW

i“i-1 = W W . Since these

and case 1ii) follows from ii). Q.E.D.

Theorem (2.11) is hence proved for & = (&Z)R, o(k), so{k). If 7, is
the complex analogon of the bumdle gm then Lemma (2.12) and its proof carry over
k
to ¢ = {5.)", U{k) and SU(k) if one replaces €y, bY 7n, everywhere. Also a
proof similar to the proof of iii) above shows that ﬁ*(BSp(k)} has a generating

set represented by the bundles T, © e This proves (2.11) for (S')k, U(k), su(k)
and  Sp(k).
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Finally if TL_(BGI) is generated by singular manifolds (Mi’fi) and
n*(BGZ) by singular manifolds (N;,g.), thea B’L*(B(cl X G,)) is generated by
the singulsr manifolds (Mi X Nj,fi X gj). If the M, and NJ. are products of
projective spaces, then so are the M, X Nj' Hence (2.11} alsc holds for products

of the groups Llisted. Q.E.D.
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CHAPTER 3: Equivariant SK

In this chapter G elways denotes a compact Lie group and G-manifalds
are manifolds with smooth G-actions. We are interested in invariants for equi-
variant cutting and pasting of closed G-manifolds. As usuwal, the Grothendieck
group of n-dimensional G-manifolds modulo the relations givem by cutting and
pasting gives a universal such invariant. We denote this group by SKg’n
(respectively SKi?n in the oriented case).

The calculation of equivariant SK-groups is made difficult by the fact
that we no longer have Theorem {l.1). Tn this chapter we calculate SKg’n up to

2-torsion, To state and prove the result it is corvenient te have the language of

"slice types" which we therefore recall briefly. For details see Jinich [12], §4.

If H is a closed subgroup of ¢ and V a smooth H-manifold, then
G %y V denotes the fibre bundle over G/H with fibre V, associated to the

principal H-bumdle G —= G/H. Recall that ¢ Xy V is € XV factored by the

equivalence relation: {g,x) ~»(gh,h"lx) for h € H. With the G-action induced

by left multiplication & Xy V is a G-manifcld,

If V is a vector space and the H-action is given by a representation

G 1 H—2 GL{V) then we also write @ Xy © for G Xy v.

4 slice type fer G is a conjugacy class in G of pairs {K,{)), where

H is a closed subgroup of G and (O} a=m equivalence class of real representa-
tions of H, The slice type represented by (M,0) is denoted by {H,0]. One
checks that [H,0] = [H',0'] if and only if ¢ *y @ and G X 0 are isomorphic

G-manifolds.

If M is a G-manifold and x € M, then the slice type at the point x
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is {60 1,

where a, is the representation of the isotropy subgroup Gx
normal to the orbit through x (the "slice representation’}. Slice type deter-
mines the local structure of M completely, for the "slice theorem” states {see

for instance Jimich [12], p. 3).

THEOREM {slice theorem}: There is a G-invariant open neighborhood of

x im M whick is G;diffeomnrphic to G X, T..
x

There is a partial order on the set of all slice types for € given by:
[#,0] < {0,7] means [9U,7r] is a slice type of the G-manifold G X, 0. A family
Gj of slice types for ¢ will be called permissible if it contains with each
[H,0] also each [U,r} greater than [H,0], By the slice theorem, the family
EF(H} of all slice types of a G-manifold M is a permissible family.

1t F isa permissible family of slice types, a G-manifold of type F
is a G-manifold M all of whose slice types are in :F . That is g:(M) C 3:.

Denote by SKO(G,ZF) the SK-group resulting from cutting and pasting G-manifolds

of type 3:.

Examples. If G§'= {[[e},en]} where Bn is the n-dimensional trivial
representation, then SKO(G,GF) = SKg(BG).
1t F is the family of ali n-dimensional slice types for ¢ (by dim [H,0] we

mean dim{G X, o}), then SKO{G,':]g} = SKO
H G,n

If M is a G-manifold and [H,o] a slice type, define

Uy,oy ¢ = Ex Eull60,] < [hall.

Via the slice theorem M{H,G} CM is given locally by G %y 9 (o Xy O, where
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Gy is the trivial component of ¢, so M{H c} is a smooth submanifold of M.
k4

Clearly M{ is a closed submanifold if [H,O] is a minimal element of g:(M).

H,0}
Note that it also follows that any l-codimensional G-invariant submanifold W Cu

along which ome can cut and paste M intersects each M[H 6] transversally, as
?

G, and hence certainly also H, acts trivially normal to N,

. i £ i . bove comments
M[H,U] fibres over MEH,G]/G with fibre G/H. By the above ¢

it follows that e{ﬁ o]’ defiped by
?

e{H,c](M) T o= e(M[H,c}/G)’

is an SK-invariant, It will turm ocut that the ] give all equivariant

*k,0

SK-invariants up to 2-torsion, We first need a further definition.

Let 7 : E—> B8 be a differentiable G-vector-bundle over a differentiable
manifold B. Let [H,0] be a stice type for G. We say m ; E—> B has type
[H,9] if just the points of the zero-section of E have slice type [H,0}; that
is, E[H,G] is the zero-section B (C E. The typical example of this is the normal
bundie v(M[H,G]) of M[H,U] in a G-manifold M.

Equivariant cutting and pasting of G-vector-bundles of type [H,c} whose
bases are closed manifolds leads to an SK-group SKO[H,G}.

Now let 3: be an admissible family of siice types for ¢ amd [H,0] € EF
a minimal element in the partial ordering of 3:. Then F' = F - {[H,U]] is

alsc an admissible family and we have an obvious homomorphism
i s 0, Bty > 50, F).

Furthermore, if ¥ is a G-manifold of type F then the minimality of [H,0]

implies that M{H o) is closed, so Mi——> “(M[H O]) defines a homomorphism
? 3

39,
n: SKO(G,CF)—> SKO[H,G].

