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Extensions of Gromov’s Theorem

Theorem (W. Thurston). Suppose M1 and M2 are orientable

hyperbolic 3-manifolds and f : M1 → M2 has non-zero degree d.

If vol M1 = |d | vol M2 then f is homotopic to a covering map of

degree d.

This involves extending the argument to the situation where f̃∞ is

only a measurable function.

Thurston also defined a relative Gromov norm, which he used to

show:

Theorem (W. Thurston). If M1 is a non-compact orientable

hyperbolic 3-manifold of finite volume, and M2 is obtained by

Dehn-filling at least one cusp of M1 then vol M1 > vol M2.



Margulis’ Lemma

Suppose Γ is a discrete subgroup of H3. For x ∈ H3 set

Γx (ε) = {γ ∈ Isom+H3 | dist(x , γ · x) < ε}

Lemma (Special case of Margulis’ lemma). There exists a

constant ε0 with the following property:

• If Γ < Isom+
+H3 is a discrete group and x ∈ H3 then

〈Γx (ε0)〉 is virtually nilpotent.

If Γ is torsion-free, i.e. if H3/Γ is a manifold, the discrete,

torsion-free, virtually nilpotent subgroups of Γ are actually

abelian. There are three types:

• Cyclic groups generated by a loxodromic isometry;

• Cyclic groups generated by a parabolic isometry;

• Rank 2 free abelian groups generated by two parabolics.

The middle case can not arise if H3/Γ has finite volume.



Thick and thin

Definition. The ε-thin part M(0,ε] of an orientable hyperbolic

manifold M is the set of points p ∈ M such that there is a

geodesic loop of length ≤ ε based at p. The ε-thick part is

M(ε,∞) = M −M(0,ε]

Suppose x ∈ M(0,ε], and let x̃ be a lift of x to H3. Then there

exists γ ∈ Γ such that dist(x̃ , γ · x̃) ≤ ε.
For G ⊂ Isom+H3, define

Cε(G ) = {x ∈ H3 : dist(x̃ , g · x̃) ≤ ε for some g ∈ G}.

If G ∼= Z is generated by a loxodromic isometry, then Cε(G ) is a

banana (or empty). In this case Cε(G )/G is a geometric tubular

neighborhood of a geodesic.

If G ∼= Z2 is generated by parabolic isometries, then Cε(G ) is a

horoball and Cε(G )/G is a cusp neighborhood.

So, if M has finite volume and ε < ε0 then M(0,ε] is a union of

cusp neighborhoods and tubes around short geodesics.



Jørgensen’s Theorem

Theorem (Jørgensen). For each C > 0 there exists a finite set

{M1, . . . ,Mk} of finite-volume orientable hyperbolic 3-manifolds

such that every orientable hyperbolic 3-manifold M with

vol M < C is constructed by Dehn-filling some cusps of one of

the Mi .

The idea is that there are only finitely many possible

homeomorphism types for M(µ,∞) when vol M < C . If x1, . . . , xn
are points of M(µ,∞) with dist(xi , xj) > µ then the balls B(xiµ/2)
are pairwise disjoint, so n < C/v where v = vol B(xiµ/2). If

{x1, . . . , xn} is maximal then every point of M(µ,∞) is within

distance 2µ of some xi . Thus there is a Delaunay “triangulation”

of M(µ,∞) with a bounded number of cells. (Lifted to H3, the

3-cells are convex hulls of sets of ≥ 4 points that lie on a sphere

containing no lifts of xi in its interior.



Well-ordering

The proof of Thurston’s hyperbolic Dehn-filling theorem implies:

Let M be an orientable finite-volume hyperbolic 3-manifold. Fix a

set of cusps of M. For any ε > 0, all but finitely many manifolds

M ′ obtained by Dehn-filling these cusps have

| vol M − vol M ′| < ε.

Theorem. The set of volumes of orientable hyperbolic

3-manifolds forms a well-ordered subset of R, and there are only

finitely many distinct manifolds with each volume.

Suppose vol M1 > vol M2 > · · · . By passing to a subsequence we

may assume each Mn is constructed by Dehn-filling of a given set

of cusps of a manifold M. By Gromov’s Theorem we have

vol M > vol Mn for all n. Thus

| vol M − vol Mn| > | vol M − vol M1| for all n > 1. Contradiction.



Who’s first?

