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1. INTRODUCTION

School of Science I. Introduction
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Intro: Two-dimensional statistical physics
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(uniform spanning tree) (percolation) (Ising model)
etc. etc.
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Intro: Conformally invariant scaling limits

Conventional wisdom: Any interesting scaling limit of any
two-dimensional random lattice model is conformally invariant:

» interfaces — SLE-type random curves
» correlations — CFT correlation functions

Remarks:
» SLE: Schramm-Loewner Evolution
* is not today’s topic
» CFT: Conformal Field Theory

* powerful algebraic structures

(Virasoro algebra, modular invariance, quantum groups, .. .)
* exact solvability (critical exponents, PDEs for correlation fns, .. .)
* mysteries — what is CFT, really?

» This talk: concrete probabilistic role for Virasoro algebra
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Intro: The role of Virasoro algebra
Virasoro algebra: co-dim. Lie algebra, basis L, (n € Z) and C

[I—n, Lm] = (n - m)Ln+m + %5n+m,oc
[C,L)]=0 (C a central element)

Role of Virasoro algebra in CFT?

» stress tensor T: first order response to variation of metric
(in particular “infinitesimal conformal transformations”)

» Laurent modes of stress tensor T(z) =Y, ., Lz 727"
» C acts as ¢ x id, with ¢ € R the “central charge” of the CFT

» action on local fields (effect of variation of metric on correlations)

> local fields form a Virasoro representation
> highest weights of the representation ~ critical exponents

> degenerate representations ~~ PDEs for correlations

(exact solvability & classification)
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II. LOCAL FIELDS IN LATTICE MODELS
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The critical Ising model

» domain Q C C open, 1-connected
> 0 > 0 small mesh size

» lattice approximation Qs C Cs := 672

Ising model: random spin configuration
0= (Uz)ze(Cs € {+1 ) —1 }C6

U|Ca\95 = +1 (plus-boundary conditions)
P[{o}] o exp ( - BE(J)) (Boltzmann-Gibbs)
E(o)= - os0u (energy)
zow
B == % log (V2 +1) (critical point)
A .



Celebrated scaling limits of Ising correlations
¢p: Q—H={zeC|Sm(z)> 0}
conformal map

Thm [Chelkak & Hongler & Izyurov, Ann. Math. 2015]

k
= [T1¢'@)I"8 x C(4(21), - ., (20))
i

Thm [Hongler & Smirnov, Acta Math. 2013] [Hongler, 2011]

3

= [116'@)I x Em(é(21), .-, d(2m))

J=
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Local fields of the Ising model

Local fields §(z) of Ising 0= (02) ,cq Ising
9
> V c 72 finite subset
» P:{+1,—-1}V — C afunction

> S(Z) = P((Uz+6x)xev)
(makes sense when Qs is large enough)

» F space of local fields

Null fields: “zero inside correlations”
> §(2) null field:
n _ .
3R > 0t E[§(2) ITL ow| =0 Examples of local fields:
whenever ||z — wj||y > R Vj :
_ > 3(2) =02 (spin)
> N C F space of null fields
> §(2) = 020245 (energy)

F /N equivalence classes of local fields (same correlations)
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Main result 1: Virasoro action on Ising local fields

Theorem (Hongler & K. & Viklund, 2017)

The space F /N of correlation equivalence classes of local
fields of the Ising model forms a representation of the Virasoro
algebra with central charge ¢ = 5
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Discrete Gaussian Free Field

Discrete Gaussian Free Field (dGFF):

¢ = (¢(Z))ze§25

Domain and discretization:

» Q C C open, simply connected

» lattice approximation: Qs C Cj := §Z?