THEOREM (3.1): Tf F is an admissible family of slice types,
[#,6] € F & minimal element, znd F' = F- {(H,o]}, then the followirng

sequence ig split exact.

. o
0—= k%0, F) ®zl3i——> 50, F) ®z[3] = st’1,0] ®z(3]—> 0.
d

Proof: We first describe the splitting homomorphism d. BRecall that
for any manifold X the "double" X is defined as X U X pasted along the
common boundary by the map id : 3X-—=> 3X. If E is a vector bundle of type

[H,o], define
WE] @ 1) = [O0E] ®+ ,

where DE is the disc bundle of E., Clearly ne d = id.

It follows that n is surjective. Since it is clear that i is
injective and n = i = 0, it only remains to show Ker(n) (( Im(i).

Suppose n({M]}} = 0. Let N be a small tubular neighborhood of M[H,c}
in M, isomorphic to the normal bundle V(M[H,c]) as a G-manifold, Since .
n{{M]) = 6, certainly d o a({M]) = 0, that is [BF] = 0. But by cutting and

pasting one has

u] = (B0e-0)] + [£F]
= [ (M-n)]
- o x - : -
in SK{G,F), and the right hand side is clearly in Im{i). G.E.D,
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COROLLARY {3.3): The SK~-imvariauts ¢l4,0] with [H,0] € F ana
LEMMA (3.2): Assigning co a G-vector-bundie E-——> B of type {H,0] E— »

dim(co) even define an isomorphism
the SK-class [B/G] defines an isomorphism

4] IE 1,
{e @ id) 1 SK (c,‘ﬂf) ®z[5] —> 1l 2[5]
s¢%,0] ®z[%] — sxg ®z[%—], {H,0] : [he] 7

where the sum is over all [H,q] € 3”( with dim(O’G) even,
where p is the dimension of the trivial component of @,

Proof: Let {Hl,ol],[l-lz,ozf,,.. be those {H,0] iun F with even
Precof: Write U=UO®U, where Tq is the erivial component of d.

dimensional trivial component, with indexing so chosen that [HI,U]‘E < [ud,00]
The composite map E-—3 B3 B/G identifies E as a fibre bundie over B/G

impiies i < j. Order the basis of SKQ(G,EF) @Z[«;—] mentioned above correspond-
with fibre & Xy €1 and structure group 1"(01) = AutG(G Xy cl). Since

ingly, Now
&im(B/C) = dim(cro) = p, we hence have
7 ifi=]
sk%,0) = sk%(Er(e,)) er i iy(DpE ) =
’ P 1 {w',0") e
0 if i< .
so the lemma follows from (2,10},

That is, the matrix of the map (efﬂ ol ® id} with respect to the above basis is
Remark: It is not hard to calculate the structure group I‘(o’l) explicitly. R

triangular with invertible diagonal entries, so¢ the map is an isomorphism. Q.E.D.

Since H 1is compact we can assume Tyt H—= 0(k} is an orthogonal Tepresentation,

and then

The above corollary can aiso be formulated that the map

Mo) =N (1) /&,
1 Gxo(k) E = (e o]’ k%6, Ty —s [Li_ z
’ H,0]
where H = {{n,o,(n)) €6 x 0(k} |k € H}.

{as usual {n,o} ¢ ? with dim(o‘o) even) is a modulo 2-torsion isomorphism.

That is Ker(E) and CoKer(E)} are 2Z-groups, Thus Ker{(E) is the torsion sub-

Q . -
o L group of 8K (G,?} and its calculation would complete the calculation of SKO(G,§).
Now by Theorem {(1.3) it follows that SK [4,0] @Z[wz—j is zero if

The calculation of CoKer(E) is equivalent to finding the relations between the

p = dim(co) is odd and is Ef%}, generated by the bundle Ey = Ppm x {¢ Xy @13,

o N efH,cﬂ and would be in a sense a general Smith type theorem. WNote that the
if p is even. Thus by Theorem (3.1) and a trivial induction, SK (6, %) @z[-z-} T .
e{H,U]‘ with dlm(C’O) odd are not necessarily zero. However,

L they are linear com-
is the free Zz[-z-]-module with basis [{@DEU]I[H,C'] € 3'(, dim(d,} even}.

binaticns of the ®lt,) with {U,7] > [H,0] and dim{r,) even.
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Jé#nich [14] and Rowiett {17] have some further results oa equivariant
SK for G = zz. They both use differemt SK-relations and it turns out that
what they are actually calculating is respectively Sl(i(;/.l and SKEZ/J, where
J is the ideal generated by manifoids of the form &)x, with X am oriented
resp, arbitrary compact Zz-manifold. Rowlett obtains complete results, however

Jinich's result is not quite complete and is only module torsion.

Using these results, it is probably not too hard to obtain a complete

calculation of SKE in both the oriented and unoriented case, using the following
2

two remarks:

Remark (3.4}: SK

g s a quotient of SKG/J.

Remark (3.5): Since for finite G, bordism of G-mamifolds is given by
G-equivariant surgery, the analog of Theorem (1.1) holds with In Teplaced by

the subgroup of SKn G generated by all effective linear G-acticans on st
?
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CHAPTER &: Controllable Invariants

In this chapter we discuss a generalization of the concept of 3K~
invariant, due to K. Janich (usmpublished).
3 = N U¢ - N' be twc closed oriented mani-
folds obtained from each other by cutting and pasting via the diffeomorphisms

Let MI =N ~ N and M
©®

w,§ : ON——> AM'. An invariaut A for cleosed oriented manifolds (as usual
agditive with respect to disjoint union) is called $K-controlliable if

Aln L& - 1) - AN U$ - ¥') only depends on the diffeomorphisms ,¢ : 3N — ON'
and oot on the choice of the manifolds M and N'. We then speak briefly of an

SKX-invariant (SK-Konmtrollierbar).

