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1. BACKGROUND

Deviations from the Black-Scholes paradigm are ubiq-

uitous.

They result in volatility smiles and smirks for all asset

classes.

Usually smiles and smirks are explained by stochastic

or static volatilities or their combinations.

However, jumps are very important but very difficult

to handle properly.

Early paper by Merton (1976): European options on

assets driven by jump-diffusions with log-normal Pois-

sonian jumps.

Merton�s model is complemented by Kou (2000): Eu-

ropean options on assets driven by jump-diffusions

with log-double-exponential Poissonian jumps.



More general approach, for instance, Madan and Seneta

(1990) and many others: European options on assets

driven by Levy processes.

Andersen and Andreassen (2000) priced European op-

tions on jump-diffusions numerically.

Papers on EXOTIC options are rather limited.

However, several important papers should be men-

tioned:

Mordecki (1999) (perpetual American); Nahum (1999)

(lookbacks); Boyarchenko and Levendorsky (2000),

Kou and Wang (2001), Avram et al. (2001) (barriers

and lookbacks); Boyarchenko (2001) (credit default

swaps).

Existing formulas are VERY complicated even for nu-

merical evaluation and require further reÞnement.



We develop a NEW approach to pricing of path-dependent

options on assets driven by jump-diffusions with log-

exponential Poissonian jumps.

Our approach is based on celebrated FLUCTUATION

IDENTITIES for Levy processes.

Conceptually it is rather complex but computationally

it is simple.

As a by-product, we obtain a new formula for CREDIT

DEFAULT SPREADS which complements (and im-

proves) a recent formula given by Finkelstein et al.

(2001).

Details are given in Lipton (2001 a,b)



2. FORMULATION

Consider a generic underlying asset driven by the SDE

dS (t)

S (t)
=
³
r01 − νη

´
dt+σdW (t)+

³
eJ − 1

´
dN (t) ,

W is a standard Wiener process, N is a Poisson pro-

cess with intensity ν, and J is the jump magnitude

which is assumed to be a random variable with the

probability density function (p.d.f.) of the form$ (J),

r01 = r0− r1, r0, r1 are the risk-neutral and dividend
rates, respectively, and η is the average magnitude of

the jump,

η = E
n
eJ − 1

o
=
Z ∞
−∞

eJ$ (J) dJ − 1.

The log-process ξ (t) = ln (S (t) /S0) is driven by the

SDE

dξ (t) = µdt+ σdW (t) + JdN (t) , ξ (0) = 0,

where µ = r01 − νη − σ2/2.



It is easy to price a European option on such a process

but VERY difficult to price a path-dependent options.

The reason is simple: the distribution of the value of

the process is readily available but the distribution of

its maximum is not.

Probabilistic functions which we need to know are:

The cumulative p.d.f. (c.p.d.f.) for the value of the

process at time t:

F (t, x) = P {ξ (t) < x} ,

The corresponding p.d.f. f (t, x) = dF (t, x) /dx

The c.p.d.f.�s Q± (t, x) for the maximum and mini-

mum of the process,

Q+ (t, x) = P
(
sup
0≤s≤t

ξ (s) < x

)
, x > 0,



Q− (t, x) = P
(
inf

0≤s≤t ξ (s) < x
)
, x < 0,

The corresponding p.d.f.�s q± (t, x) = dQ+ (t, x) /dx

Auxiliary p.d.f.�s for the Þrst passage time at a level

x, τx, and the size of the overshot, γx,

R (t, x, y) = P {τx ∈ dt, γx ∈ (y,∞)} y ≥ 0,

r (t, x) = P {τx ∈ dt, γx = 0}
=

d

dt
(1−Q+ (t, x))−R (t, x, 0) .

The joint c.p.d.f.

H (t, a, x) = P
(
sup
0≤s≤t

ξ (s) < a, ξ (t) < x

)
, a > 0, x ≤ a.