» centered Gaussian field on vertices of discrete domain Qs
> probability density p(¢) « exp (— 2E(¢))
> E(¢) =3, (6(2) — ¢(w))2 “Dirichlet energy”
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Local fields of the dGFF
Local fields §(z) of dGFF

> V C Z? finite subset ®= (q)(z))ze£25 dGFF
> P:RY — C polynomial function Examples of local fields:
> F(2) = P((®(z + 6x))xev) > 3(2) = 9(2)

(makes sense when Q; is large enough) ; ]
> §(2) = 39(2+6)—39(z-9)

» F space of local fields
> 3(2) =361(2)°

Null fields: “zero inside correlations”
> F(z) null field:
JR>0st E [g(z) I, awj] -0
whenever ||z — wj|[s > RS Vj
> N C F space of null fields

F /N equivalence classes of local fields (same correlations)
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Main result 2: Virasoro action on dGFF local fields

Theorem (Hongler & K. & Viklund, 2017)

The space F /N of correlation equivalence classes of local
fields of the dGFF forms a representation of the Virasoro
algebra with central charge ¢ = 1.
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[1l. AN ALGEBRAIC THEME AND VARIATIONS
(SUGAWARA CONSTRUCTION)
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Bosonic Sugawara construction
commutator [A,B] := AoB—-BoA

Proposition (bosonic Sugawara construction)

> V vector space and a;: V — V linear for each j € Z

Suppose: | .y aNez : j>N — qu=0
> [aj,qi] =i dipj0 idy
1 1
Define: L, = Ezajoan_j+§Zan_joaj forne 7z
j<0 j=0
Then: » L,: V — Vis well defined

> [Ln,Lm] = (n—m) Lpim + "3175" dntm,o idy

V Virasoro representation, central charge ¢ = 1
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Fermionic Sugawara construction 1

commutator [A, B]
anticommutator [A, B,

Proposition (fermionic Sugawara, Neveu-Schwarz sector)

AoB—-BoA
AoB+BoA

» V vector space, b: V — VIinearforeachkeZ—F%
»VveV INeZ : k>N — brv=0

> [bk, belt = Okre,0 idy

Def.: Ln = 22( +k)bn Kbk — 22( +k)bkbnk (neZz)

Suppose:

Then: » Lp: V — Vis well defined
> [Ln,Lm] = (n—m) Losm + ﬁ" dntm,o idy

, , 1
V Virasoro representation, central charge ¢ = 5
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Fermionic Sugawara construction 2
commutator [A,B] := AoB—-BoA
anticommutator [A,B]; := AoB+ BoA

Proposition (fermionic Sugawara, Ramond sector)

>V vector space, bj: V — V linear foreach j € Z

SUppose: ey anez - >N — bv=0
> [bi, b+ = disjo idy
L = %Z (% +)ba_jbj - %Z (% +j)bbny (n€Z)\{0})
Def.: = .
Ly = Ebzojb_jbj—i_ 75 1dv
Then: » Lp: V — Vis well defined

> [Ln, L] = (7 = M) Lpym + T2 S5m0 idy

: . 1
V Virasoro representation, central charge ¢ = 5
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V. PROOF STEPS
(DISCRETE COMPLEX ANALYSIS)
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Outline / steps

For the Ising model and discrete GFF:

v 0.) Define model and local fields
1.) Suitable discrete contour integrals and residue calculus
2.) Introduce discrete holomorphic observable
3.) Define Laurent modes of the observable
4.) Commutation relations of Laurent modes
5.) Virasoro action through Sugawara construction

, , Aalto University Conformal Field Theory on the lattice
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Outline / steps

For the Ising model and discrete GFF:

v 0.) Define model and local fields
Suitable discrete contour integrals and residue calculus
Introduce discrete holomorphic observable

Commutation relations of Laurent modes

1)

)

) Define Laurent modes of the observable

)

) Virasoro action through Sugawara construction

2.
3.
4.
5.
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of S IV. Proof steps: discrete complex analysis

d Te hnology Kalle Kytéla



Lattices (square lattice and related lattices)
» fix small mesh size § > 0

0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-
| o Cj
0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-

» square lattice C;

_ » medial lattice C}
» dual lattice Cj

» diamond lattice C§

i [
Cs — §72 » corner lattice Cj
§—C
, , Aalto University Conformal Field Theory on the lattice
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Lattices (dlscretlzatlon of differential operators)