Clearly any SK-invariant is an SKK-invariant, and the SKK-iavariant }

is an SK-invariant if and ouly if the "correction term'

Mp,b) s = k(NUq}—N‘) - R(NU,;G—N')

is always zero.
The above definition is obviously eguivalent to the following: for any
oriented manjifolds Nl’“i’ﬁz’Né with BNl = aNZ and 5Ni = aNé and any orienta-

tion preserving diffeomorphisms ¢,y : BNl———> BNi one has

X(Nlum—Nl) - k(NIUQ—Ni) = X(Nzuw-ué) - A{Nzuemé).

This makes it clear how one can defire a "universal’ SKK-group SKKSO, which
F£1

gives the universal SKK-invariant for closed oriented n-manifolds: factor the

. 30 . .
semigroup HTLn of diffeomorphism c¢lasses of closed oriented n-manifolds by all

relations of the form
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7

* LI - T I
NlUCD-Nl + N2U¢-N2 = NZUqa W, + MU
and then take the Grothemdieck group of the result. One can make precisely the
0
same definitions ia the non-oriented case to obtain a graded group SKK,. As

usual, we drop the superscript in the oriented case and just write SKK, for

S0
SKK, .

THEOREM (4.1): a) Assigning to an oriented manifold M its bordism
class in {, 1is an SKK-invariant and hence defines a surjective homomorphism
SKK, — Q.

b) The analogous statement holds in the non-oriented case.

Proof: This is just Lemma (1.9} carried over to the {un)-oriented

category, with X = pt. Q.E.D.

K. Jénich (unpublished) had shown that for oriented manifolds bordism
class and euler characteristic give all SKK-invariants up to torsion, It turns
out that there can be further torsion invariants; the following theorem gives a

complete description of SKK-invariants,
THEOREM (4.2): Let 1 (SKK  (resp. }CS CSKKS) be the cyclic sub-
group generated by [Sn] Then the sequences
¢—> 1 — SKK —» 0 —> 0
n n 7

0 — IO —_— SKKO
Il n

M%B'Ln——-—) fi]
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are exact, Furthermore In (Ig) is the quotient of ¥ Dby the subgroup generated
by euler characteristics of closed (ntl)-dimensional (un}-oxiented manifolds, that

iss

Z nz 0 {mod 2)
In-; Z, n= 1 {mod &}
0 n=3{mod &)
0 Z 0% 0 {mod 2}
17~
T 10 n=1 (mod 2).

Proof: We shall first prove the exactness of the above sequences.
Suppese we have two oriemted manifolds MI; and M; which are cobordant. We
mist show that in SKK - they differ by a mmltiple of [s™], We shall in fact

prove more, namely

Arl

LEMMA (4.3): Let Y be an (un)-oriented bordism between M. and M-,

1 2
Then in SKK_ (resp. smcg)

] = M, - Ce(¥) - et n[s"].

We have proved this lemma for SI(‘:1 as Corollary (1.8), so we need only
show that wherever equality in Slv(u occurred in the proof of (1.8) it can be re-
placed by eguality in SRK_.

Let ¥ and W' be oviented manifolds with 3N = 3N' = 2P, the disjoint
snion of two copies of a manifold P, and let t ; 2P —> 2P be the iavolution
exchanging these two copies. Suppose further that P bounds an oriented manifold

Q. Then by definition of SKKn
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- I = x b 3 z h
[Nuid-N'J + [ZQUt“ZQ] = [zQUid_2Q} + [NUt-N'], For i =1,2, let Y, be the union of N, X [0,1] and W x [0,1] with the

following identifications: for x € BN, idemtify (x,t) €3N, X [0,1/31 with

so since 2QU -2Q = 20M; 4~2Q, we have @Gx),e) €3] x [0,1/3] and (x,t) €3, x [2/3,1] with (¥(x),0) € ¥} x [2/3,1].

3 ] = N :
Ry, 48" [NUt N'] in SR .
N.
* ¥
Sut in the proof of (1.8) only cutting and pasting of the above type occurred _%P_____Q__j___—
N!
{namely the cutting and pasting (A} involved in surgery in the proof of Lemma i

{1.6)), so the precof can be carried over to the SKK-case, as desired. The same

2/3 i
arguments hold in the unoriented case. Q.E.D. g 1/3 /

As in the proof of (1.9), after smoothing, BYi = (NiUw-Ni) +

-{oN, 4+ ~(N_ U, -N! b i the ab ti it foll that the dis-
To complete the proof of Theorem (4.2} we must calculate the order of { l) -1 ¢ 1U\'v’ 1)’ so By using ¢ above equation it follows . € dis

o¥
. jeint union Y, + -Y, has b 4
[s™ in SKK_ ~ (resp. SKK:). For n even, euler characteristic is an SKK- ’ 2 1 78S houndary
. . - . n o] - -
invariant whick is non-zerc om the generator [§ | of In (resp. In), showing a(Yz + 'Yl) - SZm 1 + (N]_Ucp"Ni) £ (N2U¢-“é) & {aﬂl) e
i
that In ~ Ig ~Z. We may hence assume n 1is odd, say u = 2m-i, P
= {(NU -nTy + (LU, MDY + (BN .
Observe first that Lemma (4.3) with M= M, = g and Y = SZm shows ( Iy 1) ( ZU\‘; 2} ( l)mﬁl»l)
Zm-1 . 0 .
that [s ] has oxder at most 2 in SKK, . amd SKK, . Furthermore, if Thus by pasting boundary compoments of Y, + -Y; + p® pairwise together we get
2n . P N
M is a closed manifold of odd euler characteristic, then Lemma (4.3) with a closed manifold MZm, whose euler characteristic is easily calculated to be
» _ _ lm redm-la ~
M, =M, =g and Y=M now shows that |8 J=0; we can take M=7p, R 1 - 2e(6Nl). Since this is odd, the proof of Theorem {4.2) is completed. Q.E.D.