Its density h (t, a, x) = dH (t, a, x) /dx.

For brevity, we concentrate on crossing positive barri-

ers from below and assume that the process ξ (t) can



have only positive exponentially distributed jumps,

i.e.,

$ (J) =

(
ϕe−ϕJ, J ≥ 0,
0, J < 0,

ϕ > 1, and show how to evaluate Q± (t, x), and
H (t, a, x) explicitly.

The expectation of J and its volatility are equal to

1/ϕ, while η = 1/ (ϕ− 1).

It is relatively easy to study the hyperexponential case.



3. EUROPEAN OPTIONSON LEVY PROCESSES

The Fokker-Planck equation for the transitional p.d.f.

(t.p.d.f.) f (t, x):

ft−1
2
σ2fxx+µfx−ν

Z ∞
−∞

[f (x− J)− f (x)]$ (J) dJ = 0,

f (0, x) = δ (x) .

Introduce its characteristic function �f ,

f (t, x)→ �f (t, z) =
Z ∞
−∞

eixzf (t, x) dx.

Obtain an ordinary differential equation (ODE) for �f :

�ft −K (z) �f = 0, �f (0, z) = 1.

Here K (z) is the so-called cumulant of the process

ξ (t),

K (z) = −1
2
σ2z2 + µiz+ ν

Z ∞
−∞

³
eiJz − 1

´
$ (J) dJ.



Using exponential $ (J) yields

K (z) = −1
2
σ2z2 + µiz + ν

iz

ϕ− iz.

Accordingly,

�f (t, z) =
Z ∞
−∞

eixzf (t, x) dx = etK(z),

f (t, x) =
1

2π

Z ∞
−∞

e−ixz+tK(z)dz.

This a slightly simpliÞed version of the Levy-Khintchine

formula which effectively solves the governing SDE.

These formulas can be used for pricing European op-

tions.

Consider an option with maturity T and a generic

payoff V (S).



Introduce v (x) = V (S0e
x) /S0 and represent the

price at inception as

V0 = e−r0TS0
Z ∞
−∞

f (T, x) v (x) dx

=
e−r0TS0
2π

Z ∞
−∞

Z ∞
−∞

e−ixz+TK(z)v (x) dxdz

=
e−r0TS0
2π

Z ∞
−∞

eTK(z)�v (z)dz.

Here �v (z) is the Fourier transform of v (x), and �v (z)

is its complex conjugate.

It is easy to compute �v (z) for calls and puts and all

other standard European options.

This formula solves the pricing problem for European

options.

It is easy to apply this formula to jump-diffusions with

stochastic volatility.



For a European call struck at K this formula assumes

the form

C0 = e−r1TS0 −
e−r0TK
2π

Z ∞
−∞

e−izκ+TK(z)
−iz + 1 dz

−e
−r0TK
2π

P.V.
Z ∞
−∞

e−izκ+TK(z)
iz

dz,

κ = ln (K/S0) .

Here P.V. stands for the principal value of the integral.

Equivalent formulas are given by Lipton (2000) and

Lewis (2001), among others.

In the limit ν → 0 this formula reduces to the familiar

Black-Scholes form.

For benchmarking purposes it is useful to evaluate the

distribution function f (t, x) directly.



We can represent f (t, x) as follows

f (t, x) =
∞X
n=0

e−νt (νt)n

n!
fn (t, x) .

Here fn (t, x) are conditional p.d.f. corresponding to

the arrival of exactly n jumps between 0 and t.

The characteristic functions of fn (t, x) have the form

�fn (t, z) =
(iϕ)n eiµtz−σ2tz2/2

(z + iϕ)n
,

fn (t, x) =
(iϕ)n

2π

Z ∞
−∞

e−i(x−µt)z−σ2tz2/2
(z + iϕ)n

dz.