- ’Q’r o---
0: A - 4%};1 o i
Todal
out(2) = 3 (a3~ 1lz- D)) - 2(1(e+ 2) - 1z- )

0 i
) a(ferg)re
dsf(z) = 5(’(”%) —f(z— g)) + %(f(z-ﬁ-g) —f(z— g))

f:C" -C = (‘)(,‘f.,('_)d‘fi‘«/‘:g%@
f:C¢—C = 05f,05f: CT = C
» Discrete Laplacian: (As = 0505 = 0505)

Nsf(z) = —f(2) + %f(z-i—é) + %f(z -0+ %f(z-ﬁ-ﬁd) + %f(z— i9)

,, Aalto Unlverslty Conformal Field Theory on lhe lattice
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Discrete residue calculus (contour integral)

» two functions f: C§' — Cand g: C; — C
» ~ path on the corner lattice C§

Fig,,,g,,,g,,,'ﬂ_,,gfigﬂ,gﬂ” { oriented edge of Cj

e toThTolth o

,+, f defined on C}

oo - ® g defined on C§

°
o
{?4
{?4
{?4
1 1
{?4
{‘)4

7{7] f(za) 9(2.) [d2]s = 3" F(ew) g(e.) - 8

-
écy

, , Aalto University Conformal Field Theory on the lattice
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Discrete residue calculus (properties)

7{ f(zn) 9(2.) [02]5 = " f(em) g(e2) - 8
[ By
Proposition (properties of discrete contour integral)

Green’s formula (sum over ww € C2 Niint(+) and we € C$ Nint(v))

$ 1(am) 0(2e) 19215 = 5 3 1(m) (3s9) () + 3 3 (351)(we) g (e)

contour deformation
71,72 two counterclockwise closed contours on Cj
dsf = 0 and 9;g = 0 on symm. diff. int(y1) & int(72)
7{ F(zm) 9(2-) [d2]5 = 74 F(zm) 9(2-) [d2]s
1] [vel

integration by parts
7 counterclockwise closed contour on Cj
0sf =0 and 959 = 0 on neighbors of v
¢ (05 (zm) 9(z:) dzls = = § _1(zm) (059) (25) d2ls
2] 7

, , Aalto University Conformal Field Theory on the lattice
School of Science IV. Proof steps: discrete complex analysis
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Discrete monomial functions (defining properties)
Proposition (discrete monomial functions)
3 functions z + zIPl, p € Z, defined on C$ U CT, such that

> §szIPl = 0 whenever ... “discrete holomorphicity”

» p>0andzec CyuUCH
» p<0andzeCyUCy,|z]t4 > Rpd

> Z0 =1forallze cgucy “constant function”
> g5zl =2r5,0+ % er{ig,iig} dz,x “d Green’s function”
> 9s5zlPl = pzlP—1] “derivatives”
» zIPl has the same 90° rotation symmetry as zP “symmetry”
> for p < 0 we have zIl — 0as ||z|| — oo “decay”
> for any z there exists D such that zlPl = 0 for p > D, “truncation”

For ~ large enough counterclockwise closed contour surrounding the origin. ..

> 2P 29 (475 = 2ni Optq,—1 “residue calculus”

> 2P 219 [dz)s = 2ri Sp+q,—1 Where zP = %er{ig,iig}(zm — x)lP!

