How hard is it to approximate the Jones polynomial?

Greg Kuperberg

UC Davis
June 17, 2009

The Jones polynomial and quantum computation

Recall the Jones polynomial (\cong Kauffman bracket):

$$
\left.\not /=-q^{1 / 2}\right)\left(-q^{-1 / 2} \quad \square=-q-q^{-1}\right.
$$

What does it have to do with quantum computation?

> Theorem (Freedman, Kitaev, Wang; Aharonov, Jones, Landau)
> If $t=q^{2}$ is a root of unity, then a quantum computer can "additively" approximate the Jones polynomial in polynomial time.

> Theorem (Freedman, Larsen, Wang)
> If $t=q^{2}=\exp (2 \pi i / r)$ with $r=5$ or $r \geq 7$, then approximation of
> $V(L, t)$ is universal for quantum computation.

The Jones polynomial and quantum computation

Recall the Jones polynomial (\cong Kauffman bracket):

$$
\left.\searrow=-q^{1 / 2}\right)\left(-q^{-1 / 2} \sim \quad \square=-q-q^{-1}\right.
$$

What does it have to do with quantum computation?
Theorem (Freedman, Kitaev, Wang; Aharonov, Jones, Landau) If $t=q^{2}$ is a root of unity, then a quantum computer can "additively" approximate the Jones polynomial in polynomial time.

Theorem (Freedman, Larsen, Wang)
If $t=q^{2}=\exp (2 \pi i / r)$ with $r=5$ or $r \geq 7$, then approximation of $V(L, t)$ is universal for quantum computation.

Good news and bad news

- Additive approximation actually means

$$
P[\mathrm{yes}]=\left|\frac{V(L, t)}{[2]^{n}}\right|^{2},
$$

where $n=n(D)$ is the bridge number of a diagram D of L.

- Such an approximation is not useful for topology, even if quantum computers existed. But Jones values of special braids are useful for quantum computation.

Good news and bad news

- Additive approximation actually means

$$
P[\mathrm{yes}]=\left|\frac{V(L, t)}{[2]^{n}}\right|^{2},
$$

where $n=n(D)$ is the bridge number of a diagram D of L.

- Such an approximation is not useful for topology, even if quantum computers existed. But Jones values of special braids are useful for quantum computation.

Theorem (K.)
Let $t=\exp (2 \pi i / r)$ with $r=5$ or $r \geq 7$. Let $a>b>0$ be constants. Then it is \#P-hard to decide whether $|V(L, t)|>a$ or $|V(L, t)|<b$, given the promise that it is one of these.

Related results

Theorem (Jaeger, Vertigan, Welsh)
Exact computation of $V(L, t)$ is \#P-hard unless $t^{4}=1$ or $t^{6}=1$.
Theorem (Goldberg, Jerrum)
Approximate computation of the Tutte polynomial $T(G, x, y)$ is NP-hard for many values, and \#P-hard for some values.

- Both of these are graph-theoretic reductions. Goldberg and Jerrum use non-planar graphs.
- Our result uses a more direct connection between the Jones polynomial and computational models.

What is quantum probability?

Answer: Non-commutative probability

Probability can be defined by random variable algebras:

- Ω - a σ-algebra of boolean random variables
- $\mathcal{M}=L^{\infty}(\Omega)$ - the bounded \mathbb{C} random variables

The algebra \mathcal{M} can be described by axioms:

- It is a commutative algebra with $*$ (for \mathbb{C} conjugation).
- It is a Banach space, and $\left\|a^{*} a\right\|=\|a\|^{2}$
- It has a pre-dual \# \mathcal{M}.

This makes \mathcal{M} a commutative von Neumann algebra.
Quantum probability is exactly the same, except that \mathcal{M} can be
non-commutative.

What is quantum probability?

Answer: Non-commutative probability

Probability can be defined by random variable algebras:

- Ω - a σ-algebra of boolean random variables
- $\mathcal{M}=L^{\infty}(\Omega)$ - the bounded \mathbb{C} random variables

The algebra \mathcal{M} can be described by axioms:

- It is a commutative algebra with $*$ (for \mathbb{C} conjugation).
- It is a Banach space, and $\left\|a^{*} a\right\|=\|a\|^{2}$.
- It has a pre-dual ${ }^{\#} \mathcal{M}$. $\left({ }^{\#} \mathcal{M} \cong L^{1}(\Omega)\right)$

This makes \mathcal{M} a commutative von Neumann algebra.
non-commutative.

