Regular Cocycles and Biautomatic Structures
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In [ECHLPT] and [S] it is shown that if the fundamental group of a Seifert fibred 3-
manifold is not virtually nilpotent then it has an automatic structure. In the unpublished
1992 preprint [ G2] Gersten constructs a biautomatic structure on the fundamental group
of any circle bundle over a hyperbolic surface. He asks if the same can be done for the
above Seifert fibered 3-manifold. We show the existence of such a biautomatic structure.

We do thisin the context of ageneral discussion of biautomatic structures on virtualy
central extensions of finitely generated groups. A virtually central extension is an
extension of agroup G by an abelian group A for which the induced action of G on
A isfinite, that is, given by amap ¢ — Aut(A) with finite image. The fundamenta
group of aSeifert fibered 3-manifold as aboveisavirtually central extension of aFuchsian
group G by Z. (For convenience we areusing theterm “Fuchsian group” for any discrete
finitely generated subgroup of Isom(IH?) — orientable or not.)

We use a concept of “regular 2-cocycles’ on a group G which was suggested by
Gersten’swork. Here“regularity” iswith respect to a(possibly asynchronously) automatic
structure . on GG. If L isabiautomatic structureon &' we show that any virtually central
extension of G defined by an L-regular cocycle also has a biautomatic structure.

As an application we show that any virtually central extension of a Fuchsian group
G by afinitely generated abelian group A is biautomatic. In fact, if L is ageodesic
language on G, we show that all of H>(G; A) isrepresented by I-regular cocycles.
Incase GGistorsionfreeand A = Z withtrivial G-actionthisisimplicitin Gersten’swork
(loc. cit. — we give an independent treatment here that is more geometric; alternatively,
it followsfrom hisresult about biautomaticity plus Theorem A below). The general case
follows easily from thisusing Corollary 2.7 below, which says that a conomology class
for agroup & isregular if itsrestriction to some finite index subgroup of ¢ isregular.

The converse to the fact that regular cocycles lead to biautomatic structures is also
true.

Theorem A. Let £ beavirtually central extension of the group G by a finitely generated
abeliangroup A. Then E' carriesabiautomaticstructureif andonlyif G hasabiautomatic
structure /. for which the conomol ogy class of theextensionisrepresented by an L-regular
cocycle.

Thisstrengthenstheresult of LeeMosher [ M ] that biautomaticity of acentral extension
of G implies biautomaticity of . We use hiswork in the proof of Theorem A.

1) March 1995: we can now prove this for any word-hyperbolic G, see [NR].
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1. Basic Definitions

Let G beafinitely generated group and X afinite set which maps to amonoid generating
set of G. The map of X to G can be extended in the obvious way to give a monoid
homomorphism of X™* onto &G which will be denoted by «w — @. For convenience of
exposition we will aways assume our generating sets are symmetric, that is, they satisfy
X = X~' If L C X~ thenthepair consisting of L and the evaluation map L — G will
be called alanguage on G. Abusing terminology, we will often suppress the evaluation
map and just call L the language on & (but therefore, we may use two letters, say /. and
L', to represent the same language L C X™* with two different evaluation maps to two
different groups). A language on (G isanormal formif it surjectsto G.

A rational structurefor Giisanormal form L C X* for G whichisaregular language
(i.e., the set of accepted words for some finite state automaton).

The Cayley graph T'x (G) isthe directed graph with vertex set (¢ and adirected edge
fromg to g7 foreach g € G and « € X; wegivethisedgealabel x.

Each word w € X* defines a path [0, c0) — I' inthe Cayley graph I' = I'x (G) as
follows (we denote this path also by w): w(t) isthe value of thet-thinitial segment of w
fort =0,..., len(w), isontheedgefrom w(s) tow(s+ 1) fors <t < s+ 1 < len(w)
and equals @ for ¢ > len(w). Werefer tothetranslate by ¢ € G of apath w by gw.

Let 5 € N. Two words v, w € X* synchronoudly é-fellow-travel if the distance
d(w(t),v(t)) never exceeds é. They asynchronously é-fellow-travel if there exist non-
decreasing proper functionst — ¢/, ¢t — t": [0, 00) — [0, o0) such that d(v(t'), w(t'")) <
s foral ¢.