, , Aalto University Conformal Field Theory on the lattice
School of Science IV. Proof steps: discrete complex analysis

and Technology Kalle Kytéla



Discrete monomial functions (example 0)

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

values of z[%
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m*i\

Discrete monomial functions (example 1)

28 P & A -

X X} x 7 S
o a o &

2R e P P B

bx X\ X a2 \ v
S S & = e

~ o A A -
x X X s A\ \

- g - - 'S

2 - P P -

Tx X x - \ \
e Le 3 e e

a & Rl
" - A8 o 25 1
A - A A -
T(x M <\ \,ﬂ, < Ve
& B X 2 B
“\ \ “ “\ \

P - - 2 -

X X X A \ \
A < A > A 4

A % a2 o -,

) 5 S < \
o o R\ PR
N \ “\ \ \

¢ ~ -~

—x = X 2 /nu
2 < N <

Kalle Kytla
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Discrete monomial functions (example 2)

SN & ye Ny
o o /% N >
TS S
AT » b 5 \ -~

5 % A
:\X{"\ e Y RS
= a N @

H) A »
> X & 3 d

values of z[@

P

O

5
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Discrete monomial functions (example 3)

%

o - & & e S
sx% < A /‘b’q‘)\
4 3 Q =

3 Q N Q

Q Q Q Q

P Q N Q

& Q -
B ex o
) ox & & el &

values of z[®!

Q

o
o

A! )

Aalto University
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Discrete monomial functions (example -1)

values of z[="]
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Discrete monomial functions (example -2)

o
\

3

20 o

¥
e
X
\

P
X o
\.x/\./ £
\
B
\ X
N w
\nE \
2
e
\
-
2
2.
o
A
A
a0
oe
\
2

values of z[=2

gom
2%
EZZ
S5
g
gc2
£x5
€0
Om.K
Es
R
2o
F3
-]
® 2
iL
35
ES
S
I
S5
og

o

H

8
22>
250
252
o ]
=
2%5<
529
o0
ook
852

£
<hH
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Outline / steps

For the Isirg-medeland discrete GFF:
v 0) Define model and local fields
1.) Suitable discrete contour integrals and residue calculus
2.) Introduce discrete holomorphic observable
) Define Laurent modes of the observable
) Commutation relations of Laurent modes
)

3.
4.
5.) Virasoro action through Sugawara construction

Conformal Field Theory on Ihe Ianoe
IV. Proof steps: discrete complex analysi
Ka u e Kyto |
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Discrete Gaussian Free Field (definition again)
Discrete Gaussian Free Field (dGFF):

¢ = (¢(z))z€§25

Domain and discretization:
» Q C C open, simply connected

> lattice approximation
Qs C Cs, Q5 C Cg, QF C CF, Qf C C§

> centered Gaussian field on vertices of discrete domain Qs
> probability density p(¢) « exp (— 2E(¢))

> E(¢) =3, (6(2) - qﬁ(w))2 “Dirichlet energy”
» covariance E[®(2) ®(w)] = Ga,(z, w)

> Go,(z, w) = expected time at w for random walk from z before exiting Qs

N ) —

> AsG(,w) = —0w(:) “A Green’s function
, , Aalto University Conformal Field Theory on the lattice
A School of Science IV. Proof steps: discrete complex analysis
and Technology Kalle Kytsla



Discrete holomorphic current (definition)
Discrete Gaussian Free Field (dGFF):

= (¢(2))

zeCs

originally defined on Q5 C Cs

extend as zero to Cs \ Qs and Cj
centered Gaussian field on C§

> covariance E[®(z) d(w)] = Gq, (2, w)

$

Discrete holomorphic current J = (3(2))ze<cm
5

J(2) :== 059(2)

1 ) 1) 1 0 0
= | P(z ——CDZ——)——(CDZ ——CDZ——)
s(0z+3) -0z-3))-5(0e@+5)-oz-3)
vanishes if z on vertical edge vanishes if z on horizontal edge
» centered complex Gaussian field (...and a local field of dGFF!)