in the uncriented case, and for m even we can take M = pnc in the oriented

. . - 21
case, It hence only remains to show in the oriented case that [$ }#0 in Remark: For unoriented manifolds, Theorem (4.2) shows that bordism class
- - 2m-1 X .
SKKZm—l for m odd. We shall prove this by showing that [S } = 0 implies and euler characteristic give all SKK-invariants,
- - 2m P - :
the existence of a clesed manifold M of odd euler characteristic, which is For orientable marifolds one can show that Kervaire semi-characteristic,
impessible in the orientable category if w is odd. defined by -
Suppose therefore that [SZm—L] = 0. By definition of SKK, . this
Zk
. . : ' . .
means that there exist orientable manifolds Ni and Ng (i = 1,2} with k(quH') = bi(M) (mogdulo 2),
i=0
5N1 = 3N, and BN'l = aNé, and diffeomorphisms g,y : N, —-3 2N}, such that
where the bi(M) are the betti numbers, is an SKK-invariant SKK —> 2

e et 1 2

1 ' N o : .
s * {Nlqu'Nl) (U =N3) = (Nzucp-uz) + (Nlu¢-nl)_
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which splits the sequence (4.2}, So bordism class, euler characteristic, and
Kervaire semi-characteristic in dimensions &4+l give all SKK-invariants for
orientable manifolids,
We sketch a procf of the SKK-invariance of the Kervaire semi-character~
2m

istic k. For any oriented manifold Y an elementary homological argument

using Poincaré duality shows that
k(AY) = e{Y) ~ +(¥} (med 2).

Assume m odd, say m = Zktl, and apply this equaticn to the manifold Y used

in the proof of (1.9), This gives
k(Mlqp—Mz) - k(Mluw-Mz) - k((BMl)$p_i) = —e{aMl) (med 2)

which shows that k is an SKK-invariant with correctionm term kp,¥) =
k(N l) - e(N) (med 2). A simple howological calculatior puts this in the neater
™

form
kip,§) = rank((qm'l)* - id) {mod 2),

where, since other dimensions pair off, we need only conmsider the middle dimension

(™1, =y () = By (D). ’

Bordism with Vector Fields.,

Reinhart [16] introduced bordism with vector fields im order to make

euler characteristic into a bordism invariant.
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Let M1 and MZ be cleosed (oriented) manifolds, A vector-field bord-

ism between Ml and M is a usual (oriented) bordism N between M

2 and M

1 2

together with a non-singular vector field on N which is the inward normal on
Ml ard the outward normal on Mz.
It is well known (Reinhart, loc. cit.) that if N is connected, such

a vector field exists on N if and only if e(Ml} = e(Mz) = e(N).

THEOREM (4.4): “Twe (oriented) manifolds M; and M, are vector field
cobordant if and only if they are equivaleat in SKKS {resp. SKK,). Thus one

cazn identify SK¥, with Reinhart's vector field bordism groups.

We prove only the oriented version, because the same arguments hold in

the unoriented case.
We must show that two oriented manifolds M? and Mg represent the

same class in SKKn if and only if there exists an oriented bordism K between

them with

E(Ml) = e(r-:z) = e{N).

The sufficiency of this condition is immediazte from (4.3), so it remains to prove
the necessity. Suppose thersfore that IMIE = [MZJ in SKK . Since euler charac-
teristic is an SKK-invariant, e(Mi) = e{Mz). Alsc the bordism classes are equal,

so we can find 2 bordism Y between M, and M., Lemma (4.3) implies that

1 2
(e(y) - e()){s"]

[

G, so for nu even Theorem {4.2) shows that e(Y) = e(Ml),
and we can take N = Y and ave finished. For n of the form 4k+l Theorem (4. 2)
shows that e(Ml) - e{Y) is ever, so for arbitrary odd = we can certainly find a

- 41 . o+l
closed manifold M with e(M" ") = e(Mi) - e{(Y). In this case, the counected
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sum of Y and Mn+1 gives a bordism N of Ml and M2 with e(N) =

e(Y) + e(Mn+l) = e(Ml), completing the proof. Q.E.D.

Tangential Characteristic Numbers,

Jznich (unpublished) has shown for oriented manifolds that the index of
an ellipic operator is am SKK-invariant, Here, a versiocn of this theorem will be
proved in a more general setting.

Let ?; be the universal bundle over BSO{n) and Yo the universal
bundle over BO{n). By D;n and S?n we denote the correspending disc bundle

and its boundary sphere bundle,

Let M be a closed oriented n-manifeid. The classifying map for the

tangent bundle of M induces a map
(e, 30M) — {Dy_,s7),

where M is the tangent disc bundie of M. Since tM has a natural stable

almost complex structure, we chbtain an element
%) € o) (ny_, 57 )
2nt 'n’"Tnt
In the unoriented case we obtain am element

x(M) € Q) (y_,sy,).

LEMMA (4.5): ¥ defines a homomorphism

B, - —
X ot SKKn—‘:- QZH(DYH’SYH}

51,

respectively

0 U
%t SKK —= Q, (DY ,Sy ).

Proof: Suppose (M} =0 in SKK ; we must show that y(M} = 0. By
Theorem (4.4) we can find an oriented manifold Y with 8Y =M and a non~
singular vector field § on Y which is the inward normal on M. Let t'Y be
the disc bundle of the bundle obtained by splitting the line bundle corresponding
to £ off from the tangent bundle of Y, and £ : (t£'Y,3t'Y)-—2> (D;n,sqg) its
classifying map, f is clearly a zero boerdism of y{M). The argument alsc holds

in the unoriented case, Q.E.D.