What is quantum probability?

Answer: Non-commutative probability

Probability can be defined by random variable algebras:

- Ω - a σ-algebra of boolean random variables
- $\mathcal{M}=L^{\infty}(\Omega)$ - the bounded \mathbb{C} random variables

The algebra \mathcal{M} can be described by axioms:

- It is a commutative algebra with $*$ (for \mathbb{C} conjugation).
- It is a Banach space, and $\left\|a^{*} a\right\|=\|a\|^{2}$.
- It has a pre-dual $\# \mathcal{M}$.

This makes \mathcal{M} a commutative von Neumann algebra.
Quantum probability is exactly the same, except that \mathcal{M} can be non-commutative.

More on quantum probability

- A state is an expectation functional $\rho: \mathcal{M} \rightarrow \mathbb{C}$.
- If \mathcal{A} and \mathcal{B} are two systems, then the joint system is $\mathcal{A} \otimes \mathcal{B}$.
- Quantum probability is empirically true.

The state region of a classical trit $3 \mathbb{C}$ vs that of a qubit \mathcal{M}_{2} :

classical trit

|1
qubit

What is quantum computation?

A Bourbaki definition
A \otimes category \mathcal{C} can be viewed as a computational model. You can make (uniform) circuits of gates in \mathcal{C}, by definition locally bounded diagrams. The circuit size is the computation "time".

model	poly time	objects	morphisms	\otimes
deterministic	P	sets	functions	\times
probabilistic	BPP	$L^{\infty}(\Omega)$	stochastic maps	\otimes
quantum	BQP	\mathcal{M}	stochastic maps	\otimes

- Actually, the third column is overly fancy. We are interested in finite or finite-dimensional objects.
- In relevant cases, the input can be a bit string and the output can be converted to a bit or a bit string.

What is quantum computation?

A Bourbaki definition

A \otimes category \mathcal{C} can be viewed as a computational model. You can make (uniform) circuits of gates in \mathcal{C}, by definition locally bounded diagrams. The circuit size is the computation "time".

model	poly time	objects	morphisms	\otimes
deterministic	P	sets	functions	\times
probabilistic	BPP	$L^{\infty}(\Omega)$	stochastic maps	\otimes
quantum	BQP	\mathcal{M}	stochastic maps	\otimes

- Actually, the third column is overly fancy. We are interested in finite or finite-dimensional objects.
- In relevant cases, the input can be a bit string and the output can be converted to a bit or a bit string.

What is quantum computation?

Reduction to a CS definition

- The initial state can be pure: $\rho(a)=\langle\psi| a|\psi\rangle$.
- Stinespring's theorem: Every quantum map $\mathcal{M}_{a}^{\#} \rightarrow \mathcal{M}_{b}^{\#}$ comes from a unitary operator $U \in U(d)$.
- The "output" can be measured by pairing with a pure state.
- Local boundedness: You can compute with $\mathcal{M}_{2}^{\otimes n}$ (n qubits)
- Local generation: Two-qubit gates $\in \mathrm{U}(4)$ generate $\mathrm{U}\left(2^{n}\right)$
- Dense generation: A better-founded model has finitely many gates that densely generate $\mathrm{U}(4)$ or $\mathrm{U}\left(2^{n}\right)$.

What is quantum computation?

Reduction to a CS definition

- The initial state can be pure: $\rho(a)=\langle\psi| a|\psi\rangle$.
- Stinespring's theorem: Every quantum map $\mathcal{M}_{a}^{\#} \rightarrow \mathcal{M}_{b}^{\#}$ comes from a unitary operator $U \in U(d)$.
- The "output" can be measured by pairing with a pure state.
- Local boundedness: You can compute with $\mathcal{M}_{2}^{\otimes n}$ (n qubits).
- Local generation: Two-qubit gates $\in \mathrm{U}(4)$ generate $\mathrm{U}\left(2^{n}\right)$.
- Dense generation: A better-founded model has finitely many gates that densely generate $\mathrm{U}(4)$ or $\mathrm{U}\left(2^{n}\right)$.

