
VANISHING CYCLES AND MONODROMY OF COMPLEX

POLYNOMIALS

WALTER D. NEUMANN AND PAUL NORBURY

1. Introduction

In this paper we describe the trivial summand for monodromy around a fibre
of a polynomial map Cn → C, generalising and clarifying work of Artal Bartolo,
Cassou-Noguès and Dimca [2], who proved similar results under strong restrictions
on the homology of the general fibre and singularities of the other fibres. They also
showed a polynomial map f : C2 → C has trivial global monodromy if and only
if it is “rational of simple type” in the terminology of Miyanishi and Sugie. We
refine this result and correct the Miyanishi-Sugie classification of such polynomials,
pointing out that there are also non-isotrivial examples.

Let f : Cn → C be a non-constant polynomial map. The polynomial describes
a family of complex affine hypersurfaces f−1(c), c ∈ C. It is well-known that the
family is locally trivial, so the hypersurfaces have constant topology, except at
finitely many irregular fibres f−1(ci), i = 1, . . . ,m whose topology may differ from
the generic or regular fibre of f .

Definition 1.1. If f−1(c) is a fibre of f : Cn → C choose ε sufficiently small that
all fibres f−1(c′) with c′ ∈ D2

ε (c)−{c} are regular and let N(c) := f−1(D2
ε (c)). Let

F = f−1(c′) be a regular fibre in N(c). Then

Vq(c) := Ker
(
Hq(F ;Z)→ Hq(N(c);Z)

)
V q(c) := Cok

(
Hq(N(c);Z)→ Hq(F ;Z)

)
are the groups of vanishing q-cycles and vanishing q-cocycles for f−1(c). They have
the same rank, which we call the number of vanishing q-cycles for f−1(c).

Choose a regular value c0 for f and paths γi from c0 to ci for i = 1, . . . ,m which
are disjoint except at c0. We can use these paths to refer homology or cohomology of
a regular fibre near one of the irregular fibres f−1(ci) to the homology or cohomology
of the “reference” regular fibre F = f−1(c0).

The fundamental group Π = π1

(
C−{c1, . . . , cm}

)
acts on the homology H∗(F ;Z)

and cohomology H∗(F ;Z). If this action is trivial we say that f has “trivial global
monodromy group”. This action has the following generators.

Let hq(ci) : Hq(F ) → Hq(F ) and hq(ci) : Hq(F ) → Hq(F ) be the monodromy
about the fibre f−1(ci) (obtained by translating the fibre F along the path γi until
close to the fibre f−1(ci), then in a small loop around that fibre, and back along
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γi). We are interested in the fixed group Hq(F )h
q(ci) = Ker

(
1−hq(ci)

)
of this local

monodromy.

Theorem 1.2. For1 q > 0 the maps Hq(F ;Z)→ V q(ci) induce an isomorphism

Hq(F ;Z) ∼=
m⊕
i=1

V q(ci)

Under this isomorphism we have:

Ker
(
1− hq(cj)

)
= Kq(cj)⊕

⊕
i 6=j

V q(ci),

for some Kq(cj) ⊂ V q(cj). Hence, the subgroup of cohomology fixed under global
monodromy is

Hq(F ;Z)Π =

m⊕
i=1

Kq(ci).

Finally, there is a natural short exact sequence

0→ Cok
(
1− hq−1(c)

)
→ Hq+1(N(c), ∂N(c))→ Kq(c)→ 0.

The above exact sequence lets one compute dim(Kq(c)) inductively in terms of
numbers of vanishing cycles and betti numbers of H∗(N(c), ∂N(c)). The following
theorem localises the computation of H∗(N(c), ∂N(c)) into the singular fibre.

Theorem 1.3. Let H∗(f
−1(c),∞) denote H∗(f

−1(c), U), where U is a regular
neighbourhood of infinity (e.g., U = {z ∈ f−1(c) : ||z|| > R} for large R). Then we
have a natural isomorphism Hq+1(N(c), ∂N(c)) ∼= H2n−q−1(f−1(c),∞)

Under the assumptions that F has homology only in dimension (n − 1) and
that all singularities of fibres of f are isolated, Artal Bartolo, Cassou-Nogués, and
Dimca [2] proved the dimension formulae for Ker

(
1 − hn−1(c)

)
and Hn−1(F ;Z)Π

that follow from the above theorems. Polynomials f(x1, . . . , xn) = x1g(x2, . . . , xn)
are examples of polynomials with trivial global monodromy that do not satisfy their
assumptions for n > 2.

