

Conformal field theory on the lattice: from discrete complex analysis to Virasoro algebra

Kalle Kytölä

kalle.kytola@aalto.fi

Department of Mathematics and Systems Analysis, Aalto University

Clément Hongler (EPFL, Lausanne Fredrik Viklund (KTH, Stockholm

March 15, 2018 — Columbia University

Outline

- 1. Introduction: Conformal Field Theory and Virasoro algebra
- Main results: local fields of probabilistic lattice models form Virasoro representations
 - discrete Gaussian free field
 - Ising model
- 3. An algebraic theme and variations (Sugawara construction)
- 4. Proof steps (discrete complex analysis)

1. Introduction

Kalle Kytölä

Intro: Two-dimensional statistical physics

(uniform spanning tree)

etc. etc.

(Ising model)

Intro: Conformally invariant scaling limits

Conventional wisdom: Any interesting scaling limit of any two-dimensional random lattice model is conformally invariant:

- interfaces → SLE-type random curves
- ▶ correlations → CFT correlation functions

Remarks:

- SLE: Schramm-Loewner Evolution
 - * is not today's topic
- CFT: Conformal Field Theory
 - powerful algebraic structures

```
(Virasoro algebra, modular invariance, quantum groups, ...)
```

- * exact solvability (critical exponents, PDEs for correlation fns, ...)
- * mysteries what is CFT, really?
- This talk: concrete probabilistic role for Virasoro algebra

Intro: The role of Virasoro algebra

Virasoro algebra: ∞ -dim. Lie algebra, basis L_n ($n \in \mathbb{Z}$) and C

$$[L_n,L_m]=(n-m)L_{n+m}+\tfrac{n^3-n}{12}\delta_{n+m,0}C$$

$$[C,L_n]=0 \qquad \qquad (\textit{C} \text{ a central element})$$

Role of Virasoro algebra in CFT?

- stress tensor T: first order response to variation of metric (in particular "infinitesimal conformal transformations")
- ▶ Laurent modes of stress tensor $T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-2-n}$
- ightharpoonup C acts as c imes id, with $c \in \mathbb{R}$ the "central charge" of the CFT
- action on local fields (effect of variation of metric on correlations)
 - local fields form a Virasoro representation
 - ▶ highest weights of the representation → critical exponents
 - ▶ degenerate representations → PDEs for correlations

(exact solvability & classification)

II. LOCAL FIELDS IN LATTICE MODELS

The critical Ising model

- ▶ domain $\Omega \subsetneq \mathbb{C}$ open, 1-connected
- $\delta > 0$ small mesh size
- lattice approximation $\Omega_\delta \subset \mathbb{C}_\delta := \delta \mathbb{Z}^2$

Ising model: random spin configuration

Celebrated scaling limits of Ising correlations

$$\phi \colon \Omega \to \mathbb{H} = \{z \in \mathbb{C} \mid \Im \mathfrak{m}(z) > 0\}$$
 conformal map

Thm [Chelkak & Hongler & Izyurov, Ann. Math. 2015]

$$\lim_{\delta \to 0} \frac{1}{\delta^{k/8}} \mathsf{E} \Big[\prod_{j=1}^k \sigma_{z_j} \Big]$$

$$= \prod_{j=1}^k |\phi'(z_j)|^{1/8} \times \mathcal{C}_k \big(\phi(z_1), \dots, \phi(z_k)\big)$$

Thm [Hongler & Smirnov, Acta Math. 2013] [Hongler, 2011]

$$\lim_{\delta \to 0} \frac{1}{\delta^m} \mathsf{E} \left[\prod_{j=1}^m \left(-\sigma_{z_j} \sigma_{z_j + \delta} + \frac{1}{\sqrt{2}} \right) \right]$$
$$= \prod_{i=1}^m |\phi'(z_j)| \times \mathcal{E}_m (\phi(z_1), \dots, \phi(z_m))$$

Local fields of the Ising model

Local fields $\mathfrak{F}(z)$ of Ising

- ▶ $V \subset \mathbb{Z}^2$ finite subset
- ▶ $P: \{+1, -1\}^V \to \mathbb{C}$ a function
- $\mathfrak{F}(z) = P((\sigma_{z+\delta x})_{x \in V})$ (makes sense when Ω_{δ} is large enough)
- $ightharpoonup \mathcal{F}$ space of local fields

Null fields: "zero inside correlations"

- $\mathfrak{F}(z)$ null field: $\exists R > 0 \text{ s.t. } \mathsf{E} \Big[\mathfrak{F}(z) \prod_{j=1}^n \sigma_{w_j} \Big] = 0$ whenever $\|z - w_j\|_1 > R\delta \ \forall j$
- $ightharpoonup \mathcal{N} \subset \mathcal{F}$ space of null fields

$$\sigma = (\sigma_{\mathsf{Z}})_{\mathsf{Z} \in \Omega_{\delta}}$$
 Ising

Examples of local fields:

•
$$\mathfrak{F}(z) = -\sigma_z \, \sigma_{z+\delta}$$
 (energy)

 \mathcal{F}/\mathcal{N} equivalence classes of local fields (same correlations)

Main result 1: Virasoro action on Ising local fields

Theorem (Hongler & K. & Viklund, 2017)

The space \mathcal{F}/\mathcal{N} of correlation equivalence classes of local fields of the Ising model forms a representation of the Virasoro algebra with central charge $c=\frac{1}{2}$.