How let h, and h* be corresponding homoiogy and cohomology theories
for which stably almost cemplex manifolds are orientable. Then for any element
x & h*(5§5,5§£) {respectively x € h*(DYn,SYn)} we can consider the correspond-
ing characteristic number of a singular stably almost complex marifold., To be

precise we consider the homomorphism
[, - .— x, =
Q*(DYn’SYn) ®k (D'Y'H’SYH) > he\-(Pt)
*
(v g] @ x pe g x,[N,aN]h>,

where [N,aﬂ]h denotes the h -orientation class of W,

Definition: If M is a closed (un)-oriented manifold, the characteristic

5] - —
numbers of x{M) € QZn(DYn’SYn) {resp, € Ogn(Dyn,Syn)) are called tangential

characteristic numbers of M.
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CHAPTER 5: Other SK Concepls

COROLLARY (4.6): Tangential characteristic numbers are SKK-invariant.

% s
Example: As h ,h, we cam choose (complex) K-theory, If M is a
Other SK concepts have been comasidered in the literature. In this

* .
manifold, then an element x € K (tM,0tM)} can be considered as a symbol of a
chapter we show how they reduce to the concept of SK used here, For conveni-

(pseudc)-differential cperator. <x,[tM,3tM}K> is then the index of this symbol.
ence we work in the orienmted category; however, the discussion is also valid fer

R, - - *
An element in K (Dy +5v,) (resp. K (BYH,SYH)) can thus be comsidered as a
= manifelds with other structure, e.g., singular manifolds in a space X, manifolds

“"universal differential operator" which is defined on all n-dimensional (um)-
with (B,f)-structure, manifolds with a group actiom, ete,
oriented manifolds. The index of such a "universal operator” is hence an SKK-

invariant.
A cutting and pasting "relation” will always mean an equivalence rela-

tion ~ on the class of manifolds, compatible with disjoint union +, and

"cancellative." That is, for manifolds M,M",N we require
Mo Mo M~ N

Actually, to make cur discussion valid also in the equivariant case it
is convenient to define a further cutting and pasting relation by adding to the
SK~-relation that the doyble SIM = M LE—H of any compact manifold be equivalent to
i

zero, Czll this relation SK. That is, for the corrvesponding graded groups,
—~
SK, = SK /J

whexre J is the subgroup generated in SK, by doubles of closed manifolds,

LEMMA {5.1}: Io the non-equivariant case 3K = K.

Proof: In fact we show this holds for any category of manifolds for
which a suitable analog of Theorem (1.1) helds, i.e., bordism is given by surgery,

and spheres are doubles of discs,
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SK, = SK /I, where I 1is the subgroup gemerated by manifolds which
bound, and hence cortains J. But by (1.1) I 1is already generated by spheres,

and hence contained im J. g.E.D,

We consider the telation used by Janich [14]. This relation is gener-

ated by setting any manifold of the form

(1) Mﬁqpo-ﬁl + MIQ31-M2 + qupz-ﬂo

equivalent to zero. Here --Mi means Mi with reversed orientation and

Py ¢ BMi—~—> aMi+ (indices modulo 3} are diffeomorphisms.

i
Pt
THEOREM (5.2): Jinich's relation is the same as SK, and hence the same

as SE in the non-equivariant case.

Proof: By cutting and pasting the above manifold (1) one obtains the

union of doubles,
MOU—MO + MlU—Ml + MZU—Mz,

so 6K implies Jinich®'s relation. On the other hand, putting MO = M,

M = MZ = ¢, in (1) shows that M + (-M) ~ 0. Now taking MO =M, =M, (1)

shows that QDMG + EQMO + (-§§M0) ~ 0, so E}MO ~ (. Finally, My =M, gives

(MU —m )+ (MU -M) + M. ~ 0, whence M. -M ~ M, -M . Hence Jimich's
0%, M 14, " Mo 0~ 9 o, M~ Mo, T ™

- ’ * g
relation implies SK. Q.E.D,
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If one is interested also in compact marifolds with boundary, the most

natural cutting and pasting relation seems to be the one generated by the relatiocns
(2) Moqp- M~ My + ('Ml)a

where ¢ pastes boundary components of M, to boundary components of M.
€all the corresponding graded group A, (the Grothendieck group of compact
manifelds modulo these relations), This is the universal group for "additive"
invariants of‘manifolds.

Clearly, for closed manifolds the above relations only generate the usual
SK-zrelations, so the subgroup of A, generated by closed menifolds is just 5Ky
Now let B, be the Grethendieck group of closed manifolds which bound, subject
only to the relations M+ {(-M) = 0, The torsion subgroup of B, 1is thus 2-torsiom,
generated by bounding manifolds which possess orientation reversing diffeomorphisms.
There is an epimorphism 3 : A —> By given by taking boundaries of manifolds,

The following thecorem is trivial.

THEOREM (5.3): The sequence

0 — SK, — A > B, >0

1

is exact.

Thus "additive" invariants for compact manifolds reduce to the diffeo-
morphism types of their boundaries together with SK-invariants for closed manifolds,

Observe that the above sequence does not split for n even, since fSn} = ZiDn] in

r 11
Ay, but ST

is an irreducible element of SK,, = Kex 3,

Theorem (3.3) is due to Rowlett [17]. Actually Rowlett comsiders a
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slightly different relation, namely

(3) Mol My + (M) +Hy ~ 0.

Taking Hl = ¢ this implies MO ~ —(-MO), so in particular relation (2) follows,

as well as the relation
(4} M) =My ~ 0,

that is, doubles are equivalent to zero. Conversely (2) and (4) clearly imply
MO a:-(-MO), and hence imply (3), Thus Rowlett's relation (3) leads to the same

—t
results as relation (2} except that 5K, must be replaced by 3K, .