The first displayed formula of Theorem 1.2 was proved (in homology) by Broughton
[3], see also [4] and [18]. The homology version of the above results is:

Theorem 1.4. For q > 0 the inclusions Vq(ci)→ Hq(F ;Z) induce an isomorphism

Hq(F ;Z) ∼=
m⊕
i=1

Vq(ci).

Moreover, Im
(
1− hq(c)

)
⊂ Vq(c), and there is a natural exact sequence

0→ Im
(
1− hq(c)

)
→ Vq(c)→ Hq+1(N(c), ∂N(c))→ Ker

(
1− hq−1(c)

)
→ 0.

and an isomorphism Hq+1(N(c), ∂N(c)) ∼= H2n−q−1(f−1(c),∞).

The groups H2n−2(f−1(c),∞) and H2n−2(f−1(c),∞) are freely generated by the
fundamental classes of the irreducible components of f−1(c), so for q = 1 the above
results give:

Corollary 1.5. If rc is the number of irreducible components of f−1(c) then K1(c) ∼=
Zrc−1 and V1(c)/ Im

(
1− h1(c)

) ∼= Zrc−1. �

1All results hold also for q = 0 if Hq and Hq are read as reduced (co)homology throughout.
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In particular, the 1-dimensional monodromy with Q-coefficients about a fibre
f−1(c) is trivial if and only if the number of irreducible components of this fibre
exceeds by one the number of its vanishing 1-cycles. For an irreducible fibre this
says this monodromy is trivial if and only if the fibre has no vanishing 1-cycles.

By Theorem 1.6 below, this generalises Michel and Weber’s positive answer
in [11] to Dimca’s question whether the local monodromy around a reduced and
irreducible irregular fibre of a polynomial f : C2 → C must be non-trivial (the same
answer is implicit in Theorem 1 of [2]). The conditions are needed here: one can
find f : C2 → C having an irregular fibre with trivial local monodromy, this fibre
having any number of components. Such examples exist with non-reduced fibres or
fibres of arbitrarily high genus.

Recall that a polynomial f : Cn → C is primitive if its regular fibres are irre-
ducible; equivalently, it is not of the form g ◦ h with g : C → C and h : Cn → C
polynomial maps and deg g > 1.

Theorem 1.6. A fibre of a primitive polynomial f : C2 → C has no vanishing
cycles if and only if it is regular.

By [18] this result holds in any dimension for a fibre with “isolated W-singularities
at infinity.”

We shall prove all the above theorems in Section 2. When the fibre f−1(c) is
reduced with isolated singularities, there is a quick alternative proof of Corollary
1.5 for homology. Namely, let F0 be the “non-singular core” of f−1(c) obtained by
intersecting f−1(c) with a very large ball and then removing small regular neigh-
bourhoods of its singularities. Then F0 can be isotoped into a nearby regular fibre
F and it is not hard to see (e.g., [15]):

Proposition 1.7. Under the above assumption, Hq(F, F0) is isomorphic to Vq(c)
by an isomorphism that fits in the commutative diagram

Hq(F, F0)
∼=−−−−→ Vq(c)x y⊆

Hq(F )
1−hq−−−−→ Hq(F )

Since F0 has rc topological components, Corollary 1.5 for homology follows in
this case using q = 1 and the long exact homology sequence for the pair (F, F0).

The following consequence of the monodromy results was proved by Artal Bartolo
et al. [2]. The improvement of the second sentence is Dimca [7].

Theorem 1.8. A primitive polynomial f : C2 → C has trivial global monodromy
group if and only if f is rational of simple type, in the sense of Miyanishi and Sugie
[12]. The same conclusion already follows if only the monodromy h1(∞) at infinity
of f is trivial (h(∞) is the monodromy around a very large circle in C; so h1(∞)
is the product of the h1(ci)).