A quantum circuit

- Each $U_{k} \in \mathrm{U}(4)$ and $C \in \mathrm{U}(32)$ (or $\mathrm{U}\left(2^{n}\right)$).
- You could instead use qudits and make the gates k-local.

Quantum computation with quantum invariants

Theorem (Freedman, Larsen, Wang)
If $t=\exp (2 \pi i / r)$ with $r=5$ or $r \geq 7$, and if $n \geq 3$ ($n \geq 5$ when $r=10$), then the Jones representation $\rho: B_{n} \rightarrow \mathrm{U}(N)$ is dense in $\operatorname{PSU}(N)$.

Theorem (Freedman, Kitaev, Wang; Aharonov, Jones, Landau)
A truncated Temperley-Lieb category with $r \geq 5$ is computationally equivalent to standard QC with Vect $<_{<\infty}(\mathbb{C})$.

Note: Unlike general quantum algebra, quantum probability and computation require unitary/Hermitian structures over \mathbb{C}.

A plat link diagram as a quantum circuit

By FLW, the Jones polynomial of this is a quantum circuit.

Other complexity classes

You can define many complexity classes within one category (by using controlled non-bounded structure).

- $N P=A$ certificate of "yes" can be confirmed in P.
- $P P=$ vote by a majority of fixed-length certificates.
- \#P = output is the number of accepted certificates.
- $A^{B}=$ class A using B as an oracle (or black box).

In fact, these are all complete problems.

Other complexity classes

You can define many complexity classes within one category (by using controlled non-bounded structure).

- NP $=$ A certificate of "yes" can be confirmed in P.
- $P P=$ vote by a majority of fixed-length certificates.
- \#P = output is the number of accepted certificates.
- $A^{B}=$ class A using B as an oracle (or black box).

Example: If V is a variety over \mathbb{F}_{2}, whether it has an \mathbb{F}_{2}-rational point is in NP, whether it has at least N such points is in PP, and counting them is in $\# P$.

In fact, these are all complete problems.

Complexity class relations

Theorem (Adleman, DeMarrais, Huang; et al)

$$
B Q P \subseteq P P .
$$

Theorem (Toda)

$$
N P^{N P}{ }^{N P} \subseteq P^{\# P}=P^{P P} .
$$

- No relation between BQP and NP is known.
- By Toda's theorem, PP is thought to be very large.

PostBQP

Theorem (Aaronson)
PostBQP = PP

- By definition, PostBQP is BQP with free retries. The computer outputs "yes", "no", or "try again"; only the ratio of "yes" to "no" matters.
- Equivalently, Alice and Bob each do a quantum computation. They may both be very unlikely to output "yes". In PostBQP, we say "yes" if Alice is twice as likely to succeed as Bob; and "no" if vice-versa.
- PostBPP can also be defined; it is not much larger than NP

PostBQP

Theorem (Aaronson)
PostBQP = PP.

- By definition, PostBQP is BQP with free retries. The computer outputs "yes", "no", or "try again"; only the ratio of "yes" to "no" matters.
- Equivalently, Alice and Bob each do a quantum computation. They may both be very unlikely to output "yes". In PostBQP, we say "yes" if Alice is twice as likely to succeed as Bob; and "no" if vice-versa.
- PostBPP can also be defined; it is not much larger than NP

PostBQP

Theorem (Aaronson)
PostBQP = PP.

- By definition, PostBQP is BQP with free retries. The computer outputs "yes", "no", or "try again"; only the ratio of "yes" to "no" matters.
- Equivalently, Alice and Bob each do a quantum computation. They may both be very unlikely to output "yes". In PostBQP, we say "yes" if Alice is twice as likely to succeed as Bob; and "no" if vice-versa.
- PostBPP can also be defined; it is not much larger than NP.

Putting it all together

Theorem
Let $t=\exp (2 \pi i / r)$ with $r=5$ or $r \geq 7$. Let $a>b>0$. Then $|V(L, t)|>a$ vs $|V(L, t)|<b$ is \#P-hard.

Proof.

- Estimating $|V(L, t)|$ is universal for quantum computation.
- But without bridge number normalization, we are estimating exponentially small probabilities.
- Thus, a rough estimate of $|V(L, t)|$ is PostBQP-hard.
- How hard is that? By Aaronson's theorem, PP-hard.
- Which is the same as \#P-hard, by playing high-low.