Integration by parts yields

fn (t, x) =
ϕ (x− µt)− ϕ2σ2t

(n− 1) fn−1 (t, x)

+
ϕ2σ2t

(n− 1)fn−2 (t, x) .

We can evaluate fn (t, x) recursively provided that we

know f0 (t, x), f1 (t, x).

f0 (t, x) =
e−(x−µt)2/2σ2t³
2πσ2t

´1/2 ,

f1 (t, x) = ϕe−ϕ(x−µt)+ϕ2σ2t/2

×N

 x− µt³
σ2t

´1/2 − ϕ ³σ2t´1/2
 .
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Figure 1: A typical p.d.f. for a jump diffusion with

log-exponential jumps. For comparison, the p.d.f. for

a regular diffusion with equivalent parameters is also

shown. Fat tails and sharp peaks are clearly seen.



4. THE FLUCTUATION IDENTITIES

It is difficult to deal with the relevant distributions

directly but somewhat easier to deal with their Laplace

(or Laplace-Carson) transforms.

We introduce

F (λ, x) =
Z ∞
0
e−λtF (t, x) dt,

f (λ, x) =
Z ∞
0
e−λtf (t, x) dt,

Q± (λ, x) =
Z ∞
0
Q± (t, x) e−λtλdt,

q± (λ, x) =
Z ∞
0
q± (t, x) e−λtλdt,

R (λ, a, x) =
Z ∞
0
e−λtR (t, a, x) dt,

r (λ, a) =
Z ∞
0
e−λtr (t, a) dt

= 1−Q+ (λ, a)−R (λ, a, 0) ,



H (λ, a, x) =
Z ∞
0
e−λtH (t, a, x) dt,

h (λ, a, x) =
Z ∞
0
e−λth (t, a, x) dt,

eq± (λ, z) = Z ∞
−∞

eixzq± (λ, x) dx.

The key to what follows are the celebrated ßuctuation

identities:

eq+ (λ, z) = exp
(Z ∞
0

e−λt
t

µZ ∞
0

³
eixz − 1

´
f (t, x) dx

¶
dt

)
,

eq− (λ, z) = exp
(Z ∞
0

e−λt
t

ÃZ 0
−∞

³
eixz − 1

´
f (t, x) dx

!
dt

)
.

The Þrst passage time τa has the form

E
n
e−λτa

o
= 1−Q+ (λ, a) .



Provided that both q+ (λ, a), a > 0, and q− (λ, b),
b < 0, are known, we represent R (λ, a, y) as

R (λ, a, y) =
1

λ

Z a
0

Z 0
−∞

M (a+ y − u− v)
×q− (λ, u) q+ (λ, v) dudv.

Here

M (x) = ν
Z ∞
x
$ (y) dy, x > 0,

A simple �bean counting� suggests that for x < a

that

H (λ, a, x) = F (λ, x) +
Z ∞
0
F (λ, x− a− y) dR (λ, a, y)

−F (λ, x− a) (1−Q+ (λ, a)−R (λ, a, 0)) .

h (λ, a, x) = f (λ, x) +
Z ∞
0
f (λ, x− a− y) dR (λ, a, y)

−f (λ, x− a) (1−Q+ (λ, a)−R (λ, a, 0)) .

Once H (λ, a, x) and h (λ, a, x) are determined, we can

Þnd H (t, a, x) and h (t, a, x) via the inverse Laplace

transform.



Three methods for inversion of the Laplace transform:

1. Bromwich inversion integral

f (t) =
1

2πi

Z b+i∞
b−i∞

eλtf (λ) dλ.

2. Post-Widder inversion formula

f (t) = lim
n→∞

(−1)n
n!

µ
n+ 1

t

¶n+1
f(n)

µ
n+ 1

t

¶
.

3. Laguerre-series representation

f (t) = e−t/2
∞X
n=0

qnLn (t) ,

Ln (t) =
nX
k=0

Ã
n
k

!
(−t)k
k!