We now return te a comment of Chapter L. As remarked in Chapter 1,
SKn(X) is actuzlly equsl to the semigroup of singular n-manifelds im X modulo
SK~equivalence, To assure this, the definition of SK-equivalence in Chapter 1
was slightly unnaturaily "stabilized” to make sure that it was cancellative. As

recently remarked by Ed Miller, this is unnecessary, in fact we have:

THEOREM (5.4}: Two closed non-empty oriented singular memifolds (Ml,fl)

and (Mz,fz) in a connected space X are SK-equivalent and hence represent the
same element of SK (X) if and only if one is obtainable from the other by a

sequence of cutting and pasting cperations in X,

Of course the same holds in the unoriented category. To prove Theorem
(5.4} let ~ denote the “unstabilized" SK-relation: that is (M, £y ~ (,, £,)

means that (Mz,fz) results from (Ml,fl} by a sequence of cutting and pasting
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operations in X, It is clearly sufficient to show that the semigroup H?Ln(x)ﬁ~
of singular n-manifolds in X modulo this relation is already a group, and hence

equal to SKn(x).

Firstly, this semigroup has a zero, given by the class of Si X Sn_l.
Indeed, we can cut S1 X Sn—l along Sn-l to get I X Sn—l. Now given any
(M, £) & th(x), we can cut a small dise D° from M, paste I Xx Sn‘-i to this

disc as a collar, and paste the result back into M, showing that
M6 + (st x 2 & 4, 0).

Secondly, the class of 5% has an inverse im this semigroup. Namely
let P be the “sphere with two handles” obtained by removing two discs from

SI X Sn-1 and pasting the resulting two boundary components Snﬁl together. By

1 % Su—l.

reversing this comstruction, clearly P + "~ s
We new have all we need to repeat the proof of Corollary (1.8) and show

that if (Ml’fi) is bordant to (Mz,fz) in X by a berdism Y, then
r - ; n
M, £ ] = M, 61 - (e(Y) - e( 1){s7]

in JfI_(X}/~ It follows that any element [M,f] of th(x)/w has an inverse,

namely [-M,f] - e(M[s"), so WL (X)/f~ is a group, as was to be shown.

Remark: The relation of SK-equivalence as given in Chapter 1 can be
simplified in another directiom, which is, however, less interesting. Namely,
(Mi’fl) and (Mz,fz} are SK-equivalent if and only 1f there exists an (M, f)
such that (Mz,fz) + {M,f} results from (Ml,fl} + (M,f) by a singie cutting and

pasting operation. We leave this as an easy exercise for the reader,
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CHAPTER 6: Winkelnkemper's "Open Book Theorem

This chapter was written after the rest of the notes were completed,
and discusses some SK-consequences of Elmar Winkelnkemper's "open book theorem”
[20}. Maybe the main consequence for SK is the theorem, which strongly super-

cedes Theorem {2,8) iii):

THEOREM (6.1): For any topological space X and all odd n # 5,

SKn{X) = 0, This is probably alseo true for u = 35,

Let us first recall Winkelnkemper's definition of an "open book." Let
V be a manifold with 3V # ¢ and h : V—>V a diffeomorphism with hIBV = id.

Form the mapping torus Vp (see Chapter 1) which has av, = S1 X @V, and fox

each x € OV identify the points {t,x), ¢ € Sl, to obtain a closed manifoid M
called an open bock. The fibres of the mapping torus are the "pages” and the image
of Sl ¥ 8V under the identification, which is a codimension 2 closed manifold
diffeomorphic to AV is called the "binding.” The binding is the boundary of

each page.

In 1923, Alexander [1] proved: every orientable 3-manifcld is an open
book. Winkelnkemper has extended this to the following powerful structure theorem

for manifolds:

THEOREM (6.2) (Open Book Theorem): a) Every orientable closed manifold

of dimension n = 2k+1 ¥ 5 has an cpen book decomposition.
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b) A closed simply connected manifold M of dimemsion n = 2k > 6
has an open book decomposition if and only if (M) =0

In fact in the simply connected case, n > &, Winkelnkemper shows

much more, namely, that the pages and binding can also be chosen simply connected

with H,(V,Z) = 0 for i3> [7]. The latter implies that hy : Ho(V,Z) —> B, (V,2)

: : : : n :
is the identity for i < Eiﬂ, and Winkelokemper also gives necessary and sufficient

conditions that one can choose it to be the identity alse for i = {%]4

The application to SK is given by the following theorem. We first note

a simple lemma:

LEMMA (6.3): Let M be a closed conmected orientable manifold., Then

the following four conditicns are equivalent:

1) For amy map £ : M~-> X of M iato a space X, [M,fi =0 1in EEA(X);
ii) (M) =0 and for any map f : ¥—> X, [M,£] = [#,%] in 5K (X);
iii) [M,id] = 0 in SR ()3

iv) (M) =0 and [M,id] = [M,*] in SK_(M).

THEOREM (6.4): If M" has an open book decomposition then each of the

equivalent conditions of Lemma (6.3) holds,

Proofs: Lemma {6.3): The equivalences i) <—= ii} and 1ii) e—==> iv)

are clear by observing that {M,f] =0 in §Kﬁ(x) impiies [M,*] = 0 in 3FE {X)
- n

and applying Theorems (1,1b) and (1,3h). Trivially i) = iii), and $if) == i)

f l = s I3 + el
ollows from the fact that [M,f] € SK (X) is the image of [M,id] € BK_ (M) under



50.

the map JK () —> SK _(X) induced by f.

Theorem (6.4): Suppose M has an open book decomposition given by
typical page V and diffeomerphism h : V— ¥, We shall prove [M,id] =0
in §§£(M}.

Cutting the mapping torus vy, along two fibres to get two copies of
V x I induces a cutting of M (along a menifold diffeomorphic to the double of
V) into two pieces N and N', each of which is diffeomorphic to V X I/~ ,
where ~ identifies each x X I (x € d¥) to 2 point (in fact N and N' are
still diffeomorphic to V X I)., Use a homotopy between id : V X I—> V X 1
and VxI—2=>v (Vv x 1, where p is the projection, to slide both N and N'
into 2 single page V of M and re-paste them there to get the double £'N
mzpping into a page ¥ { M. This mapping clearly extends to a mapping of N X I
into V if we consider 45N as 3(N X I). Hence [M,id] 1is equivalent by an

SK-operation to something which bounds in M, and is hence zero in §§n(M). Q.E.D.