A rationd structure L for G is a synchronous resp. asynchronous automatic struc-
ture if there is a constant 4 such that any two words u,v € L with d(#,7) < 1 syn-
chronously resp. asynchronously fellow-travel. A synchronous automatic structure L. is
synchronoudly biautomatic if thereisa constant 6§ such that if v, w € L satisfy @ = #v
withz € X then zv and w synchronously §-fellow-travel. See [NS1] for a discussion of
the rel ationship of these definitionswith those of [ECHL PT]. In particular, as discussed
there, if L — G isfinite-to-one, then the definitions are equivalent; by going to a sub-
language of 1. this can always be achieved (in fact one can always find a one-one regular
sublanguage).

We define two rational structures L and L’ on G to be equivalent, written L ~ L', if
thereexistsaé such that every L-wordisasynchronously é-fellow-travelled by an L’ word
with the same value and vice versa. If L and I/ are asynchronous automatic structures
thisisequivalent to requiring that L U L’ be an asynchronous automatic structure.

If L isarational structureon G wesay asubset S C G is L-rational if thelanguage

Ls={wel:ames}
isaregular language. The subset S is L-quasiconvex if there exists a § such that every

w € L with @ € S travels in a §-neighborhood of S C T'x(G). The following is
well-known (eg., [GS], [NS1]).
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Proposition 1.1. If L ~ L’ are equivalent rational structures on (G then any subset H of
G is L-rational if and only if it is L'-rational. Moreover, if H is a subgroup, then it is
L-rational if and only if it is .-quasi convex. O

We shall also need the following.

Lemma 1.2. Let L be an asynchronous automatic structure on GG. If S isan L-rational
subset of G then soisS¢ for any ¢ € GG. Moreover, if L isa biautomatic structure then
gSisalso L-rational. Inparticular, if A isasubgroup of finiteindex then itsright-cosets
H g are L-rational in the automatic case and two-sided cosets g, H ¢g» are L-rational in
the biautomatic case

Proof. Suppose /. is an automatic structure and S is L-rational. It suffices to show
that Sz isrational for any generator . We can use a standard comparator automaton
(cf. [ECHLPT]) to see that {(u,v) € L? : v = az,u € S} isthe language of an
asynchronous two-tape automaton. The projection onto the second factor is therefore
a regular language, but it is just the language of words v € L that evaluate into Sz.
Thus Sz is L-rational. The proof that ¢S isrationa if L is biautomatic is completely
analogous. Thefina sentence of thelemma then follows since a subgroup of finiteindex,
being quasi convex, isrationa by Proposition 1.1. O

2. L-Regular Cocycles and Biautomatic Structures,
Let G beagroup and A be afinitely generated abelian group. Suppose
0-ALEZLG 1

isavirtualy central extension of G. Wewrite A additively and we denote the action of an
element ¢ € G on A by a — af. Chooseasection s : G — E. Then ageneral e ement
of I hastheform s(g)«(a) withg € G and a € A and the group structurein E isgiven
by aformula

s(g1)e(ar)s(g2)e(az) = s(grg2)u(af® + az + (g1, 92)),

wheres: G x G — A isa2-cocycle on GG with coefficientsin the G-module A. Changing
the choice of section changes the cocycle o by acoboundary. Conversaly, given acocycle
o, the above multiplication rule defines avirtually centra extension of i by A.

Definition. Suppose ' has finite generating set X and /. C X* is an asynchronous
automatic structure on . We say a 2-cocycle o as above isweakly bounded if
1. Thesetso(y,G) and o(G, ¢) arefinitefor each ¢ € G (equivdently, o(X, G)
and o (G, X') are both finite— thisfollows from the cocycle relation below);
and is L-regular if in addition
2. Forexchz € X anda € Athesubset {g € G : 0(g,x) = a} isan L-rationd
subset of 7.
A cohomology class in H%(G; A) is L-regular if it can be represented by an L-regular
cocycle. Theterm “weakly bounded” reflects the standard terminology of bounded for a
cocycle that satisfies o (G, &) finite.
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Lemma2.1.