» purely real on horizontal edges, imaginary on vertical edges
> covariance E[J(z) J(w)] = 8((32)8((5'”) Ga, (2, w)

, , Aalto University Conformal Field Theory on the lattice
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Discrete holomorphlc current (correlatlons)

((D(z))ZE(C5

Wick’s formula for centered Gaussians:

E|T]o(z)| = E[®(zc)®(2)
[]]} /] > 11 Ele@)e@)

P pairing {k,/l}eP
of {1,...,n} Gays (2k:21)

Discrete holomorphic current J = (3(2))26@1, 3(2) = 959(2)
Proposition (harmonicity of ®, holomorphicity of )
» E[(A59)(2) TIiZ1 ©(w))] = 0 when ||z — wjll; > 4 forall j
> E[(953)(2) TTLq @(wj)] = 0 when ||z — wjll; > d for all j

53 = As® is a null field

,, Aalto Unlverslty Conformal Field Theory on lhe Iance
of S IV. Proof steps: discrete complex analysi
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Outline / steps

For the Isirg-medeland discrete GFF:
v 0) Define model and local fields
1.) Suitable discrete contour integrals and residue calculus
2.) Introduce discrete holomorphic observable
) Define Laurent modes of the observable
) Commutation relations of Laurent modes
)

3.
4.
5.) Virasoro action through Sugawara construction

, , Aalto Unlverslty Conformal Field Theory on the lattice
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> F(w) = F[(®(W+X0))xev]
local field of dGFF

» ~ sufficiently large
counterclockwise
closed path on C§
surrounding origin and V§

Lemma (discrete current modes)

Jj: FIN — F/N is well-defined independent of choice of . . .
> add null field to §(0) ~ add null field to (J;3)(0) ... representative
> change v ~ add null fields 9;3(2) x (---) to (J;F)(0) ...contour

, , Aalto University Conformal Field Theory on the lattice
School of Science IV. Proof steps: discrete complex analysis
Kalle Kytdla

and Technology



Outline / steps

For the Isirg-medeland discrete GFF:

v 0.) Define model and local fields
Suitable discrete contour integrals and residue calculus
Introduce discrete holomorphic observable

Commutation relations of Laurent modes

)
)
3.) Define Laurent modes of the observable
)
) Virasoro action through Sugawara construction

, , Aalto Unlverslty Conformal Field Theory on the lattice
of S IV. Proof steps: discrete complex analysis
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Commutation of modes of the discrete current

Proposition (commutation of discrete current modes)

[3:,3j] = i dixj0 g n

i 8110 E[3(0) -

(residue calculus)

Kalle Kytsla

Conformal Field Theory on the lattice
IV. Proof steps: discrete complex analysis

Aalto University
School of Science
and Technology
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Outline / steps

For the Isirg-medeland discrete GFF:
v 0.) Define model and local fields
) Suitable discrete contour integrals and residue calculus
) Introduce discrete holomorphic observable
3.) Define Laurent modes of the observable
) Commutation relations of Laurent modes
) Virasoro action through Sugawara construction

,, Aalto Unlverslty Conformal Field Theory on |he Ianoe
of S IV. Proof steps: discrete complex analysi
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Sugawara construction with the dGFF current
Verify assumptions:
» V vector space
space F /N of local fields modulo null fields
» a;: V — Vlinear foreachje Z
discrete current Laurent mode J;: /N — F/N
(38)(0) = = f,19(2m) 251 (0) [d2]
» VwwveV INeZ : j>N = aqv=0
monomial truncation: vz, € C§ 3D : j> D = zg] =0
> [aj,q] =i dij0idy
Laurent mode commutation [J;, J;] = i di4j,0 idr/ar

Theorem (Virasoro action for dGFF)

1 -~ 1 - N
€ni= 52 Fodngt 52 Injol
j<0 j>0
defines Virasoro representation with ¢ = 1 on the space /N
of correlation equivalence classes of local fields of the dGFF.