Discrete Gaussian Free Field

Discrete Gaussian Free Field (dGFF):

$$\Phi = \big(\Phi(z)\big)_{z\in\Omega_\delta}$$

Domain and discretization:

- $\Omega \subsetneq \mathbb{C}$ open, simply connected
- ▶ lattice approximation: $\Omega_{\delta} \subset \mathbb{C}_{\delta} := \delta \mathbb{Z}^2$

- centered Gaussian field on vertices of discrete domain Ω_{δ}
- ▶ probability density $p(\phi) \propto \exp\left(-\frac{1}{2}E(\phi)\right)$

$$\blacktriangleright E(\phi) = \sum_{z \sim w} (\phi(z) - \phi(w))^2$$

"Dirichlet energy"

Local fields of the dGFF

Local fields $\mathfrak{F}(z)$ of dGFF

- ▶ $V \subset \mathbb{Z}^2$ finite subset
- $ightharpoonup P \colon \mathbb{R}^V o \mathbb{C}$ polynomial function
- $\mathfrak{F}(z) = P((\Phi(z + \delta x))_{x \in V})$ (makes sense when Ω_{δ} is large enough)
- $ightharpoonup \mathcal{F}$ space of local fields

Null fields: "zero inside correlations"

- ▶ $\mathfrak{F}(z)$ null field: $\exists R > 0 \text{ s.t. } \mathsf{E} \left[\mathfrak{F}(z) \prod_{j=1}^{n} \sigma_{w_j} \right] = 0$ whenever $\|z - w_j\|_1 > R\delta \ \forall j$
- $ightharpoonup \mathcal{N} \subset \mathcal{F}$ space of null fields

$$\Phi = igl(\Phi(z)igr)_{z\in\Omega_\delta} \qquad \mathsf{dGFF}$$

Examples of local fields:

$$\mathfrak{F}(z) = \frac{1}{2}\Phi(z+\delta) - \frac{1}{2}\Phi(z-\delta)$$

•
$$\mathfrak{F}(z) = 361 \, \Phi(z)^3$$

 \mathcal{F}/\mathcal{N} equivalence classes of local fields (same correlations)

Main result 2: Virasoro action on dGFF local fields

Theorem (Hongler & K. & Viklund, 2017)

The space \mathcal{F}/\mathcal{N} of correlation equivalence classes of local fields of the dGFF forms a representation of the Virasoro algebra with central charge c=1.

III. AN ALGEBRAIC THEME AND VARIATIONS (SUGAWARA CONSTRUCTION)

Bosonic Sugawara construction

commutator
$$[A, B] := A \circ B - B \circ A$$

Proposition (bosonic Sugawara construction)

Suppose:

- ▶ V vector space and \mathfrak{a}_j : $V \to V$ linear for each $j \in \mathbb{Z}$
- $\forall v \in V \ \exists N \in \mathbb{Z} : j \geq N \implies \mathfrak{a}_j \ v = 0$
- $\blacktriangleright \ [\mathfrak{a}_i,\mathfrak{a}_j] = i \ \delta_{i+j,0} \ \mathsf{id}_V$

Define:

$$L_n := \frac{1}{2} \sum_{j < 0} \mathfrak{a}_j \circ \mathfrak{a}_{n-j} + \frac{1}{2} \sum_{j \geq 0} \mathfrak{a}_{n-j} \circ \mathfrak{a}_j \quad \text{ for } n \in \mathbb{Z}$$

Then:

- $ightharpoonup L_n \colon V \to V$ is well defined
- $[L_n, L_m] = (n-m) L_{n+m} + \frac{n^3-n}{12} \delta_{n+m,0} id_V$

 \therefore V Virasoro representation, central charge c = 1

Fermionic Sugawara construction 1

commutator
$$[A, B] := A \circ B - B \circ A$$

anticommutator $[A, B]_+ := A \circ B + B \circ A$

Proposition (fermionic Sugawara, Neveu-Schwarz sector)

Suppose:

- ▶ V vector space, \mathfrak{b}_k : $V \to V$ linear for each $k \in \mathbb{Z} + \frac{1}{2}$
- $\forall v \in V \ \exists N \in \mathbb{Z} : k \geq N \implies \mathfrak{b}_k v = 0$
- $[\mathfrak{b}_k,\mathfrak{b}_\ell]_+ = \delta_{k+\ell,0} \operatorname{id}_V$

$$\mathsf{Def.:} \ L_n := \frac{1}{2} \sum_{k>0} \Big(\frac{1}{2} + k \Big) \mathfrak{b}_{n-k} \mathfrak{b}_k - \frac{1}{2} \sum_{k<0} \Big(\frac{1}{2} + k \Big) \mathfrak{b}_k \mathfrak{b}_{n-k} \quad (n \in \mathbb{Z})$$

Then:

- $ightharpoonup L_n\colon V\to V$ is well defined
- $[L_n, L_m] = (n-m) L_{n+m} + \frac{n^3 n}{24} \delta_{n+m,0} id_V$
- \therefore V Virasoro representation, central charge $c = \frac{1}{2}$

Fermionic Sugawara construction 2

commutator
$$[A, B] := A \circ B - B \circ A$$

anticommutator $[A, B]_+ := A \circ B + B \circ A$

Proposition (fermionic Sugawara, Ramond sector)

Suppose:

- ▶ V vector space, \mathfrak{b}_i : $V \to V$ linear for each $j \in \mathbb{Z}$
- $\forall v \in V \ \exists N \in \mathbb{Z} : j \geq N \implies \mathfrak{b}_j v = 0$
- $[\mathfrak{b}_i,\mathfrak{b}_i]_+=\delta_{i+i,0}\,\mathrm{id}_V$

$$L_n \ := \frac{1}{2} \sum_{j \geq 0} \left(\frac{1}{2} + j \right) \mathfrak{b}_{n-j} \mathfrak{b}_j - \frac{1}{2} \sum_{j < 0} \left(\frac{1}{2} + j \right) \mathfrak{b}_j \mathfrak{b}_{n-j} \quad (n \in \mathbb{Z} \setminus \{0\})$$

Def.:

$$L_0 := \frac{1}{2} \sum_{j>0} j \, \mathfrak{b}_{-j} \mathfrak{b}_j + \frac{1}{16} \, \mathrm{id}_V$$

Then:

- $ightharpoonup L_n \colon V \to V$ is well defined
- $[L_n, L_m] = (n-m) L_{n+m} + \frac{n^3-n}{24} \delta_{n+m,0} id_V$
- V Virasoro representation, central charge $c = \frac{1}{2}$

IV. PROOF STEPS (DISCRETE COMPLEX ANALYSIS)

Kalle Kytölä

Outline / steps

For the Ising model and discrete GFF:

- √ 0.) Define model and local fields
 - 1.) Suitable discrete contour integrals and residue calculus
 - 2.) Introduce discrete holomorphic observable
 - 3.) Define Laurent modes of the observable
 - 4.) Commutation relations of Laurent modes
 - 5.) Virasoro action through Sugawara construction

Outline / steps

For the Ising model and discrete GFF:

- √ 0.) Define model and local fields
 - 1.) Suitable discrete contour integrals and residue calculus
 - 2.) Introduce discrete holomorphic observable
 - 3.) Define Laurent modes of the observable
 - 4.) Commutation relations of Laurent modes
 - 5.) Virasoro action through Sugawara construction

Lattices (square lattice and related lattices)

• fix small mesh size $\delta > 0$

- square lattice \mathbb{C}_{δ}
- ▶ dual lattice C_δ*

$$\mathbb{C}_{\delta} = \delta \mathbb{Z}^2$$

- $\blacktriangleright \ \ \text{medial lattice} \ \mathbb{C}^{\mathfrak{m}}_{\delta}$
- ightharpoonup diamond lattice $\mathbb{C}^{\diamond}_{\delta}$
- ightharpoonup corner lattice $\mathbb{C}^{\mathfrak{c}}_{\delta}$

Lattices (discretization of differential operators)

▶ Discrete ∂ and $\bar{\partial}$:

$$\begin{split} \partial_{\delta}f(z) &= \frac{1}{2}\Big(f\big(z+\frac{\delta}{2}\big) - f\big(z-\frac{\delta}{2}\big)\Big) - \frac{\mathrm{i}}{2}\Big(f\big(z+\frac{\mathrm{i}\delta}{2}\big) - f\big(z-\frac{\mathrm{i}\delta}{2}\big)\Big) \\ \bar{\partial}_{\delta}f(z) &= \frac{1}{2}\Big(f\big(z+\frac{\delta}{2}\big) - f\big(z-\frac{\delta}{2}\big)\Big) + \frac{\mathrm{i}}{2}\Big(f\big(z+\frac{\mathrm{i}\delta}{2}\big) - f\big(z-\frac{\mathrm{i}\delta}{2}\big)\Big) \\ f &: \mathbb{C}^{\delta}_{\delta} \to \mathbb{C} \quad \Rightarrow \quad \partial_{\delta}f, \bar{\partial}_{\delta}f \colon \mathbb{C}^{\diamond}_{\delta} \to \mathbb{C} \\ f &: \mathbb{C}^{\diamond}_{\delta} \to \mathbb{C} \quad \Rightarrow \quad \partial_{\delta}f, \bar{\partial}_{\delta}f \colon \mathbb{C}^{\diamond}_{\epsilon} \to \mathbb{C} \end{split}$$

Discrete Laplacian:

$$(\triangle_{\delta} = \bar{\partial}_{\delta}\partial_{\delta} = \partial_{\delta}\bar{\partial}_{\delta})$$

$$\triangle_{\delta}f(z) = -f(z) + \frac{1}{4}f(z+\delta) + \frac{1}{4}f(z-\delta) + \frac{1}{4}f(z+i\delta) + \frac{1}{4}f(z-i\delta)$$

Kalle Kytölä

Discrete residue calculus (contour integral)

- ▶ two functions $f \colon \mathbb{C}^\mathfrak{m}_\delta \to \mathbb{C}$ and $g \colon \mathbb{C}^\diamond_\delta \to \mathbb{C}$
- $ightharpoonup \gamma$ path on the corner lattice $\mathbb{C}^{\mathfrak{c}}_{\delta}$

- oriented edge of $\mathbb{C}^{\mathfrak{c}}_{\delta}$
- f defined on $\mathbb{C}^{\mathfrak{m}}_{\delta}$
- g defined on $\mathbb{C}_{\delta}^{\diamond}$

$$\oint_{[\gamma]} f(z_\mathfrak{m}) \, g(z_\diamond) \; [\mathsf{d} z]_\delta := \sum_{ec{e} \in \gamma} f(e_\mathfrak{m}) \, g(e_\diamond) \cdot ec{e}$$

Discrete residue calculus (properties)

$$\oint_{[\gamma]} f(z_{\mathfrak{m}}) \, g(z_{\diamond}) \, [\mathrm{d}z]_{\delta} := \sum_{\vec{e} \in \gamma} f(e_{\mathfrak{m}}) \, g(e_{\diamond}) \cdot \vec{e}$$

Proposition (properties of discrete contour integral)

▶ Green's formula (sum over $w_{\mathfrak{m}} \in \mathbb{C}^{\mathfrak{m}}_{\delta} \cap \operatorname{int}(\gamma)$ and $w_{\diamond} \in \mathbb{C}^{\diamond}_{\delta} \cap \operatorname{int}(\gamma)$)

$$\oint_{[\gamma]} f(z_m) g(z_{\diamond}) [dz]_{\delta} = i \sum_{w_m} f(w_m) (\bar{\partial}_{\delta} g)(w_m) + i \sum_{w_{\diamond}} (\bar{\partial}_{\delta} f)(w_{\diamond}) g(w_{\diamond})$$

contour deformation

$$\begin{array}{c} \gamma_1, \gamma_2 \ \text{two counterclockwise closed contours on} \ \mathbb{C}^{\mathfrak{c}}_{\delta} \\ \bar{\partial}_{\delta} f \equiv 0 \ \text{and} \ \bar{\partial}_{\delta} g \equiv 0 \ \text{on symm. diff. int} \big(\gamma_1 \big) \oplus \operatorname{int} \big(\gamma_2 \big) \\ \oint_{[\gamma_1]} f(z_m) \, g(z_\diamond) \ [\mathrm{d}z]_{\delta} = \oint_{[\gamma_2]} f(z_m) \, g(z_\diamond) \ [\mathrm{d}z]_{\delta} \end{array}$$

integration by parts

$$\begin{array}{l} \gamma \text{ counterclockwise closed contour on } \mathbb{C}^{\mathfrak{c}}_{\delta} \\ \bar{\partial}_{\delta} f \equiv \mathbf{0} \text{ and } \bar{\partial}_{\delta} g \equiv \mathbf{0} \text{ on neighbors of } \gamma \\ \oint_{[\gamma]} \left(\partial_{\delta} f\right)(z_{\mathit{m}}) \, g(z_{\diamond}) \, [\mathrm{d}z]_{\delta} = - \oint_{[\gamma]} f(z_{\mathit{m}}) \, \left(\partial_{\delta} g\right)(z_{\diamond}) \, [\mathrm{d}z]_{\delta} \end{array}$$

Discrete monomial functions (defining properties)

Proposition (discrete monomial functions)

 \exists functions $z\mapsto z^{[p]},\,p\in\mathbb{Z}$, defined on $\mathbb{C}^{\diamondsuit}_{\delta}\cup\mathbb{C}^{\mathfrak{m}}_{\delta}$, such that

$$ightharpoonup \bar{\partial}_{\delta}z^{[p]}=0$$
 whenever . . .