Putting it all together

Theorem
Let $t=\exp (2 \pi i / r)$ with $r=5$ or $r \geq 7$. Let $a>b>0$. Then $|V(L, t)|>a$ vs $|V(L, t)|<b$ is \#P-hard.

Proof.

- Estimating $|V(L, t)|$ is universal for quantum computation.
- But without bridge number normalization, we are estimating exponentially small probabilities.
- Thus, a rough estimate of $|V(L, t)|$ is PostBQP-hard.
- How hard is that? By Aaronson's theorem, PP-hard.
- Which is the same as \#P-hard, by playing high-low.

Putting it all together

Theorem
Let $t=\exp (2 \pi i / r)$ with $r=5$ or $r \geq 7$. Let $a>b>0$. Then $|V(L, t)|>a$ vs $|V(L, t)|<b$ is \#P-hard.

Proof.

- Estimating $|V(L, t)|$ is universal for quantum computation.
- But without bridge number normalization, we are estimating exponentially small probabilities.
- Thus, a rough estimate of $|V(L, t)|$ is PostBQP-hard.
- How hard is that? By Aaronson's theorem, PP-hard
- Which is the same as \#P-hard, by playing high-low.

Putting it all together

Theorem
Let $t=\exp (2 \pi i / r)$ with $r=5$ or $r \geq 7$. Let $a>b>0$. Then $|V(L, t)|>a$ vs $|V(L, t)|<b$ is \#P-hard.

Proof.

- Estimating $|V(L, t)|$ is universal for quantum computation.
- But without bridge number normalization, we are estimating exponentially small probabilities.
- Thus, a rough estimate of $|V(L, t)|$ is PostBQP-hard.
- How hard is that? By Aaronson's theorem, PP-hard.
- Which is the same as \#P-hard, by playing high-low.

Putting it all together

Theorem
Let $t=\exp (2 \pi i / r)$ with $r=5$ or $r \geq 7$. Let $a>b>0$. Then $|V(L, t)|>a$ vs $|V(L, t)|<b$ is \#P-hard.

Proof.

- Estimating $|V(L, t)|$ is universal for quantum computation.
- But without bridge number normalization, we are estimating exponentially small probabilities.
- Thus, a rough estimate of $|V(L, t)|$ is PostBQP-hard.
- How hard is that? By Aaronson's theorem, PP-hard.
- Which is the same as \#P-hard, by playing high-low.

Related results and questions

The reductions suggest that the divide-and-conquer algorithms to compute $V(L, t)$ and similar are nearly optimal.

```
Theorem (K.)
If tr}\not=1\mathrm{ , the Jones representation }\mp@subsup{\rho}{n}{}\mathrm{ is Zariski dense in
PSL(N,\mathbb{C})
Corollary
If tr}\not=1\mathrm{ and some Jones representation }\mp@subsup{\rho}{n}{}\mathrm{ is indiscrete, then it is
dense, so estimating |V(L,t)| is #P-hard.
Non-unitary linear computation is okay in context. Indiscreteness
may be more than needed for hardness.
Question
How hard is it to compute deg |V (L,t)|?
```


Related results and questions

The reductions suggest that the divide-and-conquer algorithms to compute $V(L, t)$ and similar are nearly optimal.

Theorem (K.)
If $t^{r} \neq 1$, the Jones representation ρ_{n} is Zariski dense in $\operatorname{PSL}(N, \mathbb{C})$.

Corollary
If $t^{r} \neq 1$ and some Jones representation ρ_{n} is indiscrete, then it is dense, so estimating $|V(L, t)|$ is \#P-hard.
Non-unitary linear computation is okay in context. Indiscreteness may be more than needed for hardness.

Question
How hard is it to compute deg $|V(L, t)|$?

Related results and questions

The reductions suggest that the divide-and-conquer algorithms to compute $V(L, t)$ and similar are nearly optimal.

Theorem (K.)
If $t^{r} \neq 1$, the Jones representation ρ_{n} is Zariski dense in $\operatorname{PSL}(N, \mathbb{C})$.

Corollary
If $t^{r} \neq 1$ and some Jones representation ρ_{n} is indiscrete, then it is dense, so estimating $|V(L, t)|$ is \#P-hard.
Non-unitary linear computation is okay in context. Indiscreteness may be more than needed for hardness.

Question
How hard is it to compute $\operatorname{deg}|V(L, t)|$?