School of Science IV. Proof steps: discrete complex analysis
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Outline / steps

For the Ising model and-diserete-GFF:

v 0) Define model and local fields

1.) Suitable discrete contour integrals and residue calculus
2.) Introduce discrete holomorphic observable

) Define Laurent modes of the observable

) Commutation relations of Laurent modes

)

3.
4.
5.) Virasoro action through Sugawara construction

, , Aalto Unlverslty Conformal Field Theory on the lattice
A of S IV. Proof steps:

discrete complex analysis
d Te hnology Kalle Kytéla



The critical Ising model

» Q C C open, 1-connected

» lattice approximation Qs C Cs, Q5 C C3, QF c C¥, Q5 c Cj
Ising model: random spin configuration
— C
o= (UZ)ZEC5 e {+1,-1}>
> U|C5\§25 = +1 (plus-boundary conditions)

P[{c}] x exp ( iy E(a)) (Boltzmann-Gibbs)

E(o)= =) 0s0u (energy)

zZ~w

ﬁzﬁczélog(\/éJﬂ)

(critical point)

, , Aalto University Conformal Field Theory on the lattice
School of Science IV. Proof steps: discrete complex analysis
and Technology
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Local fields of the Ising model
Local fields §(z) of Ising
> V C 72 finite subset
> P: {+1,-1}V = C a function 0=(02),eq, Ising

. P(—o) = P(oc) even
parity {P(—a) — _P(s) odd

v

3(2) = P((UZ+¢3X)er)

v

F space of local fields

Ft even
F =F*t @ F~ by parit
® 7 Dy panty {]—" odd

v

N C F space of null fields
(“zero in correlations”)

F /N equivalence classes of local fields (same correlations)

, , Aalto University Conformal Field Theory on the lattice
School of Science IV. Proof steps: discrete complex analysis

and Technology Kalle Kytola



Disorder operators in Ising model

_ Disorder operator pair:

(tphig)x = €Xp ( —-28 Y oz 0w>

: } (z,w)*EAX
e { - » p,q € C§ dual vertices
- } "i > ) path between p and g on Cj “disorder line”
T T ISR
Remark
> a single disorder operator is NOT a local field
> a disorder operator pair is a local field (with fixed disorder line \)
A” Seheolof Sen V. Proot stope clscrate compio antysie
nd Techn | gy Kalle Kytsla



Corner fermions in Ising model

¢, d € C§ corners
X,y € Cs adjacent to ¢, d, respectively
p, q € C; adjacent to c, d, respectively

vV v vy

v(c) := ;=5 phase factor

|x

v

Ac path between ¢ and d “on C3”

v

W(Ae : ¢ ~ d) cumulative angle of turning of A

Corner fermion pair:

(W), = —(©) exp (— WA ¢ d)) (ipita)s ox0y

2
Remark:
» one corner fermion is NOT a local field
> a corner fermion pair is a local field (with fixed disorder line)
A, , Aalto University Conformal Field Theory on the lattice
School of Science IV. Proof steps: discrete complex analysis
and Technology Kalle Kytéla



Discrete holomorphic fermions in Ising model

"""" 5 1 > z,w € C§ midpoints of edges

> . path between z and w “on Cj3”

» ¢, d € C§ adjacent to z, w, respectively

> )% path between ¢ and d on C;
obtained by local modification of A,

J*‘*‘*‘V‘;‘*‘, Holomorphic fermion pair:
1
v(2)\V(w = wiws) .
(V(2)V(W))r, 8\@;( V) e

Remark: (as before)
» one holomorphic fermion is NOT a local field

> a holomorphic fermion pair is a local field (with fixed disorder line)
, , Aalto University Conformal Field Theory on the lattice
A School of Science IV. Proof steps: discrete complex analysis
and Technology Kalle Kytsla



Properties of the fermion pairs

- Lemma (disorder line independence mod +)
7**74“/&*7 If A, AL, are d|sorder lines between z,( € C}' then
b E[w0w@)A, Haw, = ()" <E[(W(¥(@)x, Haw,

T—}— where A’ is the number of points w; in the area
g enclosed by A\, and \/,.