▶
$$p \ge 0$$
 and $z \in \mathbb{C}^{\diamond}_{\delta} \cup \mathbb{C}^{\mathfrak{m}}_{\delta}$

▶
$$p < 0$$
 and $z \in \mathbb{C}^{\diamond}_{\delta} \cup \mathbb{C}^{\mathfrak{m}}_{\delta}$, $||z||_{1} > R_{p} \delta$

$$ightharpoonup z^{[0]} \equiv 1 ext{ for all } z \in \mathbb{C}^{\diamond}_{\delta} \cup \mathbb{C}^{\mathfrak{m}}_{\delta}$$

$$\qquad \qquad \bullet \quad \bar{\partial}_{\delta} z^{[-1]} = 2\pi \, \delta_{z,0} + \tfrac{\pi}{2} \textstyle \sum_{x \in \{\pm \frac{\delta}{2}, \pm \mathrm{i} \frac{\delta}{2}\}} \delta_{z,x}$$

"
$$\bar{\partial}$$
 Green's function"

>
$$z^{[p]}$$
 has the same 90° rotation symmetry as z^p
• for $p < 0$ we have $z^{[p]} \to 0$ as $||z|| \to \infty$

• for any z there exists
$$D_z$$
 such that $z^{[p]} = 0$ for $p \ge D_z$

For γ large enough counterclockwise closed contour surrounding the origin...

$$\blacktriangleright \oint_{[\gamma]} z_{\mathfrak{m}}^{[\rho]} z_{\diamond}^{[q]} \ [\mathsf{d}z]_{\delta} = 2\pi \mathfrak{i} \ \delta_{\rho+q,-1}$$

Kalle Kytölä

Discrete monomial functions (example 0)

values of $z^{[0]}$

Discrete monomial functions (example 1)

values of $z^{[1]}$

Discrete monomial functions (example 2)

values of $z^{[2]}$

Discrete monomial functions (example 3)

values of $z^{[3]}$

Discrete monomial functions (example -1)

values of $z^{[-1]}$

Discrete monomial functions (example -2)

values of $z^{[-2]}$

Outline / steps

For the Ising model and discrete GFF:

- √ 0.) Define model and local fields
- 1.) Suitable discrete contour integrals and residue calculus
 - 2.) Introduce discrete holomorphic observable
 - 3.) Define Laurent modes of the observable
 - 4.) Commutation relations of Laurent modes
 - 5.) Virasoro action through Sugawara construction

Discrete Gaussian Free Field (definition again)

Discrete Gaussian Free Field (dGFF):

$$\Phi = \big(\Phi(z)\big)_{z\in\Omega_\delta}$$

Domain and discretization:

- $\Omega \subsetneq \mathbb{C}$ open, simply connected
- ▶ lattice approximation $\Omega_{\delta} \subset \mathbb{C}_{\delta}, \ \Omega_{\delta}^{\diamond} \subset \mathbb{C}_{\delta}^{\diamond}, \ \Omega_{\delta}^{\mathfrak{m}} \subset \mathbb{C}_{\delta}^{\mathfrak{m}}, \ \Omega_{\delta}^{\mathfrak{c}} \subset \mathbb{C}_{\delta}^{\mathfrak{c}}$

- centered Gaussian field on vertices of discrete domain Ω_δ
- ▶ probability density $p(\phi) \propto \exp\left(-\frac{1}{2}E(\phi)\right)$

$$\blacktriangleright E(\phi) = \sum_{z \sim w} (\phi(z) - \phi(w))^2$$

"Dirichlet energy"

- covariance $E[\Phi(z) \Phi(w)] = G_{\Omega_{\delta}}(z, w)$
 - $G_{\Omega_{\delta}}(z, w) =$ expected time at w for random walk from z before exiting Ω_{δ}

"△ Green's function"

Discrete holomorphic current (definition)

Discrete Gaussian Free Field (dGFF):

$$\Phi = \big(\Phi(z)\big)_{z \in \mathbb{C}_{\delta}}$$

- originally defined on $\Omega_\delta \subset \mathbb{C}_\delta$
- \blacktriangleright extend as zero to $\mathbb{C}_{\delta} \setminus \Omega_{\delta}$ and \mathbb{C}_{δ}^*
- \leadsto centered Gaussian field on $\mathbb{C}^{\diamond}_{\delta}$
- covariance $\mathsf{E}\big[\Phi(z)\,\Phi(w)\big] = G_{\Omega_{\delta}}(z,w)$

Discrete holomorphic current $\mathfrak{J}=ig(\mathfrak{J}(z)ig)_{z\in\mathbb{C}^{\mathfrak{m}}_{\delta}}$

$$\mathfrak{J}(z) := \partial_{\delta} \Phi(z)$$

$$= \frac{1}{2} \left(\underbrace{\Phi(z + \frac{\delta}{2}) - \Phi(z - \frac{\delta}{2})}_{\text{vanishes if } z \text{ on vertical edge}} \right) - \frac{\mathrm{i}}{2} \left(\underbrace{\Phi(z + \frac{\mathrm{i}\,\delta}{2}) - \Phi(z - \frac{\mathrm{i}\,\delta}{2})}_{\text{vanishes if } z \text{ on horizontal edge}} \right)$$

centered complex Gaussian field

- (... and a local field of dGFF!)
- purely real on horizontal edges, imaginary on vertical edges
- covariance $\mathsf{E}\big[\mathfrak{J}(z)\,\mathfrak{J}(w)\big] = \partial_{\delta}^{(z)}\partial_{\delta}^{(w)}G_{\Omega_{\delta}}(z,w)$

Discrete holomorphic current (correlations)

$$\Phi = \big(\Phi(z)\big)_{z\in\mathbb{C}_\delta}$$

Wick's formula for centered Gaussians:

$$\mathsf{E}\Big[\prod_{j=1}^n \Phi(z_j)\Big] = \sum_{\substack{P \text{ pairing} \\ \text{of } \{1,\dots,n\}}} \prod_{\{k,l\} \in P} \underbrace{\mathsf{E}\big[\Phi(z_k)\Phi(z_l)\big]}_{G_{\Omega_{\delta}}(z_k,z_l)}$$