1. IfoisanL-regular cocyclethenforanyh € Ganda € Atheset{g € G : o(g,h) =
a} isan L-rational subset of &

2. If L, and L, are equivalent asynchronous automatic structures then any L, -regular
cocycleis Lq-regular.

Proof. It isenough to show that if the statement of Lemma 2.1.1 istrue for ~; and h,
thenitistruefor h = hy ho. Now the cocycle relation says

o(g, hihs) = o(g, h1)"? 4+ a(ghy, ha) — o(h1, hs).
Thus
{g € G U(g,hlhz) = Cl} =

U {gEG:U(g,hl):aF }ﬂ{gEGZU(ghl,hz)Iaz}.
a1+az=a+o(hy,h2)

Thisisafinite union, since the sets on theright are empty for al but finitely many values
of a; and as. Itisaunion of rational subsetssince {g € G : o(ghy, he) = az} = {g €
G : a(g,ha) = as}h7* isaright-transate of an L-rational subset and hence L-rational
by Lemma 1.2. Thisproves2.1.1.

Part 2 of the lemma followsfrom the fact that a subset of G is L, -rational if and only
ifitis Lo-rational (Proposition 1.1). Note that we also use part 1 of thelemma, since .,
and ., may be languages on different generating sets. O

Suppose how that L is aone-to-one biautomatic structure on G (finite-to-one suffices
for what follows, but one-one slightly simplifies arguments). Suppose £ is a virtualy
central extension as above given by a regular cocycle o determined by a section s.
Consider thefinite subset {s(z)i(—c(g,2)) : g € G,z € X}*' C Fandlet Y beaset
that bijects to thissubset. If v = x125...2, € X* then thereisa Y -word v" whose
initial segments have values s(z1), s(z122), ..., s(z1 ...z, ). Let L’ bethe language

={:vellcY".

Proposition 2.2. The above language has the following properties:

(i) L’isregular;

(i) Evaluation maps L’ bijectively to theimage of a section s: G — E;

(iii) There existsa constant K such that, if wy, wy € L’ satisfy 7(@z2) = m(g1uw1y2)

with y;, y» € Y then yywyy» and wo K-fellow-travel in £.
Conversdly, if Y isafiniteset whichmapstoasubset Y = V' of Fand L' C Y* is

alanguage satisfying the above three properties then the projection L of the language L/
to (G isa biautomatic structure on G and the cocycle defined by the section s is L-regular

Proof. Wefirst show the fellow-traveller property for '. Let 7 beany G-invariant gen-
erating set for A. Denoteby dg and ds theword metricsin £/ and G with respect to their
generating setsY U Z and X. Itisreadily established that dr(s(g), s(¢')) = da(g,9")
fordl ¢g,9' € GG. Let K bethefdlow traveller constant for L. Given wi, ws € L’ with
7(w2) = m(grwryz) and y1, y2 € Y then the fellow traveller property for L tells us that
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dg(m(grwi (1)), m(w2(?))) < K foral t. Thus dg(s(x(grwi(t))), s(m(wa(t)))) < K.
Buts(7(grw1(t))) differsfroms(z(g7))w. (t) by anelementof o(X, ) and s(7( g7)) dif-
fersfrom gy by anelementof o (G, X). Alsos(m(wa(t))) = wa(t). Thusdg(grw:(t), wa(t)) <
K + 2K’, where K’ isabound on word-lengthinthe sets o( X, G) and o (G, X).

We now show that the language L' = {w’ : w € L} isregular. Denote by W the
finite state automaton which has accepted language .. Recall that 1/ may beregarded as
afinite directed graph with vertex set S, the elements of which are referred to as states.
There is a distinguished vertex, v, called the start state and a distinguished subset of .5,
the elements of which are known as accept states. Each edgeislabelled by an element of
X, and each vertex has exactly one outgoing edge for each element of X. The transition
functionT: S x X — Sisgivenby setting r(v, #) = v’ whenthereisan edgefromv to v’
labelled by . A wordin X* isaccepted by W precisely when it labels apath beginning at
the start state and ending at an accept state. For z € X anda € (G, X), let W, , bethe
finite state automaton which accepts the language {w € L : o(w, ) = a}. Denote the
vertex set of W, , by S, . and the transition function for W, , by 7, ,. Weform afinite
state automaton for L’ by teking as vertex set the cartesian product S x (] S ) together
with a single extra state @. The edge with initial vertex (v, ..., vy o, ...) labdled by
s(z)a~! has termina vertex @, if v, , is not an accept state of W, ,. Otherwise, the
terminal vertex is(r(v, z), ..., Tt a/(Ver o, 2), .. .). All edgeswithinitia vertex @ have
terminal vertex @. The start state is given by the vertex (v, ..., vy o/, . ..) Which has
v = vy and eech v, o thestart state of 1, .. The accept states are those vertices which
have an accept state as the first coordinate. The finite state automaton we have defined
has accepted language L'.