,

q (z) =
∞X
n=0

qnz
n =

1

1− zf
Ã
1 + z

2 (1− z)

!
.

We use Gaver-Stehfest algorithm based on Post-Widder
formula.



5. EXPONENTIAL JUMPS

We introduce the function

L (β) = K (iβ) =
1

2
σ2β2 − µβ − νβ

β + ϕ
.

This function is meromorphic in the complex plane

with a simple pole at β = −ϕ.

We consider the characteristic equation

L (β) = λ, λ ≥ 0.

This equation has three real roots,

β1 (λ) < −ϕ < β2 (λ) < 0 < β3 (λ) .

These roots are shown in Figure 2.

For the standard Brownian motion we have

L (β) = σ2β2/2,β1 = −
³
2λ/σ2

´1/2
,β3 =

³
2λ/σ2

´1/2
.
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Figure 2: The graphical solution of the characteristic

equation.



These roots can be found explicitly via the celebrated

Cardano formula:

β1 = 2p1/2 cos
ζ + 2π

3
− b

3
,

β2 = 2p1/2 cos
ζ + 4π

3
− b

3
,

β3 = 2p1/2 cos
ζ

3
− b

3
,

where

b = ϕ− 2µ
σ2
,

c = −2 (µϕ+ ν + λ)
σ2

,

d = −2λϕ
σ2

,

p =
b2

9
− c

3
,

q =
b3

27
− cb
6
+
d

2
,

ζ = (1 + sign (q))
π

2
− sign (q) atan

³
p3/q2 − 1

´1/2
.



Now we are ready to work with ßuctuation identities.

eq+ (λ, z) = iβ1β2 (−z + iϕ)
ϕ (−z + iβ1) (−z + iβ2)

,

Q+ (λ, a) = 1− (β1 + ϕ)β2
ϕ (β2 − β1)

eβ1a− (β2 + ϕ)β1
ϕ (β1 − β2)

eβ2a,

E
n
e−λτa

o
=
(β1 + ϕ)β2
ϕ (β2 − β1)

eβ1a +
(β2 + ϕ)β1
ϕ (β1 − β2)

eβ2a.

Q− (λ, b) = eβ3b, b < 0.

The cumulative jump function M (x) is

M (x) =
Z ∞
x
νϕe−ϕydy = νe−ϕx, x > 0,

Thus,

R (λ, a, y) =
(β1 + ϕ) (β2 + ϕ)

³
eβ1a − eβ2a

´
e−ϕy

ϕ (β2 − β1)
,

r (λ, a) = −(β1 + ϕ) e
β1a

β2 − β1
− (β2 + ϕ) e

β2a

β1 − β2
.



A simple calculation yields

f (λ, x) =

(
−eβ1x/L0 (β1)− eβ2x/L0 (β2) , x ≥ 0,
eβ3x/L0 (β3) x < 0.

Thus, for 0 ≤ x < a,

h (λ, a, x) = − eβ1x

L0 (β1)
− eβ2x

L0 (β2)

− 2

σ2β1

Ã
β1 + ϕ

β2 − β1
− λϕ

β1β2L
0 (β1)

!
eβ1a+β3(x−a)

− 2

σ2β2

Ã
β2 + ϕ

β1 − β2
− λϕ

β1β2L
0 (β2)

!
eβ2a+β3(x−a),

and similar formula for x < 0.

A similar formula for Q+ (λ, a) is given by Kou and

Wand (2001) but their formula for h (λ, a, x) (which

is crucial for our approach) is MUCH more complex.

We show that both these functions are log-affine.



0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 1.0 2.0 3.0 4.0 5.0

T

Q

Figure 3: The survival probabilities Q (t, a) for three

representative choices of a = 1.00, 0.75, 0.50.



6. PRICING OF PATH− DEPENDENT OPTIONS

Since the relevant p.d.f.�s are log-affine Þnding the

Laplace transform of option prices is simple.