Discrete holomorphic current $\mathfrak{J}=\left(\mathfrak{J}(z)\right)_{z\in\mathbb{C}^{\mathfrak{m}}_{\delta}},\,\mathfrak{J}(z)=\partial_{\delta}\Phi(z)$

Proposition (harmonicity of Φ , holomorphicity of \mathfrak{J})

- ▶ $\mathsf{E}\big[\big(\triangle_{\delta}\Phi\big)(z) \prod_{j=1}^n \Phi(w_j)\big] = 0$ when $\|z w_j\|_1 > \delta$ for all j
- ► $\mathsf{E}\big[\big(\bar{\partial}_{\delta}\mathfrak{J}\big)(z) \ \prod_{j=1}^n \Phi(w_j)\big] = 0$ when $\|z w_j\|_1 > \delta$ for all j

$$\therefore$$
 $\bar{\partial}_{\delta} \mathfrak{J} = \triangle_{\delta} \Phi$ is a null field

- √ 0.) Define model and local fields
- 1.) Suitable discrete contour integrals and residue calculus
- ✓ 2.) Introduce discrete holomorphic observable
 - 3.) Define Laurent modes of the observable
 - 4.) Commutation relations of Laurent modes
 - 5.) Virasoro action through Sugawara construction

Discrete Laurent modes of the current

- $\mathfrak{F}(w) = F[(\Phi(w + x\delta))_{x \in V}]$ local field of dGFF
- ho sufficiently large counterclockwise closed path on $\mathbb{C}^{\mathfrak{c}}_{\delta}$ surrounding origin and $V\delta$

For $j \in \mathbb{Z}$ define a new local field of dGFF $(\mathfrak{J}_j \mathfrak{F})(w)$ by

$$(\mathfrak{J}_{j}\,\mathfrak{F})(0) \;:=\; \frac{1}{\sqrt{2\pi}}\oint_{[\gamma]}\mathfrak{J}(z_{\mathfrak{m}})\,z_{\diamond}^{[j]}\,\mathfrak{F}(0)\,[\mathrm{d}z]_{\delta}$$

Lemma (discrete current modes)

 $\mathfrak{J}_{j} \colon \mathcal{F}/\mathcal{N} \to \mathcal{F}/\mathcal{N}$ is well-defined

independent of choice of ...

- ▶ add null field to $\mathfrak{F}(0) \rightsquigarrow$ add null field to $(\mathfrak{I}_j \mathfrak{F})(0)$... representative
- ► change $\gamma \rightsquigarrow$ add null fields $\bar{\partial}_{\delta} \mathfrak{J}(z) \times (\cdots)$ to $(\mathfrak{J}_{j} \mathfrak{F})(0)$... contour

- √ 0.) Define model and local fields
- √ 1.) Suitable discrete contour integrals and residue calculus
- ✓ 2.) Introduce discrete holomorphic observable
- √ 3.) Define Laurent modes of the observable
 - 4.) Commutation relations of Laurent modes
 - 5.) Virasoro action through Sugawara construction

Commutation of modes of the discrete current

Proposition (commutation of discrete current modes)

$$[\mathfrak{J}_i,\mathfrak{J}_j]=i\,\delta_{i+j,0}\;\mathrm{id}_{\mathcal{F}/\mathcal{N}}$$

$$E\left[\left(\mathfrak{J}_{i}\mathfrak{J}_{j}\,\mathfrak{F}(0)-\mathfrak{J}_{j}\mathfrak{J}_{i}\,\mathfrak{F}(0)\right)\cdots\right]$$

$$=i\,\,\delta_{i+j,0}\,\,E\left[\mathfrak{F}(0)\cdots\right]$$

(residue calculus)

- √ 0.) Define model and local fields
- √ 1.) Suitable discrete contour integrals and residue calculus
- ✓ 2.) Introduce discrete holomorphic observable
- √ 3.) Define Laurent modes of the observable
- √ 4.) Commutation relations of Laurent modes
 - 5.) Virasoro action through Sugawara construction

Sugawara construction with the dGFF current

Verify assumptions:

V vector space

space \mathcal{F}/\mathcal{N} of local fields modulo null fields

• $a_j : V \to V$ linear for each $j \in \mathbb{Z}$

discrete current Laurent mode $\mathfrak{J}_i \colon \mathcal{F}/\mathcal{N} \to \mathcal{F}/\mathcal{N}$

$$(\mathfrak{J}_{j}\mathfrak{F})(0):=rac{1}{\sqrt{2\pi}}\oint_{[\gamma]}\mathfrak{J}(z_{\mathfrak{m}})\,z_{\diamond}^{[j]}\,\mathfrak{F}(0)\,[dz]$$

 $\forall v \in V \ \exists N \in \mathbb{Z} \ : \ j \geq N \implies \mathfrak{a}_j \ v = 0$

monomial truncation: $\forall z_{\diamond} \in \mathbb{C}^{\diamond}_{\delta} \; \exists D \; : \; j \geq D \Longrightarrow z^{[j]}_{\diamond} = 0$

 $\blacktriangleright \ [\mathfrak{a}_i,\mathfrak{a}_j] = i \ \delta_{i+j,0} \ \mathsf{id}_V$

Laurent mode commutation $[\mathfrak{J}_i,\mathfrak{J}_j]=i\;\delta_{i+j,0}\;\mathrm{id}_{\mathcal{F}/\mathcal{N}}$

Theorem (Virasoro action for dGFF)

$$\mathfrak{L}_n := \frac{1}{2} \sum_{i < 0} \mathfrak{J}_j \circ \mathfrak{J}_{n-j} + \frac{1}{2} \sum_{i > 0} \mathfrak{J}_{n-j} \circ \mathfrak{J}_j$$

defines Virasoro representation with c=1 on the space \mathcal{F}/\mathcal{N} of correlation equivalence classes of local fields of the dGFF.