The open book theorem together with (6.4) clearly implies (6.1)}. There
are other interesting implications. Recall that for any comnected space X, the

augmentation EX T S, (X}—> SK, and the map n : 5K, (X) —= Kex & ziven by
T'\EM:f} = {Ms f‘l - [M;*}

define a direct sum representation
SKy(X) = SK, @ Ker £,

Since SK, is well understood, it is Ker Ex, and hence the elements n[M,f},

which interest us.

As remarked in Chapter 2, if a manifold M is the base of a compact
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fibre bundle with structure group G and non-sultiplicative signature, and
£ : M—> BG is the classifying map, then [M,£] # [¥,%] in SK,(BG), so
niM,f] is non~trivial, in fact of infinite order, in Ker & rhus by Lemma
(6.3) mn{M,id] has infinite order in Ker M rhus niM,id] € Ker M gives an
intrinsic obstruction to multiplicativity eof signature for arbitrary bundles
over M. Two natural questions arise:

Question I: We have seen that finite order of n[M,id] in Ker EM is
sufficient for bundles over M to have multiplicative signature. Is it also

necessary?

Question 2: By Theorem (6.4) triviality of [M,id] in SE(#) (which
is equivalent to n[M,id] = 0 and 7(M) = 0) is necessary for M to have an open

book decomposition. Is it alsec sufficient?

Atiyah's examples shew that there are bundles with non-multiplicative
signature over any product M of orientable surfaces of sufficiently high genus,
Hence n{M,id] # 0 in Ker EM, so M has no open book decomposition. Thus the
condition m, (M) = 0 in the open book theorem canmot be dropped emtirely, It was
this remark, made by Elmar Winkelnkemper {using a more direct argument) that led

to this chapter,
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APPENDIX l: Cutting and Pasting of (B, f)-manifolds

by G. Barthel

Most of the preceding theory can be generalized to cutting and pasting of
(B, f)~manifolds, so here we give a summary of the generalization.

Let us briefly recall the definition of a (B,f)-structure on a manifold
as given by Lashof [3] (see also Stomg [7]). Let (B,f) = (B,,f,) be a seguence

of fibrations £, : B, —= BO

k * k and maps 8y ¢ Bk——~> B

ekl such that all diagrams

P Pl

| |
£ £
|, kel
B0 5> By,

commte (jk is the usual inclusion).

™k
Ary smooth imbedding i ot L —1 of a compact smooth n-manifold
G otk
vields imbeddings ik NV — ln+k, k= ko, by the inclusion of B 0 into
Rn+k. The geometric normal maps Vi ¥ M > BOk (taking BOk as an infinite

Grassman manifold) of these imbeddings are related by Vil = jk-uk. Given a

(Bk ’fk )-structure on (M,ik } (i.e., a homotopy class of liftings
(4 0 0

& By
> It
M > BOL
k, 0

of the normal map to B, ), one obtains a unique sequence £ = (gk)ktk of
o ES
(Bk,fk}-structures on (M,ik).

Provided that Kk is sufficiently large, any two imbeddings i, and iy
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of Mn into xn+k

are regularly homotopic and any two regular homotopies are
homotepic through regular homotopies of the given imbeddings, The induced homo-
topy of the normal maps yield by the homotopy lifting property feor the maps fk

a one-one correspondence between (Bk,fk)-structures on  {M,i and (M,ié).

",
Two sequences & = (gk)k>k and §{ = (CE)£>£ belonging to embeddings
-0 =0

otk n+20

i, :¥—>n O ang ip R will be called equivalent if £ and
0 0

Cr correspond by the above correspondence for some t. A (B,f)ﬁggzggggzg on M
is then defined to be an equivalence class of such sequences of (Bk,fk)—structures,
and a manifold M together with a (B,f)-structure { 1is called a {B,f)-manifold.
If v : M—>» M is a diffeomorphism, any (B,f)-structure on ¥ induces
one on M'. An isomorphism of (B, f)-manifclds is a diffeomorphism inducing the
given structure on the source M', This notion of induced structure and of (B,£)-
morphism can be extended to immersions with trivialized normal bundle, see Stong
[7], p. 16, for details,
Let Wn+1 be a (B, f}-manifold with boundary. Imbed W“+L in Rn+k X m+
such that dW lies in BTTE x {01 and W meets B {6} orthogonally along

AW. Then the (Bk,fk)—structure on W induces one on oW by restriction, called

the boundary stmicture. For a closed (B,f)-manifold M, the boundary structure

on 3{M x I) induces the given structure om M = M X f0} and a structure on

¥ =Mx {1] called the opposite structure, briefly denoted by -M.

Two closed (B,f)-manifolds ¥ and M' are called bordant if M + (-M'})
is a (B, f)-boundary. The (B, f}-bordism classes of closed n-dimensional (B, £)-
. . B, [
manifolds form am abelian group ﬂi +£) called the nth (B, £)-bordism group,
We remark that these groups are isomorphic to certain stable homotopy
greups of appropriate Thom spaces (see [3}, [7] for details). Furthermore, if a

multiplicative structure is given (defined by maps B, xB,—>B 4 Such that the
r+s
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projections fk preserve products up to howotopy, BOr X EOsmw—b BOP+S being the

usual multiplication), we get a graded ring structure on QiB’f), and the homo-
werphism niB’flwwmb BL* is a homomorphism of graded rings.

Suppose that a cleosed manifold M is the union of two bounded manifolds
¥ and N' pasted along the common boundary 3N = 8N'., Then a given {8,£f)-
structure on M induces (B,f}-structures on N and N’ such that the boundary
structures on oN and AN' are opposite to each other. If g : 3N —> -3N' is
a (B,f)-iscmorphism, the pieces N and N' wmay be pasted by g to give a new
(B,f)-manifold M', and we say M' has been obtained from M by an SK-operation,

Note that in general the (B, f)-structure on M' is not uniquely determined by the

(B, f)-manifolds N, ¥ and by .