In view of Jørgensen’s theorem:

Given a topological property P of finite volume hyperbolic

3-manifolds, we can ask “what is the first volume of a manifold

with property P?”

Cao and Meyerhoff answered this for P = “M is non-compact

and orientable”. They also found #2.

More recently Gabai, Meyerhoff and Milley extended this list up

to #10. The list consists of the first 10 manifolds in the cusped

census provided with Jeff Weeks’ SnapPea program.

They also answered this question for P = “M is closed and

orientable.” The answer is: Week’s manifold, m003(-3,1), which

has volume 0.942707362 . . .



Margulis numbers

Definition. Let M be a finite-volume hyperbolic 3-manifold. Say

that ε is a Margulis number for M if M(0,ε] is a disjoint union of

tubes and cusp neighborhoods.

If F is some family of finite-volume hyperbolic 3-manifolds we

define the Margulis constant of F to be

µ(F) = sup{ε : ε is a Margulis number for all M ∈ F}.

Observe that µ(M)=̇µ({M}) is a topological invariant of M, by

Mostow rigidity.

The Margulis constant for the class of all closed orientable

hyperbolic manifolds is unknown. The best known lower bound

(0.104) is due to Meyerhoff. It appears that µ(m003(−3, 1)) is

about 0.774.

Shalen has recently shown that 0.3925 is a Margulis number for

M = H3/Γ if the trace field is quadratic, Γ has integral traces,

and there is no torsion of order 2, 3 or 7 in H1(M).



Two classes of hyperbolic manifolds

The following purely topological result applies to all closed

hyperbolic 3-manifolds.

Theorem (Jaco-Shalen). Suppose that M is a closed

irreducible 3-manifold such that π1(M) does not have a subgroup

isomorphic to Z2. Then every 2-generator subgroup which has

infinite index in π1(M) is free.

The proof uses the Compact Core theorem and Stallings’ five

term exact sequence. The theorem implies that all closed

hyperbolic 3-manifolds fall into two classes:

• Manifolds which have a finite cover with a 2-generator

fundamental group;

• Manifolds M such that π1(M) is 2-free, meaning that every

2-generator subgroup of π1(M) is a free group.

We will see that log 3 is a lower bound for the Margulis constant

of the second class of manifolds. It may be feasible to classify

hyperbolic manifolds with 2-generator fundamental group.



The log 3 Theorem and extensions

Theorem (C - Shalen). Suppose Γ is a discrete subgroup of

Isom+H3 which has no parabolics elements and is freely

generated by γ1 and γ2. If p ∈ H3 then

max{dist(p, γ1 · p),dist(p, γ2 · p)} > log 3.

Theorem (Andersen, C, Canary, Shalen). Suppose Γ is a

discrete subgroup of Isom+H3 which has no parabolic elements

and is freely generated by γ1, . . . , γn. Let p ∈ H3 and set

di = dist(p, γi · p). Then

n∑
i=1

1

1 + edi
≤

1

2
.

These are much stronger than the versions proved in our papers,

due to the proof of Marden’s Tameness Conjecture by Agol and

Calegari-Gabai.

The assumption of no parabolics can be dropped by applying

Ohshika’s proof of the general version of Bers Density Conjecture.



Paradoxical decompositions

The free group F2 on the letters x , y has a “paradoxical

decomposition”:

F2 = {1} ∪ X ∪ Y ∪ X ∪ Y ,

where (X , Y , X , Y ) is the set of words that start with (x , y ,

x−1, y−1). The “paradoxical” aspect (that leads to the

Banach-Tarski paradox) is that left multiplication by x maps X

onto {1} ∪ X ∪ Y ∪ Y .

Think of F2 as acting on a 4-valent tree T . Then both T and its

Cantor set of ends T∞, inherit decompositions with the same

paradoxical property.

When Γ = 〈x , y〉 is a free group of isometries of H3 the analogue

of T∞ is the limit set ΛΓ = Γ · z − Γ ⊂ S2∞, z ∈ H3. (This does

not depend on z .)

We will construct a paradoxical decomposition of ΛΓ (using

measures, instead of subsets).



Conformal densities

Our construction of measures does depend on a choice of point

z ∈ H3, but in a very controlled way. Really, it gives a conformal

density of dimension D.

Example: For each point z ∈ H3, let νz be the “visual measure”

on S2∞. Given a Borel set X ⊂ S2∞, νz (X ) is the measure of the

solid angle subtended by X at the point z .