- √ 0.) Define model and local fields
- 1.) Suitable discrete contour integrals and residue calculus
 - 2.) Introduce discrete holomorphic observable
 - 3.) Define Laurent modes of the observable
 - 4.) Commutation relations of Laurent modes
 - 5.) Virasoro action through Sugawara construction

The critical Ising model

- ▶ $\Omega \subseteq \mathbb{C}$ open, 1-connected
- ▶ lattice approximation $\Omega_\delta \subset \mathbb{C}_\delta$, $\Omega_\delta^\diamond \subset \mathbb{C}_\delta^\diamond$, $\Omega_\delta^\mathfrak{m} \subset \mathbb{C}_\delta^\mathfrak{m}$, $\Omega_\delta^\mathfrak{c} \subset \mathbb{C}_\delta^\mathfrak{c}$

Ising model: random spin configuration

$$\sigma = (\sigma_{\mathsf{Z}})_{\mathsf{Z} \in \mathbb{C}_{\delta}} \in \{+1, -1\}^{\mathbb{C}_{\delta}}$$

$$lackbr{\hspace{0.5cm}} \sigma ig|_{\mathbb{C}_{\delta} \setminus \Omega_{\delta}} \equiv +1$$
 (plus-boundary conditions)

$$P[\{\sigma\}] \propto \exp(-\beta E(\sigma))$$
 (Boltzmann-Gibbs)

$$E(\sigma) = -\sum_{z \sim w} \sigma_z \, \sigma_w \qquad \text{(energy)}$$

$$\beta = \beta_c = \frac{1}{2} \log \left(\sqrt{2} + 1 \right)$$

(critical point)

Local fields of the Ising model

Local fields $\mathfrak{F}(z)$ of Ising

- ▶ $V \subset \mathbb{Z}^2$ finite subset
- $ightharpoonup P: \{+1, -1\}^V \to \mathbb{C}$ a function

parity
$$\begin{cases} P(-\sigma) = P(\sigma) & \text{even} \\ P(-\sigma) = -P(\sigma) & \text{odd} \end{cases}$$

- $ightharpoonup \mathcal{F}$ space of local fields

$$\mathcal{F}=\mathcal{F}^+\oplus\mathcal{F}^-$$
 by parity $egin{cases} \mathcal{F}^+ & \text{even} \\ \mathcal{F}^- & \text{odd} \end{cases}$

N ⊂ F space of null fields ("zero in correlations")

$$\sigma = \left(\sigma_{\it z}
ight)_{\it z \in \Omega_\delta}$$
 Ising

 \mathcal{F}/\mathcal{N} equivalence classes of local fields (same correlations)

Disorder operators in Ising model

Disorder operator pair:

$$(\mu_{p}\mu_{q})_{\lambda}:=\exp\Big(-2eta\sum_{\langle z,w
angle^{st}\in\lambda}\sigma_{z}\,\sigma_{w}\Big)$$

- ▶ $p, q \in \mathbb{C}^*_{\delta}$ dual vertices
- lacksquare λ path between p and q on \mathbb{C}^*_δ

"disorder line"

Remark:

- a single disorder operator is NOT a local field
- a disorder operator pair is a local field

(with fixed disorder line λ)

Corner fermions in Ising model

- $ightharpoonup c, d \in \mathbb{C}^{\mathfrak{c}}_{\delta} \text{ corners}$
- ▶ $x, y \in \mathbb{C}_{\delta}$ adjacent to c, d, respectively
- ▶ $p, q \in \mathbb{C}^*_{\delta}$ adjacent to c, d, respectively
- $\nu(c) := \frac{x-p}{|x-p|}$ phase factor
- ▶ $λ_c$ path between c and d "on $ℂ_δ^*$ "
- $\mathcal{W}(\lambda_{\mathfrak{c}}: c \leadsto d)$ cumulative angle of turning of $\lambda_{\mathfrak{c}}$

Corner fermion pair:

$$(\Psi_c^{\mathfrak{c}}\Psi_d^{\mathfrak{c}})_{\lambda_{\mathfrak{c}}}:=-\overline{
u(c)}\;\exp\Big(-rac{\mathrm{i}}{2}\mathcal{W}(\lambda_{\mathfrak{c}}:c\leadsto d)\Big)\;(\mu_p\mu_q)_{\lambda}\;\sigma_{\mathsf{X}}\sigma_{\mathsf{Y}}$$

Remark:

- one corner fermion is NOT a local field
- a corner fermion pair is a local field

(with fixed disorder line)

Discrete holomorphic fermions in Ising model

- $ightharpoonup z, w \in \mathbb{C}^{\mathfrak{m}}_{\delta}$ midpoints of edges
- \blacktriangleright $\lambda_{\mathfrak{m}}$ path between z and w "on \mathbb{C}_{δ}^{*} "
- $c, d \in \mathbb{C}^{\mathfrak{c}}_{\delta}$ adjacent to z, w, respectively
- $\lambda_{\mathfrak{c}}^{c,d}$ path between c and d on \mathbb{C}_{δ}^* obtained by local modification of $\lambda_{\mathfrak{m}}$

Holomorphic fermion pair:

$$(\Psi(z)\Psi(w))_{\lambda_{\mathfrak{m}}} := \frac{1}{8\sqrt{2}} \sum_{c,d} (\Psi_{c}^{c} \Psi_{d}^{c})_{\lambda_{c}^{c,d}}$$

Remark: (as before)

- one holomorphic fermion is NOT a local field
- a holomorphic fermion pair is a local field

(with fixed disorder line)

Properties of the fermion pairs

Lemma (disorder line independence mod \pm)

If
$$\lambda_{\mathfrak{m}}, \lambda'_{\mathfrak{m}}$$
 are disorder lines between $z, \zeta \in \mathbb{C}^{\mathfrak{m}}_{\delta}$ then $\mathsf{E} \big[(\Psi(\zeta) \Psi(z))_{\lambda_{\mathfrak{m}}} \prod_{j=1}^{n} \sigma_{w_{j}} \big] = (-1)^{\mathcal{N}} \times \mathsf{E} \big[(\Psi(\zeta) \Psi(z))_{\lambda'_{\mathfrak{m}}} \prod_{j=1}^{n} \sigma_{w_{j}} \big]$ where \mathcal{N} is the number of points w_{j} in the area enclosed by $\lambda_{\mathfrak{m}}$ and $\lambda'_{\mathfrak{m}}$.