For the converse statement suppose I’ is a language as in the proposition. Let 7 be
the projection of thislanguage to alanguage for G. Thus L isthe same forma language
as I but with adifferent evaluation map. Then L iscertainly regular. The bisynchronous
fellow-traveller property for L isimmediate from the corresponding property (iii) of L’.
Thus L is a biautomatic structure.

Thus we only need to show that the cocycle & for the section s determined by L’
is regular. The facts that (Y, ) and o(G,Y") are finite are easy conseguences of
the fellow-traveller property (iii) and we leave them to the reader. For the rationality
statement note that the fellow-traveller property implies that the language {(u,v) €
L' x L' : uZi(—a + b) = v} isthe language of a (synchronous) two-tape automaton for
any x € Y,a,b € A. Thusitsprojection onto itsfirst factor is regular. Denote the image
of ZinG by z. Then thisprojectionis{u € L' : Jv € L', ax = v:(a — b)}, theimage of
whichinGis{g € G : s(9)% = s(gz)i(a — b)}. If wechooseb so = 's(z) = «(b) then
thisis{g € G : s(g)s(2) = s(g2)(a)} = {9 € G : o(g,x) = a}, Othisset isrationd.

0J

Corollary 2.3. If, in the situation of the above Proposition, 7 is a finite G-invariant
generating set for A and we choose a G-invariant biautomatic structure L4 C Z* on A
then M = 'L, isabiautomatic structure on E. (Structures I 4, as above always exists
—cf. [ECHLPT] or [NS2].)

Proof. M iscertainly aregular language. Suppose wy, w» € L’ and vy, vy € L 4 satisfy
Twiviy = @z Withz,y € (Y U Z). Then Zw, K-fdlow-travels w2. Hence there
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exists a € A with dg(1,a) < K + 1 withav! = . Then d4(1,a) is bounded by
some constant ¢ say. It followsthat +§ and v, are c K 4-fellow-travellers, where K 4 isthe
fellow-traveller constant for L 4. Now, since L’ isinjective it has a“ departure function”
(cf. [ECHLPT]), so there exists a constant § so that any subword u of length at least §
of an I'-word has d(1, %) > 2K . Since Zw; K -fellow-travels ws, the lengths of w; and
we can differ by at most é. It followseasily that Zw, v, fellow-travels wyvs with constant
cKa+e+1+K+6. O

Corollary 2.4. Let A — A’ be an equivariant map of finitely generated abelian groups
with finite G-actions. Suppose this map has finite kernel and cokernel. Let . be a biau-
tomatic structure on GG. Thenaclassin H?(G; A) is L-regular if and only if itsimagein
H?(G; A')is L-regular.

Proof. The“only if” holdseven if A — A’ does not have finite kernel and cokernel and
is easy, so we shall just prove the“if”. A homomorphism with finite kernel and cokernel
isa composition of a surjection with finite kernel and an injection with finite cokernel, so
it suffices to prove these two special cases.

Let & and £’ bethevirtually central extensionsdetermined by the cohomology classes
in H2(G; A) and H?(G; A’) in question. We have a commutative diagram

0 — 4 — F — ¢ — 1

l | |=
G

0 — A — E — — 1

Let o' be an L-regular cocycle representing the class in H?(G; A’). Recal that o' is
determined by some section s’: G — FE’ and we have aregular language L’ C Y* asin
Proposition 2.2 bijecting onto s'(G'), where Y is some finite set with an evaluation map
to a symmetric subset of E’.

We first consider the case that A — A’ is surjective with finite kernel. Then the
same holdsfor £ — E’. Pick any liftof Y — E'toamap Y — F and interpret L'
asalanguage on E. Then L’ clearly satisfies the condition of Proposition 2.2, proving
the corollary in this case (in Proposition 2.2 we asked that the image Y C E satisfy
Y =Y~ but we can enlarge Y’ as necessary to achieve this).

