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The Jones polynomial and quantum computation

Recall the Jones polynomial (∼= Kauffman bracket):

= −q1/2 − q−1/2 = −q − q−1

What does it have to do with quantum computation?

Theorem (Freedman, Kitaev, Wang; Aharonov, Jones, Landau)

If t = q2 is a root of unity, then a quantum computer can
“additively” approximate the Jones polynomial in polynomial time.

Theorem (Freedman, Larsen, Wang)

If t = q2 = exp(2πi/r) with r = 5 or r ≥ 7, then approximation of
V (L, t) is universal for quantum computation.
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Good news and bad news

• Additive approximation actually means

P[yes] =

∣∣∣∣V (L, t)

[2]n

∣∣∣∣2 ,
where n = n(D) is the bridge number of a diagram D of L.

• Such an approximation is not useful for topology, even if
quantum computers existed. But Jones values of special
braids are useful for quantum computation.

Theorem (K.)

Let t = exp(2πi/r) with r = 5 or r ≥ 7. Let a > b > 0 be
constants. Then it is #P-hard to decide whether |V (L, t)| > a or
|V (L, t)| < b, given the promise that it is one of these.
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Related results

Theorem (Jaeger, Vertigan, Welsh)

Exact computation of V (L, t) is #P-hard unless t4 = 1 or t6 = 1.

Theorem (Goldberg, Jerrum)

Approximate computation of the Tutte polynomial T (G , x , y) is
NP-hard for many values, and #P-hard for some values.

• Both of these are graph-theoretic reductions. Goldberg and
Jerrum use non-planar graphs.

• Our result uses a more direct connection between the Jones
polynomial and computational models.
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What is quantum probability?
Answer: Non-commutative probability

Probability can be defined by random variable algebras:

• Ω - a σ-algebra of boolean random variables

• M = L∞(Ω) - the bounded C random variables

The algebra M can be described by axioms:

• It is a commutative algebra with ∗ (for C conjugation).

• It is a Banach space, and ||a∗a|| = ||a||2.

• It has a pre-dual #M. (#M∼= L1(Ω))

This makes M a commutative von Neumann algebra.
Quantum probability is exactly the same, except that M can be
non-commutative.
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More on quantum probability

• A state is an expectation functional ρ :M→ C.

• If A and B are two systems, then the joint system is A⊗ B.

• Quantum probability is empirically true.

The state region of a classical trit 3C vs that of a qubit M2:

[0]

[1]

[2]

classical trit

ρ

|0〉

|1〉

|+〉|−〉

qubit

ρ
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What is quantum computation?
A Bourbaki definition

A ⊗ category C can be viewed as a computational model. You can
make (uniform) circuits of gates in C, by definition locally bounded
diagrams. The circuit size is the computation “time”.

model poly time objects morphisms ⊗
deterministic P sets functions ×
probabilistic BPP L∞(Ω) stochastic maps ⊗

quantum BQP M stochastic maps ⊗

• Actually, the third column is overly fancy. We are interested in
finite or finite-dimensional objects.

• In relevant cases, the input can be a bit string and the output
can be converted to a bit or a bit string.
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What is quantum computation?
Reduction to a CS definition

• The initial state can be pure: ρ(a) = 〈ψ|a|ψ〉.
• Stinespring’s theorem: Every quantum map M#

a →M#
b

comes from a unitary operator U ∈ U(d).

• The “output” can be measured by pairing with a pure state.

• Local boundedness: You can compute with M⊗n
2 (n qubits).

• Local generation: Two-qubit gates ∈ U(4) generate U(2n).

• Dense generation: A better-founded model has finitely many
gates that densely generate U(4) or U(2n).
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A quantum circuit

〈0| |0〉

〈0| |0〉

〈0| |0〉

〈0| |0〉

〈0| |0〉
U1

U2

U3

U4

• Each Uk ∈ U(4) and C ∈ U(32) (or U(2n)).

• You could instead use qudits and make the gates k-local.
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Quantum computation with quantum invariants

Theorem (Freedman, Larsen, Wang)

If t = exp(2πi/r) with r = 5 or r ≥ 7, and if n ≥ 3 (n ≥ 5 when
r = 10), then the Jones representation ρ : Bn → U(N) is dense in
PSU(N).

Theorem (Freedman, Kitaev, Wang; Aharonov, Jones, Landau)

A truncated Temperley-Lieb category with r ≥ 5 is
computationally equivalent to standard QC with Vect<∞(C).

Note: Unlike general quantum algebra, quantum probability and
computation require unitary/Hermitian structures over C.
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A plat link diagram as a quantum circuit

input computation output

By FLW, the Jones polynomial of this is a quantum circuit.
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Other complexity classes

You can define many complexity classes within one category (by
using controlled non-bounded structure).

• NP = A certificate of “yes” can be confirmed in P.

• PP = vote by a majority of fixed-length certificates.

• #P = output is the number of accepted certificates.

• AB = class A using B as an oracle (or black box).

Example: If V is a variety over F2, whether it has an F2-rational
point is in NP, whether it has at least N such points is in PP, and
counting them is in #P.

In fact, these are all complete problems.
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Complexity class relations

Theorem (Adleman, DeMarrais, Huang; et al)

BQP ⊆ PP.

Theorem (Toda)

NPNP. . .NP

⊆ P#P = PPP.

• No relation between BQP and NP is known.

• By Toda’s theorem, PP is thought to be very large.
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PostBQP

Theorem (Aaronson)

PostBQP = PP.

• By definition, PostBQP is BQP with free retries. The
computer outputs “yes”, “no”, or “try again”; only the ratio
of “yes” to “no” matters.

• Equivalently, Alice and Bob each do a quantum computation.
They may both be very unlikely to output “yes”. In PostBQP,
we say “yes” if Alice is twice as likely to succeed as Bob; and
“no” if vice-versa.

• PostBPP can also be defined; it is not much larger than NP.
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Putting it all together

Theorem
Let t = exp(2πi/r) with r = 5 or r ≥ 7. Let a > b > 0. Then
|V (L, t)| > a vs |V (L, t)| < b is #P-hard.

Proof.

• Estimating |V (L, t)| is universal for quantum computation.

• But without bridge number normalization, we are estimating
exponentially small probabilities.

• Thus, a rough estimate of |V (L, t)| is PostBQP-hard.

• How hard is that? By Aaronson’s theorem, PP-hard.

• Which is the same as #P-hard, by playing high-low.
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Related results and questions

The reductions suggest that the divide-and-conquer algorithms to
compute V (L, t) and similar are nearly optimal.

Theorem (K.)

If tr 6= 1, the Jones representation ρn is Zariski dense in
PSL(N,C).

Corollary

If tr 6= 1 and some Jones representation ρn is indiscrete, then it is
dense, so estimating |V (L, t)| is #P-hard.

Non-unitary linear computation is okay in context. Indiscreteness
may be more than needed for hardness.

Question
How hard is it to compute deg |V (L, t)|?
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