Lemma (antisymmetry of fermions)

$$(\Psi(\zeta)\Psi(z))_{\lambda_{\mathfrak{m}}} = -(\Psi(z)\Psi(\zeta))_{\lambda_{\mathfrak{m}}}$$

Lemma (holomorphicity and singularity of fermion)

$$\mathsf{E}\Big[(\bar{\partial}_{\delta}\Psi(\zeta_{\diamond})\Psi(Z_{\mathfrak{m}}))\prod_{j=1}^{n}\sigma_{W_{j}}\Big] = \frac{-1}{4}\sum_{x\sim z_{\mathfrak{m}}}\delta_{\zeta_{\diamond},x}\times\mathsf{E}\big[\prod_{j=1}^{n}\sigma_{W_{j}}\big]$$

- √ 0.) Define model and local fields
- 1.) Suitable discrete contour integrals and residue calculus
- ✓ 2.) Introduce discrete holomorphic observable
 - 3.) Define Laurent modes of the observable
 - 4.) Commutation relations of Laurent modes
 - 5.) Virasoro action through Sugawara construction

Laurent modes of fermions in even sector

- $\mathfrak{F}(w) = P[(\sigma_{w+x\delta})_{x \in V}]$ even local field of Ising
- $\begin{array}{c} \hspace{0.5cm} \gamma, \widetilde{\gamma} \text{ large nested} \\ \hspace{0.5cm} \text{counterclockwise} \\ \hspace{0.5cm} \text{closed paths on } \mathbb{C}^{\mathfrak{c}}_{\delta} \end{array}$

For
$$k, \ell \in \mathbb{Z} + \frac{1}{2}$$
 define a new local field $((\Psi_k \Psi_\ell)\mathfrak{F})(w)$ by $((\Psi_k \Psi_\ell)\mathfrak{F})(0) := \frac{1}{2\pi} \oint_{\mathbb{R}^3} \oint_{\mathbb{R}^3} \zeta_{\diamond}^{[k-\frac{1}{2}]} z_{\diamond}^{[\ell-\frac{1}{2}]} \left(\Psi(\zeta_{\mathfrak{m}})\Psi(z_{\mathfrak{m}})\right) \mathfrak{F}(0) [dz]_{\delta} [d\zeta]_{\delta}$

Lemma (discrete fermion mode pairs)

$$(\Psi_k \Psi_\ell) \colon \mathcal{F}^+ / \mathcal{N}^+ o \mathcal{F}^+ / \mathcal{N}^+$$
 is well-defined

Remark: (as before)

- one fermion Laurent mode is NOT defined
- a fermion Laurent mode pair is defined, and acts on (even) local fields

- √ 0.) Define model and local fields
- 1.) Suitable discrete contour integrals and residue calculus
- ✓ 2.) Introduce discrete holomorphic observable
- 3.) Define Laurent modes of the observable on even sector
 - 4.) Anticommutation relations of Laurent modes
 - 5.) Virasoro action through Sugawara construction

Anticommutation of fermion modes in even sector

Proposition (anticommutation of fermion modes)

$$(\Psi_k\Psi_\ell)+(\Psi_\ell\Psi_k)=\delta_{k+\ell,0}\ \mathsf{id}_{\mathcal{F}^+/\mathcal{N}^+}$$

$$\begin{split} &\mathsf{E}\Big[\Big((\Psi_k\Psi_\ell)\,\mathfrak{F}(0) + (\Psi_\ell\Psi_k)\,\mathfrak{F}(0)\Big)\cdots\Big] \\ &= \delta_{k+\ell,0}\,\,\mathsf{E}\Big[\mathfrak{F}(0)\cdots\Big] \end{split}$$

(residue calculus)

- √ 0.) Define model and local fields
- √ 1.) Suitable discrete contour integrals and residue calculus
- ✓ 2.) Introduce discrete holomorphic observable
- √ 3.) Define Laurent modes of the observable
- √ 4.) Anticommutation relations of Laurent modes
 - 5.) Virasoro action through Sugawara construction

Sugawara construction for Ising even local fields

V vector space

space $\mathcal{F}^+/\mathcal{N}^+$ of even local fields modulo null fields

▶ \mathfrak{b}_k : $V \to V$ linear for each $k \in \mathbb{Z} + \frac{1}{2}$

fermion Laurent mode pairs $(\Psi_k \Psi_\ell) \colon \mathcal{F}^+/\mathcal{N}^+ \to \mathcal{F}^+/\mathcal{N}^+$

$$\frac{1}{2\pi}\oint_{\left[\widetilde{\gamma}\right]}\oint_{\left[\gamma\right]}\zeta_{\diamond}^{\left[k-\frac{1}{2}\right]}Z_{\diamond}^{\left[\ell-\frac{1}{2}\right]}\left(\Psi(\zeta_{\mathfrak{m}})\Psi(z_{\mathfrak{m}})\right)(\cdots)\left[\mathsf{d}z\right]_{\delta}\left[\mathsf{d}\zeta\right]_{\delta}$$

 $\forall v \in V \ \exists N \in \mathbb{Z} : \ell > N \implies \mathfrak{b}_{\ell} v = 0$

monomial truncation: $\forall z_{\diamond} \in \mathbb{C}^{\diamond}_{\delta} \;\; \exists D \;\; : \;\; \ell \geq D \Rightarrow z^{[\ell - \frac{1}{2}]}_{\diamond} = 0$

$$\begin{split} & [\mathfrak{b}_k,\mathfrak{b}_\ell]_+ = \delta_{k+\ell,0} \ \mathrm{id}_V \\ & \text{anticommutation} \ (\Psi_k \Psi_\ell) + (\Psi_\ell \Psi_k) = \delta_{k+\ell,0} \ \mathrm{id}_{\mathcal{F}^+/\mathcal{N}^+} \\ & \text{and} \ (\Psi_\rho \Psi_k) (\Psi_\ell \Psi_a) + (\Psi_\rho \Psi_\ell) (\Psi_k \Psi_a) = \delta_{k+\ell,0} \ (\Psi_\rho \Psi_a) \end{split}$$

Theorem (Virasoro action for Ising even sector)

$$\mathfrak{L}_{n} := \frac{1}{2} \sum_{k>0} \left(\frac{1}{2} + k \right) (\Psi_{n-k} \Psi_{k}) - \frac{1}{2} \sum_{k<0} \left(\frac{1}{2} + k \right) (\Psi_{k} \Psi_{n-k})$$

defines Virasoro repr. with $c = \frac{1}{2}$ on the space $\mathcal{F}^+/\mathcal{N}^+$ of correlation equivalence classes of Ising even local fields.