Next suppose A — A’ isinjective with finite cokernel. Choose coset representatives
ai,...,ay € A’ for Ain A’. Then «(a1),...,(ay) are coset representatives for E
in E'. Let ¢: E' — {aj,...,ar} be the map which picks the coset representative.
Then the section s: G — F given by s(g) = s'(g)«(—c(s'(g)) has cocycle o(g,h) =
o' (g,h) + c(s'(gh)) — e(s'(9))* ™ — ¢(s'(h)). Thisis clearly weakly bounded and is
easily seen to be regular. O

Applyingthiscorollary to themap A — A given by multiplying by anon-zero integer
shows:

Corollary 2.5. A cohomology classin H?(G; A) is“virtually L-regular” (that is, some
non-zero multiple can be represented by an L-regular cocycle) if and onlyif itisregular.
0J



Regular Cocycles and Biautomatic Structures 7

Now suppose &' is biautomatic with biautomatic structure L and H < 7 isasubgroup
of finiteindex. Then thereisan induced biautomatic structure Lz on H which isunique
up to equivalence. Let S be a set of right coset representatives for H in G and let
r: G — S bethe map that takes an element to its coset representative. The transfer map
H?*(H;A) — H*(G; A) isdefined on thelevel of cocycles by the formula

To(g1,92) = > o(ygr (r(yg1)) ™", r(yg1)ga(r(ygig2)) )Y

Proposition 2.6. Suppose H < G isasubgroup of finiteindex and o isan Lg-regular
cocycle on H with coefficientsin A. Then T'(¢) isan L-regular cocycle on .

Proof. SinceTo(g,z) = ZyES o(yg(r(yg))~t, r(yg)z(r(ygz))~1)Y, theset {g € G :
T'o(g,x) = a}istheunionover al sumsof theform3 s a, = aof thesets(), . s{g €
G oo(yg(r(yg))~t, r(yg)x(r(yga))™t) = ag_l}. This is a finite union of finite in-
tersections, so it suffices to show that the sets involved in the intersections are ratio-
nd. Now {g € G : a(yg(r(yg)~" r(yg)e(r(yg))™") = af } = Ues(ly €
G oo(ygh=t ba(r(br))~t = ag_l} N{g € G :r(yg) = b}). Theset {gy € G :
o(ygb~", bx(r(bz))~ = ay” '} is atwo-sided trandate of the rationd set {g € G
o(g,be(r(bx))~" = ay '} and is hence rationa, while {g € G : r(yg) = b} isa
trand ate of a subgroup of finite index and is hence rational. O

Corollary 2.7. If H <  is of finite index then the restriction of a cohomology class
v € H*(G; A)to H?(H; A) is Lg-regular if and only if « is L-regular.

Proof. The"“if” iseasy so we prove the “only if.” Thus, assume therestriction of z is
regular. Since the composition of restriction and transfer H%(G; A) — H?*(H; A) —
H?(G; A) ismultiplication by the index [ : H] (see eg., [E, Theorem 7]), it follows
that theelement [ : H]x € H?(G; A) isregular, so z isvirtualy regular. Thusthe result
followsfrom Corollary 2.5. O

Proof of Theorem A. Corollary 2.3 is one direction of Theorem A in the introduction.
To prove the other direction we appeal to thework of Lee Mosher [M]. He provesthat if
acentra extension £ of agroup G has a biautomatic structure then so does G. Hismain
argument isthe construction of alanguage L’ satisfying the conditions of Proposition 2.2
above, in the case of acentral extension

0—-Z—F—G—1.

In particular, in this situation Proposition 2.2 then says the cohomology class for the
extensionisregular.
We first consider the case of a central extension

0—A—=F—G—1,

such that F has a biautomatic structure. Let = € H?(G; A) be its cohomology class.
Write A as adirect sum of afinitegroup F' and copiesof Z asfollows: A = F& ][}, Z.
Then H*(G; A) = HX(G; F) @ [}, H*(G;Z). Foreach j = 1,...,n we can form
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Kj = E/(F & ]];,; Z)and we have theinduced extension
0—=Z—-K; —G—1. ()

Lee Mosher'sresults say firstly that ; is biautomatic (since £ is a central extension of
K;) and therefore secondly, via the above remarks, that the cohomology class of () is
regular. That is, theimage of z in the j-th summand H?(G;Z) of H*(G; A) isregular
foreach j = 1,...,n. By Corollary 2.4 the same istruefor theimage of = in H?(G; F).
It followsthat « isregular.