Lemma (antisymmetry of fermions)
(V(OV(2))r, = —(V(2)V(O)x.,

Lemma (holomorphicity and singularity of fermion)

[(85“1 )V (Zm)) HO’WI = Z Oy x X E H(IWI

X~Zm

§9 AaltoUn Conformal Field Theory on the lattice
A S hool o rs IV. Proof steps: discrete complex analysis

nd Technolo gy Kalle Kytéla



Outline / steps

For the Ising model and-diserete-GFF:

v 0) Define model and local fields

1.) Suitable discrete contour integrals and residue calculus
2.) Introduce discrete holomorphic observable

) Define Laurent modes of the observable

) Commutation relations of Laurent modes

)

3.
4.
5.) Virasoro action through Sugawara construction

, , Aalto Unlverslty Conformal Field Theory on the lattice
of S IV. Proof steps: discrete complex analysis
dT hnology Kalle Kytola



> S(W) = P[(Uw-i-x&)xev}
even local field of Ising

» ~,7 large nested
counterclockwise
closed paths on Cj

Fork,teZ+} define a new IocaI field ((WxWe) §)(w) by
(VW) 3)(0) = jf N "5 (W () W (zm) ) $(0) [d2]s [dC)s

Lemma (discrete fermion mode pairs)
(VW) FH/NT — FT/NT is well-defined
Remark: (as before)

> one fermion Laurent mode is NOT defined
> a fermion Laurent mode pair is defined, and acts on (even) local fields

, , Aalto University Conformal Field Theory on the lattice
School of Science IV. Proof steps: discrete complex analysis
Kalle Kytdla

and Technology



Outline / steps

For the Ising model and-diserete-GFF:

v 0.) Define model and local fields
) Suitable discrete contour integrals and residue calculus
) Introduce discrete holomorphic observable
3.) Define Laurent modes of the observable on even sector
) Anticommutation relations of Laurent modes
) Virasoro action through Sugawara construction

, , Aalto Unlverslty Conformal Field Theory on the lattice
A of S IV. Proof steps: discrete complex analysis

d Te hnology Kalle Kytéla



Anticommutation of fermion modes in even sector

Proposition (anticommutation of fermion modes)

(WkWy) + (WeWk) = k00 1Irs ar+

E [((‘"k“’e) $(0) + (wwk)s(o)) . ]

o E[5(0)-]

Skte

(residue calculus)

Kalle Kytsla

Conformal Field Theory on the lattice
IV. Proof steps: discrete complex analysis

Aalto University
School of Science
and Technology
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Outline / steps

For the Ising model and-diserete-GFF:

v 0.) Define model and local fields
) Suitable discrete contour integrals and residue calculus
) Introduce discrete holomorphic observable
3.) Define Laurent modes of the observable
) Anticommutation relations of Laurent modes
) Virasoro action through Sugawara construction

,, Aalto Unlverslty Conformal Field Theory on |he Ianoe
of S IV. Proof steps: discrete complex analysi
dT hnology Kal u e Kytol |



Sugawara construction for Ising even local fields

» V vector space
space F /N of even local fields modulo null fields
> bx: V — Vlinearforeach k € Z + }
fermion Laurent mode pairs (W, W,): F*/NT — Ft/NT
o iy iy AT (W)W (zm)) () [0 [
» VwveV INeZ : >N — by,v=0
monomial truncation: Vz, € C§ 3D : (> D= sz‘%] =0
> [bk, by = Gkaro idy
anticommutation (VW;) + (W, Wx) = Okqe,0 idre /ar+
and (WpWi)(VeWq) + (VpWe)(VikWgq) = dkse0 (VoVg)

Theorem (Virasoro action for Ising even sector)
1 1 1 1
Ln = 3 k§:>o (5 +K) Wor¥i) - 3 k§<jo (5 +K) (WeWn-)

defines Virasoro repr. with ¢ = § on the space 7+ /N of
correlation equivalence classes of Ising even local fields.

School of Science IV. Proof steps: discrete complex analysis

A, , Aalto University Conformal Field Theory on the lattice
and Technology Kalle Kytola



Outline / steps

For the and-discrete-GFEF:

v 0) Define model and local fields

1.) Suitable discrete contour integrals and residue calculus
2.) Introduce discrete holomorphic observable

) Define Laurent modes of the observable

) Anticommutation relations of Laurent modes

)

Apply Sugawara construction to define Virasoro action on
local fields

3.
4.
5.