A polynomial f : C2 → C is “rational” if its generic fibre is rational (i.e., genus
zero). “Simple type” means that if we take a nonsingular compactification Y =
C2 ∪E of C2 such that f extends to a holomorphic map f : Y → CP 1 then f is of
degree 1 on each “horizontal” irreducible component of the compactification divisor
E (E is a union of smooth rational curves E1, . . . , En with normal crossings and a
component Ei is called horizontal if f |Ei is non-constant).
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We discuss Theorem 1.8 and refinements of it in Section 3. In the final Sec-
tion 4 we describe corrections to Miyanishi and Sugie’s classification of rational
polynomials of simple type. Details of this will appear elsewhere.

Acknowledgements: This research was supported by the Australian Research
Council. We thank the referees for some useful comments.

2. Proofs of the main theorems

Proof of Theorem 1.2. The direct sum statement has been proved in [3] (see also
[18]) but a proof is quick so we include it for completeness and notation.

For each irregular value ci we construct a neighbourhood Ni = f−1(D2
ε (ci)) of

the corresponding irregular fibre as in Definition 1.1, with ε chosen small enough
that the disks D2

ε (ci) are disjoint. Let c0 be a regular value outside all these disks
and choose disjoint paths γi joining c0 to each disk D2

ε (ci). Let P =
⋃m
i=1 γi and

D =
⋃m
i=1D

2
ε (ci) so K = P ∪ D is the union of these paths and disks. Then Cn

deformation retracts onto f−1(K). The Mayer-Vietoris sequence for f−1(K) =
f−1(P ) ∪ f−1(D) gives

(1) 0→ Hq(F )⊕
m⊕
i=1

Hq(Ni)→
m⊕
i=1

Hq(F )→ 0, (q > 0).

Since the i-th summand of the sum
⊕m

1 Hq(Ni) maps trivially to all but the i-th
summand of

⊕m
1 Hq(F ), this shows:

Proposition 2.1. Hq(Ni)→ Hq(F ) is injective with cokernel (by Definition 1.1)
V q(ci). �

Thus, factoring source and target of the middle isomorphism of (1) by the sub-
group

⊕
Hq(Ni) gives the desired isomorphism

(2) Hq(F )
∼=−→

m⊕
i=1

V q(ci).

The long exact sequence for the pair (Ni, F ) shows that we have a commutative
diagram with exact rows:

0 −−−−→ Hq(Ni) −−−−→ Hq(F ) −−−−→ Hq+1(Ni, F ) −−−−→ 0∥∥∥ ∥∥∥ y∼=
0 −−−−→ Hq(Ni) −−−−→ Hq(F ) −−−−→ V q(ci) −−−−→ 0 .

We now claim that we can identify the long exact sequence of the triple (Ni, ∂Ni, F )
as follows:

Hq(∂Ni, F ) −−−−→ Hq+1(Ni, ∂Ni) −−−−→ Hq+1(Ni, F ) −−−−→ Hq+1(∂Ni, F )y∼= ∥∥∥ y∼= y∼=
Hq−1(F ) −−−−→ Hq+1(Ni, ∂Ni) −−−−→ V q(ci) −−−−→ Hq(F ) .

The first and fourth vertical isomorphisms are seen by thickening F within ∂N
and then using excision and the Künneth formula:

Hq(∂Ni, F ) ∼= Hq(F × I, F × ∂I) ∼= Hq−1(F ).

We have already shown the third vertical isomorphism. Thus the above diagram is
proved.
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Consider now the composition Hq(F ) → V q(ci) → Hq(F ) where the second
map is the map of the above diagram. Tracing the definitions, we see it is the
composition: Hq(F ) → Hq+1(∂Ni, F ) → Hq(F ), where the first map is boundary
map for the pair. We claim this composition is 1−hq(ci). Indeed, ∂Ni is isomorphic
to the mapping torus F ×h(ci)S

1, so there is a map F ×I → Ni which identifies the

ends of F × I by h(ci). The map Hq+1(∂Ni, F ) → Hq(F ) is induced by the map
of chain groups Cq(F ) → Cq+1(Ni) which takes a q-chain A in F to the (q + 1)-
chain A × I in F × I mapped to Ni. The boundary map Hq(F ) → Hq+1(Ni, F )
is induced by the map which lifts a (q + 1) chain in (Ni, F ) to the corresponding
chain in F×I and then takes its boundary. Composing these maps of chains clearly
gives the chain map 1 − h(ci)]. The induced composition in q-cohomology is thus
1− hq(ci), as claimed.