Consider for example a lookback option. Its payoff is

v (a, x) = ea − ex.

The Laplace-transformed undiscounted normalized price

of a lookback put LBP (λ) is

LBP (λ) =
Z ∞
0

Z a
0
(ea − ex) d

da
h (λ, a, x) dadx

=
β2 (β1 − β3)

(β1 + 1) (β3 + 1)

×
Ã

(β1 + ϕ)

λϕ (β2 − β1)
− 1

β1β2L
0 (β1)

!

+
β1 (β2 − β3)

(β2 + 1) (β3 + 1)

×
Ã

(β2 + ϕ)

λϕ (β1 − β2)
− 1

β1β2L
0 (β2)

!
.



A straightforward application of the Gaver-Stehfest

algorithm, discounting and scaling yields the value of

a lookback put at inception LBP0 as a function of its

maturity,

LBP0 = e
−r0TS0L(−1) {LBP (λ)} .

A similar formula is valid for barrier call options in-

cluding reverse knock-outs.

We note that the Gaver-Stehfest algorithm completely

solves the pricing problem for Asian, Passport, timer

and MANY other options.
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equivalent regular diffusions.
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7. CREDIT DEFAULT SPREADS

We build our theory in the Merton-Leland framework

for an individual name whose stock can jump down-

ward.

The value of the Þrm is V = S + LD, where S, D,

and L are its stock price, debt-per-share, and global

recovery rate of its liabilities, respectively.

In particular, V0 = S0 + LD0.

We assume that V (t) is stochastic and is governed

by the SDE

dV (t)

V (t)
=
³
r01 − νη̄

´
dt+σ̄dW (t)+

µ
e−J̄ − 1

¶
dN (t) ,

The debt-per-share is deterministic and has the form

D (t) = er
01tD0.

The Þrm defaults if its value hits the barrier LD (t).



Here σ̄ is the volatility of the Þrm�s value, J̄ is its

jump size which has an exponential distribution with

parameter ϕ̄, and η̄ = −1/ (ϕ̄+ 1).

The process χ (t) = ln (V0D (t) /V (t)D0) is gov-

erned by the following SDE

dχ (t) = µdt+ σ̄dW (t) + J̄dN, χ (0) = 0,

Here µ = νη̄ + σ2/2, and jump size is positive.

Default occurs when χ hits the upper barrier a =

ln (V0/LD0).

The survival probability of the Þrm is simply Q+ (t, a).

A par credit spread Ξ (T ) for bonds maturing at time

T can be expressed in terms of Q+ (t, a), 0 ≤ t ≤ T ,
as follows

Ξ (T ) = (1−R)
Ã
1− Z (T )Q (T, a) + R T

0 Q (t, a) dZ (t)R T
0 Z (t)Q (t, a) dt

!
.



Here Z (t) is the risk-free discount factor, and R, 0 ≤
R ≤ 1, is the recovery rate.

When Z (t) = e−r0t Ξ (T ) simpliÞes to

Ξ (T ) = (1−R)
1− e−r0TQ (T, a)R T
0 e

−r0tQ (t, a) dt
− r0

 .

We show the credit spread Ξ (T ) for realistic param-

eter values in Figure 6.

We emphasize that the main drawback of the conven-

tional theory, namely the fact that Ξ (T ) is small when

T is small, is not an issue when jumps are taken into

account, so that randomization of the global recovery

level L, as proposed by Finkelstein et al. (2001) is not

needed.

Thus, we can hedge debt against puts on equity in a

consistent way.
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8. CONCLUSIONS

1. We show how to use ßuctuation identities for pric-

ing path-dependent options.

2. Our derivation is complex but Þnal formulas are

simple and very general.

3. As a by-product we construct a new theory for

computing credit default spreads.

4. The Lagrange inversion algorithm we use very effi-

ciently solves other difficult problems such as pricing

Asian, passport, and timer options.