The relationship between νz and νz ′ is:

dνz ′ = P2z ,z ′dνz

(
i.e.

∫
f ν′z =

∫
f Pz ,z ′νz

)
,

where Pz ,z ′ is a certain real-valued function on S2∞:

In the upper half space model, if z and z ′ are on the t-axis at

heights 1 and t0 then Pz ,z ′(∞) = 1/t0.

The family νz is a 2-dimensional conformal density. If

dµz ′ = PDz ,z ′dµz , the family µz is D-dimensional.



Poincaré series

Suppose Γ is a discrete free group generated by two isometries x

and y . Take a point p in H3 and consider its orbit Γ · p.

For any point z ∈ H3 and s > 0 we have a Poincaré series:

Σ(z , s) =
∑
γ∈Γ

e−s dist(z ,γ·p).

If s is larger than the exponential growth rate of

r → |B(z , r) ∩ Γ · p|, this series will converge, and if s is smaller

than the growth rate the series will diverge.

So there is a critical exponent D such that Σ(z , s) diverges if

s > D and converges if s < D. (The value of D does not depend

on z .)

When s = D the series may or may not converge. To avoid

discussing “Patterson’s trick” we will assume it diverges.



Patterson’s construction

Fix p ∈ H3 and consider the orbit Γ · p. Choose a decreasing

sequence (sn) converging to the critical exponent D of Σ(z , s).

For each z ∈ H3 define

µz ,n =
1

Σ(z , sn)

∑
γ∈Γ

e−sn dist(z ,γ·p)δγ·p.

After passing to a subsequence we may assume that these

measures converge weakly to µz . Note that the support of µz is

contained in S2∞ and µz has total mass 1. It also follows formally

that:

• for any other point z ′ µz ′,n converges (to µz ′).

• µz = µX ,z + µX ,z + µY ,z + µY ,z , where µX ,z is constructed

by summing over X · z and taking the limit.

• µz , µX ,z , . . . are D-dimensional conformal densities (D ≤ 2).

• µX ,x(z) = µX ,z + µY ,z + µY ,z = µz − µX ,z , etc.

Note that we also have dµX ,x(z) = Pz ,x(z)dµX ,z .



Kleinian groups

We need to work in the space of purely loxodromic discrete free

groups generated by x and y . We can now use several big (new)

theorems about this space.

• AH(F2) = Hom(F2,PSL2(C))/ ∼. Concretely, AH(F2) has 3

complex parameters.

• D ⊂ AH(F2) is the set of conjugacy classes of discrete

faithful reps. Chuckrow showed that D is closed.

• GF ⊂ D is the set of geometrically finite (or Schottky)

groups – those with finite-sided fundamental domains.

Marden showed that GF is open.

• GF = D by Bers’ Density Conjecture (Bromberg, Ohshika).

• Purely loxodromic groups are dense in B = GF − GF (Bers).

• Canary, extending Bonahon, showed that if Γ ∈ B is

topologically tame then any positive Γ -invariant function f

with ∆(f ) ≤ 0 is constant.

• By Marden’s Tameness Conjecture (Agol, Calegari-Gabai),

all groups in D are topologically tame.



Minimizing

We are minimizing max(dist(z , x(z)),dist(z , y(z))) over D. The

minimum cannot occur in the open set GF because we can always

perturb a group in GF to reduce the displacements. So we only

have to consider purely loxodromic, geometrically infinite,

topologically tame groups in B. (These have ΛΓ = S2∞.)

For any D-dimensional conformal density µz , and z0 ∈ H3 then

the function u(z) =
∫

Pz0,zµz satisfies ∆(u) = −D(n −D − 1)u.

Since u must be constant in our case we have D = 2. This

implies that µz = νz , the visual density.

By symmetrizing, we may assume µX ,z (S2∞) = µX ,z (S2∞) ≤ 1/4.

Recall that µX ,x(z) = µX ,z + µY ,z + µY ,z = µz − µX ,z , and

dµX ,x(z) = Pz ,x(z)dµX ,z

Thus for some function f we have
∫

f µX ,x(z) ≤ 1/4 but∫
f Pz ,x(z)µX ,x(z) ≥ 3/4. A worst case analysis shows this can

only happen if dist(z , x(z)) ≥ log 3.