Since the composition Hq(F ) → V q(ci) → Hq(F ) is 1 − hq(ci) and Hq(F ) →
V q(ci) is surjective with kernel

⊕
j 6=i V

q(cj), it follows that Ker
(
1 − hq(ci)

)
con-

tains
⊕

j 6=i V
q(cj). It hence has the form Kq(ci) ⊕

⊕
j 6=i V

q(cj) in terms of the

isomorphism of (2). Thus the second statement of Theorem 1.2 follows. The final
exact sequence of the theorem then follows by replacing the first term of the bottom
sequence of the above diagram by its image and the last arrow by its kernel. �

Proof of Theorem 1.3. Let N0
i be f−1(D2

ε (ci)) ∩D2n where D2n is first chosen of
large enough radius that f−1(ci) is transverse to the boundary of it and all larger
disks (for the existence of such a radius, even if f−1(ci) has non-isolated singular-
ities, see e.g., Proposition 2.3.1 of [1]), and ε is then re-chosen small enough that
∂D2n is transverse to f−1(c′i) for all c′i ∈ D2

ε (ci). Put ∂0N
0
i := ∂Ni∩N0

i and F 0
i :=

f−1(ci)∩D2n and Ci := f−1(ci)− int(F 0
i ). Then the inclusion of Ni−Ci in Ni is a

homotopy equivalence and the inclusion of ∂Ni into ∂Ni∪(Ni−N0
i −Ci) is a homo-

topy equivalence, so we have: Hq+1(Ni, ∂Ni) ∼= Hq+1(Ni−Ci, ∂Ni∪(Ni−N0
i −Ci)).

Excision then shows this is isomorphic to Hq+1(N0
i , ∂N

0
i − ∂F 0

i ), and this equals
Hq+1(N0

i , ∂0N
0
i ) by homotopy equivalence. Putting ∂1N

0
i := ∂N0

i − int(∂0N
0
i ),

Poincaré-Lefschetz duality gives Hq+1(N0
i , ∂0N

0
i ) ∼= H2n−q−1(N0

i , ∂1N
0
i ). But the

pair (N0
i , ∂1N

0
i ) is homotopy equivalent to (F 0

i , ∂F
0
i ). By excision H∗(F

0
i , ∂F

0
i ) =

H∗(f
−1(ci),∞). �

The proof of the homology versions of these results is essentially the same so we
omit it.

Proof of Theorem 1.6. Since f is primitive, any non-reduced fibre of of f has more
than one component and thus has vanishing cycles by Corollary 1.5. For a reduced
fibre, on the other hand, the desired result is implicit in several places in the
literature. For instance, it follows immediately from the result that for primitive
f : C2 → C the Euler characteristic of an irregular fibre always exceeds that of the
regular fibre (Proposition 1 of Suzuki2 [20]), together with the following easy facts:

(1) The number of vanishing cycles for f−1(ci) is χ(Ni)− χ(F ).
(2) For an irregular fibre in any dimension χ(f−1(ci)) = χ(Ni) (see e.g., [2],

comments preceding Théorème 3).

It also follows from the more general result of Siersma and Tibár [18] that a
polynomial fibre in any dimension with “isolated W-singularities at infinity” is

2The case of reduced fibre, which is all we need here, is already in [19]. Reference [9] is often
cited for this, but only seems to prove the case of a non-singular fibre.
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regular if and only if it has no vanishing cycles, since a reduced fiber of f : C2 → C
satisfies this condition. �

3. Discussion of Theorem 1.8

In this section we assume f is primitive; this is clearly implied by global trivial
monodromy. We give a mild improvement (implicit in [7]) of Theorem 1.8.

Proposition 3.1. 1. The global monodromy on the closed fibre F is trivial if and
only if f has rational generic fibres.