Now if the extension is only a virtualy centra extension we take H to be the kernel
of the action of G on A and consider the restriction of our extension: 0 — A — Ey —
H — 1. Thisisa central extension, so we can apply the case just proven to it and then
apply Corollary 2.7 to complete the proof of Theorem A. O

Remark 2.8. If one replaces “biautomatic” by “automatic” or “asynchronoudy auto-
matic” in the above discussion, then it is appropriate to replace the concept of “regular”
cocycle by a concept “right regular” obtained by dropping the condition that (X, i) be
finite. The analogs of the results 2.1-2.5 then go through, though we do not know if the
analog of Theorem A holds.

3. Biautomatic structuresfor virtually central extensions of Fuchsian
groups

Theorem 3.1. Let (G be a finitely generated Fuchsian group. Then any virtually central
extension of ¢ by a finitely generated abelian group has a biautomatic structure.

Proof. We shall use the geodesic language 7 with respect to any finite generating set as
a biautomatic structure on . Let A be any finitely generated abelian group with finite
G-action. It suffices to show that every class in H%(G; A) is L-regular. By Corollary
2.7 we may replace G by a subgroup of finite index as desired. Thus thereis no loss of
generality in assuming G istorsion free and acts trivially on A, so we will do so. Asin
the previous section, we can then split A as the sum of copies of Z and afinite group 7.
Any classin H?(G; F') isregular by Corollary 2.4, soit suffices to prove that any classin
H?*(G;7Z)isregular.

If H? /G is non-compact then G is free, so H%(G;Z) = 0. Thus assume that H? /G
iscompact. Then Gersten in [G2] in effect constructed aregular cocycle o representing
the generator of 1%(('; Z) (we give adifferent construction below). Thus every element
of H*(G;7Z)isregular. 0

Gersten hasinformed usthat hisconstruction of the biautomatic structurein thetorsion
free case will remain unpublished. We therefore give a treatment of his result here for
completeness.

Our construction israther different from hisand yieldsaregular cocycle for amultiple
of the generator of H%(G;Z) when G is aclosed surface group of genus g > 1, rather
than for the generator.
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Fix a presentation
g
G = (a1, by,...,a5,b, | [Jla:, b:] = 1),
i=1

and let P be the hyperbolic 4g-gon with angles =/2¢ and sides |abelled by the a; and
b; in such a way that the a word corresponding to a circuit of P isthe relator for the
above presentation. Identifying corresponding sides of P gives a hyperbolic structure
on the closed surface of genus ¢, and there is a tessellation of H2 by copies of P given
by the universal cover of the surface. The 1-skeleton I' of thistessellation is the Cayley
graph of [ with respect to the generating set X = {ay,by,...,a,, b, }*!. Suppose
w=uwx...2, € X* isaword. We consider a point moving along the path of thisword.
The tangent vector at the point is well defined except at vertices of the path. As we
pass from the z,; edge to the z;; edge of the path the tangent vector swings through an
angle of ; with —7 < 6, < 7 (here §; = = only occurs if w is non-reduced, namely
zi11 = x; '). Define an integer n(w) by

n—1

[\~]

n(w) = ?92'.
i=1

Noticethat n(w™') = —n(w) if (and only if) w is areduced word. If w isaclosed path,
and we set 4,, equal to the angle that the tangent vector swings through from the z,, edge
to the z,-edge, then it is a standard result of hyperbolic geometry that

Z 0; = A(w) + 271 (w),

where A(w) isthe“signed area’” enclosed by w (with areathat is multiply enclosed taken
with appropriate multiplicity) and 7(w) € Z is the “turning number” of w, that is, the
total rotation number of the tangent vector as it moves aong the path (we measure this
either by paralld trandating all the tangent vectors back to some fixed base point in H? or
by following the motion of a point at infinity determined by the moving tangent vector).
Thus

n(w) = 2gA(w)/7 + 4g7(w) — Q?gﬁn
=8g(g — )N (w) + 4g7(w) — Q?g@n, (%)

where N (w) isthe signed number of copies of P enclosed by w.
Let

g
Ey= (A1, By,..., Ay, By, 2| Z centrdl, [ [[a;, bi] = 2%),
i=1

where £ = 8g(g — 1). The central extension

0=ZSFE, 26 —1
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where 7(4;) = a;, #(B;) = b; and 7(Z) = 1, represents k times a generator of
H?(G;Z). We shall construct a section for which the corresponding cocycle isregular.