- √ 0.) Define model and local fields
- 1.) Suitable discrete contour integrals and residue calculus
- √ 2.) Introduce discrete holomorphic observable
 - 3.) Define Laurent modes of the observable
 - 4.) Anticommutation relations of Laurent modes
 - Apply Sugawara construction to define Virasoro action on odd local fields

Odd sector: Discrete half-integer monomials

Proposition (discrete half-integer monomial functions)

 \exists functions $z\mapsto z^{[p]},\,p\in\mathbb{Z}+\frac{1}{2}$, defined on the double cover $[\mathbb{C}^{\circ}_{\delta};0]\cup[\mathbb{C}^{\mathfrak{m}}_{\delta};0]$ ramified at the origin, such that

$$\bar{\partial}_{\delta}z^{[p]}=0$$
 whenever . . .

"discrete holomorphicity"

▶
$$p > 0$$
 and $z \in [\mathbb{C}_{\delta}^{\diamond}; 0] \cup [\mathbb{C}_{\delta}^{\mathfrak{m}}; 0]$

•
$$p < 0$$
 and $z \in [\mathbb{C}_{\delta}^{\diamond}; 0] \cup [\mathbb{C}_{\delta}^{\mathfrak{m}}; 0], ||z||_{1} > R_{p} \delta$

"derivatives"
"symmetry"

 $ightharpoonup z^{[p]}$ has the same 90° rotation symmetry as z^p

"decay"

• for p < 0 we have $z^{[p]} o 0$ as $\|z\| o \infty$

decay

• for any z there exists D_z such that $z^{[p]} = 0$ for $p \ge D_z$

"truncation"

For γ large enough counterclockwise closed contour surrounding the origin. . .

$$\oint_{[\gamma]} z_{\mathfrak{m}}^{[\rho]} z_{\diamond}^{[q]} [\mathsf{d}z]_{\delta} = 2\pi \mathrm{i} \delta_{\rho+q,-1}$$

"residue calculus"

Odd sector: Laurent modes of fermions

- $\mathfrak{F}(w) = P[(\sigma_{w+x\delta})_{x \in V}]$ odd local field of Ising
- $\begin{array}{c} \blacktriangleright \ \gamma, \widetilde{\gamma} \ \text{large nested} \\ \text{counterclockwise} \\ \text{closed paths on } \mathbb{C}^{\mathsf{c}}_{\delta} \end{array}$

For $i, j \in \mathbb{Z}$ define a new local field $((\Psi_i \Psi_j) \mathfrak{F})(w)$ by

$$((\Psi_{i}\Psi_{j})\mathfrak{F})(0) := \frac{1}{2\pi} \oint_{[\widetilde{\gamma}]} \oint_{[\gamma]} \zeta_{\diamond}^{[i-\frac{1}{2}]} z_{\diamond}^{[j-\frac{1}{2}]} \left(\Psi(\zeta_{\mathfrak{m}})\Psi(z_{\mathfrak{m}})\right) \mathfrak{F}(0) [dz]_{\delta} [d\zeta]_{\delta}$$

Lemma (discrete fermion mode pairs)

 $(\Psi_i \Psi_j) \colon \mathcal{F}^-/\mathcal{N}^- \to \mathcal{F}^-/\mathcal{N}^-$ is well-defined

Odd sector: Anticommutation of fermion modes

Proposition (anticommutation of fermion modes)

$$(\Psi_i \Psi_j) + (\Psi_j \Psi_i) = \delta_{i+j,0} \operatorname{id}_{\mathcal{F}^-/\mathcal{N}^-}$$

Odd sector: Fermionic Sugawara construction

Proposition (fermionic Sugawara, Ramond sector)

▶
$$V$$
 vector space, \mathfrak{b}_i : $V \to V$ linear for each $j \in \mathbb{Z}$

$$[\mathfrak{b}_i,\mathfrak{b}_j]_+ = \delta_{i+j,0} \text{ id}_V$$

$$\begin{split} L_n \; &:= \frac{1}{2} \sum_{j \geq 0} \Big(\frac{1}{2} + j \Big) \mathfrak{b}_{n-j} \mathfrak{b}_j - \frac{1}{2} \sum_{j < 0} \Big(\frac{1}{2} + j \Big) \mathfrak{b}_j \mathfrak{b}_{n-j} \quad (n \in \mathbb{Z} \setminus \{0\}) \\ L_0 \; &:= \frac{1}{2} \sum_{j > 0} j \, \mathfrak{b}_{-j} \mathfrak{b}_j + \frac{1}{16} \, \mathrm{id}_V \end{split}$$

Def.:

Then:
$$L_n: V \to V$$
 is well defined

$$[L_n, L_m] = (n-m) L_{n+m} + \frac{n^3 - n}{24} \delta_{n+m,0} id_V$$

Theorem (Virasoro action on Ising odd local fields)

The space of odd Ising local fields modulo null fields becomes Virasoro representation with central charge $c = \frac{1}{2}$.

Conclusions and outlook

- ✓ Lattice model fields of finite patterns form Virasoro repr.
 - ▶ discrete Gaussian free field: \mathfrak{L}_n on \mathcal{F}/\mathcal{N} by bosonic Sugawara
 - Ising model: \mathfrak{L}_n on $\mathcal{F}^+/\mathcal{N}^+ \oplus \mathcal{F}^-/\mathcal{N}^-$ by fermionic Sugawara "Neveu-Schwarz \oplus Ramond"

TODO Many CFT ideas rely on variants of Sugawara construction

- Wess-Zumino-Witten models
- symplectic fermions
- ▶ coset conformal field theories → CFT minimal models
- Coulomb gas formalism

TODO CFT fields ←→ lattice model fields of finite patterns

- 1-1 correspondence via the Virasoro action on lattice model fields?
- correlations of lattice model fields with appropriate renormalization converge in scaling limit to CFT correlations?
- conceptual derivation of PDEs for limit correlations via singular vectors?

THANK YOU!