2. If we consider the subgroup B ⊂ H1(F ) generated by small loops around the
punctures of F , then the global monodromy restricted to B is trivial if and only if
f is degree 1 on all horizontal curves.

3. The above two statements also hold with “global monodromy” replaced by
“monodromy at infinity.”

Proof. Let Y = C2 ∪ E be as described just after Theorem 1.8. E is a union of
smooth rational curves E1, . . . , En with normal crossings. Since H1(F ) and H1(F )
are torsion free, triviality of monodromy for homology or cohomology are equivalent.

1. Deligne’s invariant cycle theorem [6] gives an epimorphism H1(Y )→ H1(F )Π.
ButH1(Y ) = 0, so if the global monodromy is trivial thenH1(F ) = 0. The converse
is trivial.

2. Note that if f is degree > 1 on some horizontal curve E then the homology
classes represented by the punctures where F meets E get permuted non-trivially
as we circle a branch point of f |E.

3. This follows as in [7] by the same proofs as above if we replace Y by a

neighbourhood Y0 of the fiber f
−1

(∞) and apply the invariant cycle theorem of [5]
([7] cites Theorem 7.13 in [8]), which says that H1(Y0)→ H1(F )h(∞) is surjective.

H1(Y0) = 0 since Y0 retracts onto f
−1

(∞), which is a simply connected union of
some of the rational curves Ei. �

We can refine the proof of the second part of the proposition to obtain a stronger

result. Let pi1, . . . , piki be the points where f
−1

(ci) meets horizontal curves and for
each j = 1, . . . , ki let δij be the degree of f on a small neighbourhood of the point
pij in its horizontal curve. Thus, the generic fibre F near f−1(ci) has δij punctures
near pij that are cyclically permuted by the monodromy around ci. It follows that
the restriction of 1− h1(ci) to the subgroup B of the above proposition has image

of dimension
∑ki
j=1(δij − 1). Denote

eci : = dim Im
(
1− h1(ci)

)
− dim Im

((
1− h1(ci)

)
|B
)

= dim Im
(
1− h1(ci)

)
−

ki∑
j=1

(δij − 1).

This measures the “extra” part of Im
(
1 − h1(ci)

)
that does not arise from the

homology at infinity.
It is clear that if eci = 0 then the local monodromy h1(ci) : H1(F ) → H1(F ) of

the closed fibre around f
−1

(ci) is trivial. The converse is not true for arbitrary maps
of a surface, but the following theorem implies that it is for our local monodromy
map.
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Theorem 3.2. With V 1(ci) := Ker(H1(F )→ H1(N i)), we have

Im
(
1− h1(ci)

)
⊂ V 1(ci)

and both these groups have rank eci . Moreover

m∑
i=1

eci ≥ 2 genus(F ).

Proof. The inclusion Im(1 − h1(ci)) ⊂ V 1(ci) is clear, while the fact that they
have the same dimension is shown in part 2c) of section III of [2]. We sketch
the argument. The dimension equality in question is, in fact, generally true for

a neighbourhood N = f
−1

(D) of a singular fiber of a fibration f of a projective

surface over a curve. Here D is a disk about a point c and F c = f
−1

(c) is the only
singular fibre over this disk. The ingredients are:

• N deformation retracts onto F c;
• H1(F )→ H1

(
F c
)

= H1(N) is surjective mod torsion (actually strictly sur-

jective in our case since f is primitive); thus dimV1(c) = dim Ker
(
H1(F )→

H1(N)
)

= dimH1(F )− dimH1

(
F c
)
;

• dim(Im(1 − h1(c)) also equals dimH1(F ) − dimH1

(
F c
)

(this is a conse-
quence of the fact that the nullity of the intersection form of N is 1).

We leave the details of each of these ingredients to the reader (or see [2] and [10]).
As in [2], following Kaliman [10], we denote the above number:

kci := dim Im(1− h1(ci)) = dimV 1(ci) = dimH1(F )− dimH1

(
f
−1

(ci)
)

We must show kci = eci .
We have a short exact sequence

(3) 0→ B → H1(F )→ H1(F )→ 0

and taking the image of 1− h(ci) applied to this sequence gives a sequence

(4) 0→ Z
∑

j(δij−1) → Im
(
1− h1(ci)

)
→ Im

(
1− h1(ci)

)
→ 0.