Let . C X* be alanguage which bijects to G' and comprises only geodesic words.
Forw=x;...2, € L denoteby W = X, ... X, theword obtained by replacing each
af by A% and each bF by BE. Defineasection s: G — Ej, by s(w) = WZ~"(®).

Proposition 3.2. With the above definitions, the cocycle o defined by (o (g1, g2)) =
5(g1)s(g2)s(g192)~" isabounded regular cocycle.

Proof. Note that the number N (w) in (**) can also be described as follows. Since
@ = 1, we can write w in thefree group on X as

”

— i, T

w_Hu]r u; o,
j=1

where r = [[7_,[a;, b;]. Then N(w) = 375_, n;. Now if w isaword with @ = 1 and
W isthe corresponding word in the 4; and B; then equation () implies that

WZ—n(w) — Z—4g7’(w)+ 2Tg€n )

Wefirst show that the cocycle o isabounded cocycle. Let g1, g2, g5 € G Withgigo =
g3 and let wy, wo, w3 € L bethewords representing them. Then s(g;) = W; 2~ s0

Wo(g1,92)) = s(g1)s(g2)s(g3) "

= WZ‘”(wl)—n(wQH_n(wa).

Denotew = wjwowy '. Itisnot hard to see that the path determined by w has |7 (w)| < 2.
Denote by ¢; the angle between the tangent vectors to w at the last edge of w; and the
first edge of w,. Similarly, ¢» denotes the angle from w- to ws, and ¢3 the angle
from ws to wy. We choose these with —m < ¢; < 7. Since ws is reduced, we have
n(wgl) = —n(ws), S0 n(wy) + n(ws) — n(ws) differsfrom n(w) just by 279(4151 + ¢2).
Thus

t(o(g1,92)) = Z‘497(w)+279(¢1+¢2+¢3)’

and it followsthat ¢ isabounded cocycle.

To prove that the cocycle is regular we consider the above formulain case g, = Z,
where z is a generator. The language {(w1,ws) € L x L : w3 = w1z} is regular.
Supposethat z; ...z, and y; . ..y, iSapair of wordsin thislanguage. The valuesof ¢,
and ¢- aredetermined by x,,, and y,, respectively. Similarly, thevalue of ¢s isgivenby x
and y; . Itisnot hard to see that the turning number is also determined by the same dataiin
thiscase (namely 7(w) = —1if al three of the ¢, are negative, and otherwise r(w) = 0 if
¢3 isnegative or both ¢, and ¢- are negative, and 7(w) = 1 inal other cases). Itisclear
that these data can be checked by finite state automata, and therefore one can construct a
finite state automaton which will accept the language {w € L : (@, Z) = a}. O
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4. Questions

S. Gergten, in [G1], shows that if a central extension £ of a bicombable group G by a
finitely generated abelian group A is given by a bounded cocycle then £ is bicombable.
His argument is the same as the argument of our section 2 — the only difference being
that regularity of languages is not important. It follows that his result is valid even if
the cocycle is only weakly bounded. A natural question therefore is whether a weakly
bounded cohomology class on afinitely generated group is aways bounded.

This question is aso relevant to quasi-isometry. Gersten shows that if the cocycleis
bounded then G x A isquasi-isometric to £, but it is again not hard to see that weakly
bounded suffices. Infactinthiscase only theconditionthat (G, X') isbounded is needed
—themap g x a — s(g)¢(a) then gives aquasi-isometry. Moreover, if aquasi-isometry
(i x Ato F exists such that the composition G x {1} — F — (G isaquasi-isometry then
the central extension is determined by a cocyle with (G, X') bounded. But we know no
example of a cohomology class for agroup which isrepresented by such acocycleandis
not bounded.

Thurston has claimed (unpublished) that central extensions of word-hyperbolicgroups
by finitely generated abelian groups are automatic. Arethey in fact biautomatic? In fact,
might every 2-dimensiona cohomology class on a word-hyperbolic group be repre-
sentable by a bounded regular 2-cocycle?

Added March 1995: We now have aproof of this; see[NR]. The proof a so showsfor
any finitely generated group ' that acocycle with either o (X, G) or (G, X') bounded is
cohomol ogous to one with both of these sets bounded.
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