Conformal Field Theory on the lattice
IV. Proof steps: discrete complex analysis
Kalle Kytola

,, Aalto University
School of Science

and Technology



Odd sector: Discrete half-integer monomials

Proposition (discrete half-integer monomial functions)

3 functions z + zIPl, p € Z + }, defined on the double cover
[C3; 0] U [CY; O] ramified at the origin, such that
> §5zIP = 0 whenever . .. “discrete holomorphicity”
> p>0andz e [Cg;0]U[CH;0]
> p<0andze[CO]UCT; 0] ||zl > Rod

> 9s5zlPl = pzlP—1] “derivatives”
» ZzIPl has the same 90° rotation symmetry as zP “symmetry”
> for p < 0 we have zIl — 0 as ||z|| — oo “decay”
> for any z there exists D such that zlPl = 0 for p > D, “truncation”

For ~ large enough counterclockwise closed contour surrounding the origin. . .

> §[v] z.[f] zLQ] [dz]s = 2mi 8pyq,—1 “residue calculus”

> 2P} 9 [dz)5 = 2ri Sp+q,—1 Where ZP = %er{i%ﬂ%}(zm — x)lP!

, , Aalto University Conformal Field Theory on the lattice
School of Science IV. Proof steps: discrete complex analysis

and Technology Kalle Kytéla



Odd sector: Laurent modes of fermions

> J(w) = P[(Uw—i-xé)xev]
odd local field of Ising

» ~,7 large nested
counterclockwise
closed paths on C§

Lemma (discrete fermion mode pairs)
(Viv)): F~ /N~ — F~ /N~ is well-defined

, , Aalto University Conformal Field Theory on the lattice
School of Science IV. Proof steps: discrete complex analysis

and Technology Kalle Kytéla



ion of fermion modes

tat

icommu

Ant

Odd sector

Proposition (anticommutation of fermion modes)

Oij0 17— /a—

(Viv)) + (VW)

Kalle Kytsla

Conformal Field Theory on the lattice
IV. Proof steps: discrete complex analysis

Aalto University
School of Science
and Technology

A’ )



Odd sector: Fermionic Sugawara construction
Proposition (fermionic Sugawara, Ramond sector)

V vector space, bj: V — V linear for each j € Z

Suppose: YvweV 3INeZ : j>N = bjv=0
[67, bj]+ = dj1j0 idy
1 1 ; 1 1 h
Ly, = Eg(E +j)bn_jbj—§j<zo(§ +l)bjbn—j (nez\{0})
Def. 1. 1
Ly = EZjb,jbj-i-ﬁldv
j>0
Then: Ln: V — Vis well defined

[Lns L] = (= M) Lot + 552 Spymo idy

Theorem (Virasoro action on Ising odd local fields)

The space of odd Ising local fields modulo null fields becomes
Virasoro representation with central charge ¢ = %

, , Aalto University Conformal Field Theory on the lattice
School of Science IV. Proof steps: discrete complex analysis

and Technology Kalle Kytla



Conclusions and outlook

v Lattice model fields of finite patterns form Virasoro repr.
> discrete Gaussian free field: £, on /A by bosonic Sugawara
> lIsing model: £,0on F*/N*t @ F~ /N~ by fermionic Sugawara
tooo Many CFT ideas rely on variants of Sugawara construction

> Wess-Zumino-Witten models
> symplectic fermions
» coset conformal field theories ~~ CFT minimal models
» Coulomb gas formalism
too CFT fields +— lattice model fields of finite patterns
» 1-1 correspondence via the Virasoro action on lattice model fields?
> correlations of lattice model fields with appropriate renormalization
converge in scaling limit to CFT correlations?
» conceptual derivation of PDEs for limit correlations via singular vectors?

, , Aalto University Conformal Field Theory on the lattice
School of Science IV. Proof steps: discrete complex analysis
and Technology Kalle Kytsla



THANK YOU!
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