As in Chapter 1, oue defines an SK-group SK(B’f}

n as the Grothendieck

group of closed n-dimensional (B,f)-manifolds modulo the relations given by SK-

Eﬁﬁg’f) is then defined by factoring SKiB’f}

operations. by the bordism rela-

tion, TIf the {B,f)-structure is multiplicative, then SKiB’f) and §§i3’f) are
graded rings, and the natural epimorphisms

(B, £) wulB, £)
SKy T — BK

and

B0, gl5

— 5K,

are graded ring homomorphisms,

We first remark that without loss of generality we can assume the spaces
B to be connected. Collapsing the connected compounents of the fibres of

Bk»~%> BOk to points yields a connected covering of BOR, which mist be either
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the trivial covering BO, —> BO,

y " —> B0, Thus

k k

the fibres of By have at most two components, so there are at most two (B,f)-

or the universal coverimg B30,

structures on a point, and they are opposite to each other. The same holds for
the spheres s" with boundary structures induced from the disc Dn+l. These
structures on the sphere are isomorphic by an orientation reversing diffeomorphism,
s¢ in fact there is only one such structure induced from the disc; we call it the
point structure.,

Corresponding to Theorems (1.1) and (1.2) of Chapter | we have the follow-

ing results:

THEOREM 1: There is an exact sequence

0 — Ir(ls’f)——} SKéB’f}-—-—b- 'S"}fiB’f)—a» o,
where IiB’f) is the cyclic subgroup of SKéB’f) generated by the class [S§°) of

the sphere s" with the point structure, and

(B, 0)

N ~3Z, n =0 {wod 2)
B, f
15’);0 or Z,, n =1 {(mod 2).

If the fibres of B, have two comnected components, then the sequence splits for

. even,

THEOREM 2: Let ?r(f’f) be the subgroup of ngB’f) of all elements

representable by a manifold which fibres over Sl. Then

06— 130 s (80 T

is exact.
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The proofs are as in Chapter 1, wit™ the following reservatic-s: the
connection between SK and surgery discussed in Chapter 1 goes through without
change to prove Theorem I, however, the cutting and pasting Lemma (I1.5) needs

additional conditicmsy

1
LEMMA 3; i) 1If the (E,f)-manifold M fibres over S themn [M] =0
in sxis’f).

n
i3} If M fibres over §° with typical fibre F then [M] = 5" x F]

-1
SKiB’f),

in where the structure on Sn X F is induced from D X F. T1f the

theory is smultiplicative, then F can be given a {B,f)-structure such that
(u] = [s"}[F] in SKiB’f).

iii) Tf the (B,f)-structure is multiplicative and if there are {B,f)~
stTuctures on Pnc for all =n, then for aay (B,f)-manifold M fibred over Pnc

with fibre F,

(] = {pg][¥]

holds in SKiB’f), for a suitable (B, f)~structure on F.

iv} The same as iii) with Pnl ingtead of Pnt.

COROLLARY &4, Under the assumption of part iii)} above, [32n+l] =0 in

sl®B D o 1$BE

Inkl 7 2l - O

Theorem 2 is proved as in Chapter 1, by showing that the {B, £)-bordism
classes of two manifolds related by a single SK-operation differ by the class of a
wanifold which fibres over the circle. HNote that two SK-cperations may yield the

same manifold fibering over the circle but with different (B, f)-structures, due to

the non-uniqueness of (B,f)-structures under cutting and pasting mentioned earlier,
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This means that the calculation of the SKK-groups of Chapter &4 is not Lhe same in
the (B,f)-case: (B,f)-bordism class needa't be an SKK-invariant. However, the
ciass in QiB’f)/J, where J is the subgroup generated by all (B, f)-structures
on manifolds of the form M X Sl, is an SKK-invariant, and the discussion of

Chapter 4 goes through usimg this group in place of Qig’f).
As an example of (B,f)~SK we now calculate the SK-groups for weakly
complex manifolds, obtaining the following result.

THEOREM 5: The rings SK: and §E§ are isomorphic to SK, and §E;

by the obvious homomorphisms,

Proof: By Lemma 3 and Corollary 4 we know that SKgn+l is isomerphic
to SRY which is a quotient of (U Now 00 is kno namely, it is th
2041 a o1 w 0, i wh, namely, it is the

integral polynomial ring I[YO,YI,YZ,...] on 2i-dimensional generators Yi that

can be represented by certain linear combinations of products of complex projective

spaces Pdc and hypersurfaces Hr . in PEC X PEE (Milner, Novikov, Hirzebruch
?
(4], {s], {e], {1]).
U
Herce the n2n+1’ and thus also the SKgn+i = SKZn+l are zerg, proving

the theorem for odd dimensions.

In the even dimensional case we see that SKZn«~—> SKZn

maps generators onto gemerators. By Lemmsz 3 iii) these generators may be chosen

is onto, as it

as products of complex projective spaces. Now one sees that Jénich's proof that

{Pn+ic] = EPHC][PZC} in 8K, (given in 2], 2., (4a)) holds also in EEE {where

Fnc has its usual weakly complex structere). Thus SK4k+2 is geunerated by products

with at least cne factor Plg and is hence zero, while Squ is genmerated by



PL X ... X PE

Z

%"

o)
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J (k times) and is hence isoworphic te X by sigmature, Thus

= SK,, and the 5-lemma on

0—> 10— SKE_’ [

1

ol

0 — I_—> SK_—> SK_—=> 0
n n n

completes the proof.

Theorems 2 and 5 yield the charvacterization of weakly complex manifelds

which fibre over the circle up to unitary bordism, namely, that signature vanishes,
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