This sequence is exact except possibly at its middle term (this holds for a ho-

momorphic image of any short exact sequence). The cokernel of Z
∑

j(δij−1) →
Im
(
1 − h1(ci)

)
has dimension, by definition, eci . Since the sequence induces a

surjection of this cokernel to Im
(
1− h1(ci)

)
we see:

(5) eci ≥ kci .

That this is, in fact, equality, follows from Corollaire 5(ii) of [2], but we give a
proof since we need one of its ingredients. Corollary 1.5 implies:

dimV1(ci) = dim Im
(
1− h1(ci)

)
+ (rci − 1) =

ki∑
j=1

(δij − 1) + eci + rci − 1.

Summing this over i and applying the consequence
∑

dimV1(ci) = dimH1(F ) =
1−χ(F ) of Theorem 1.4 on the left and the Riemann-Hurwitz formula on the right
gives

1− χ(F ) =
∑

(dE − 1) +

m∑
i=1

(eci + rci − 1),
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where the first sum on the right is over all horizontal curves E and dE is the degree
of f on E. Since

∑
dE is the number of punctures of F this simplifies to

(6) 2 genus(F ) = 1− δ +

m∑
i=1

(eci + rci − 1),

where δ is the number of horizontal curves. But Kaliman proves this equation in
[10] with eci replaced by kci , so the inequalities (5) must be equalities. The final
inequality of the theorem follows from (6) and the formula

δ − 1 ≥
m∑
i=1

(rci − 1),

of Kaliman [10]. �

A consequence of the above proof is the exactness of the kernel sequence (and
hence also the image sequence (4)) of 1− h(ci) applied to the short exact sequence

(3). Indeed, if we replace each group A in (3) by the chain complex 0 → A
1−h−→

A → 0, then the resulting short exact sequence of chain complexes has long exact
homology sequence 0 → Ker(1 − h1|B) → Ker(1 − h1) → Ker(1 − h1) → Cok(1 −
h1|B) → Cok(1 − h1) → Cok(1 − h1) → 0. The equality in (5) implies that
the middle map of this sequence has rank 0, and hence is the zero map since
Cok(1− h1|B) is free abelian.

4. Classification of rational polynomials of simple type

The classification in [12] mistakenly assumed isotriviality (all regular fibres of f
are conformally isomorphic to each other) at one stage in the proof (page 346, lines
10–11). There are in fact also many non-isotrivial 2-variable rational polynomials
of simple type, the simplest being f(x, y) = x(1 + xy)(1 + axy) + xy of degree 5,
whose regular fibres f−1(c) are 4-punctured CP 1’s such that the cross-ratio of the
punctures varies linearly with c.

In this section we list the non-isotrivial rational polynomials of simple type. We
list their regular splice diagrams (see [13], [14]), since this gives a useful description
of the topology. For each case there are several possible topologies for the irregular
fibres, depending on additional parameters. We have a proof that these examples
complete the classification but it is tedious and not yet written down in full detail,
so the result should be considered tentative.

Let p, q, P,Q be positive integers with Pq − pQ = 1 and let r and a1, . . . , ar
be positive integers. Let A =

∑r
i=1 ai, B = AQ + P − Q, C = Aq + p − q, and

bi = qQai + 1 for i = 1, . . . , r. Then the following is the regular splice diagram of
a rational polynomial of simple type.
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◦
a1

1

��

◦

◦
Q

◦
1

��

−q B
◦

1

��

−C 1
•

1 −Q
◦
q

−P

1

−b1

1

−br

...
...

◦p1
oo ◦

ar

1

��

◦

◦
There is one further degree 8 example that does not fall in the above family. The

splice diagram is

◦
2
◦
−5 1

1

��

◦
−1 1

2

��

•
1 −3

◦
1 //
2

��

In all these examples the curve obtained by filling the puncture corresponding
to the second arrowhead from the left has constant conformal type as we vary the
regular fibre f−1(c), and that puncture varies linearly with c ∈ C.
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