Hyperbolic volume, Mahler measure, and homology growth

Thang Le

School of Mathematics
Georgia Institute of Technology
Columbia University, June 2009

Outline

（1）Homology Growth and volume
（2）Torsion and Determinant
（3）L^{2}－Torsion
（4）Approximation by finite groups

Outline

（1）Homology Growth and volume

2 Torsion and Determinant

（3）L^{2}－Torsion

4．Approximation by finite groups

Finite covering of knot complement
K is a knot in $S^{3}, \quad X=S^{3} \backslash K, \quad \pi=\pi_{1}(X)$.

Finite covering of knot complement

K is a knot in $S^{3}, \quad X=S^{3} \backslash K, \quad \pi=\pi_{1}(X)$.
π is residually finite: \exists a nested sequence of normal subgroups

$$
\begin{gathered}
\pi=G_{0} \supset G_{1} \supset G_{2} \ldots \\
{\left[\pi: G_{k}\right]<\infty, \quad \cap_{k} G_{k}=\{1\} .}
\end{gathered}
$$

Finite covering of knot complement

K is a knot in $S^{3}, \quad X=S^{3} \backslash K, \quad \pi=\pi_{1}(X)$ ．
π is residually finite：\exists a nested sequence of normal subgroups

$$
\begin{gathered}
\pi=G_{0} \supset G_{1} \supset G_{2} \ldots \\
{\left[\pi: G_{k}\right]<\infty, \quad \cap_{k} G_{k}=\{1\} .}
\end{gathered}
$$

If $[\pi: G]<\infty$ ，let $\quad X_{G}=G$－covering of X

$$
X_{G}^{\mathrm{br}}=\text { branched } G \text {-covering of } S^{3}
$$

Finite covering of knot complement

K is a knot in $S^{3}, \quad X=S^{3} \backslash K, \quad \pi=\pi_{1}(X)$ ．
π is residually finite：\exists a nested sequence of normal subgroups

$$
\begin{gathered}
\pi=G_{0} \supset G_{1} \supset G_{2} \ldots \\
{\left[\pi: G_{k}\right]<\infty, \quad \cap_{k} G_{k}=\{1\} .}
\end{gathered}
$$

If $[\pi: G]<\infty$ ，let $\quad X_{G}=G$－covering of X

$$
X_{G}^{\mathrm{br}}=\text { branched } G \text {-covering of } S^{3}
$$

Want：Asymptotics of $H_{1}\left(X_{G_{k}}^{\mathrm{br}}, \mathbb{Z}\right)$ as $k \rightarrow \infty$ ．

Growth and Volume

(Kazhdan-Lück) $\quad \lim _{k \rightarrow \infty} \frac{b_{1}\left(X_{G_{k}}^{\mathrm{br}}\right)}{\left[\pi: G_{k}\right]}=0 \quad\left(=L^{2}-\right.$ Betti number).

Growth and Volume

(Kazhdan-Lück) $\quad \lim _{k \rightarrow \infty} \frac{b_{1}\left(X_{G_{k}}^{\mathrm{br}}\right)}{\left[\pi: G_{k}\right]}=0 \quad\left(=L^{2}-\right.$ Betti number).

$$
t(K, G):=\left|\operatorname{Tor} H_{1}\left(X_{G}^{\mathrm{br}}, \mathbb{Z}\right)\right| .
$$

Growth and Volume

(Kazhdan-Lück) $\quad \lim _{k \rightarrow \infty} \frac{b_{1}\left(X_{G_{k}}^{\mathrm{br}}\right)}{\left[\pi: G_{k}\right]}=0 \quad\left(=L^{2}-\right.$ Betti number $)$.

$$
t(K, G):=\left|\operatorname{Tor} H_{1}\left(X_{G}^{\mathrm{br}}, \mathbb{Z}\right)\right| .
$$

Definition of $\operatorname{Vol}(K): X=S^{3} \backslash K$ is Haken.

$$
X \backslash \text { (} \sqcup \text { tori) }=\sqcup \text { pieces }
$$

each piece is either hyperbolic or Seifert-fibered.

$$
\operatorname{Vol}(K):=\frac{1}{6 \pi} \sum \operatorname{Vol}(\text { hyperbolic pieces })=C(\text { Gromov norm of } X) .
$$

Growth and Volume

(Kazhdan-Lück)

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \frac{b_{1}\left(X_{G_{k}}^{\mathrm{br}}\right)}{\left[\pi: G_{k}\right]}=0 \quad\left(=L^{2}-\text { Betti number }\right) \\
& t(K, G):=\left|\operatorname{Tor} H_{1}\left(X_{G}^{\mathrm{br}}, \mathbb{Z}\right)\right|
\end{aligned}
$$

Definition of $\operatorname{Vol}(K): X=S^{3} \backslash K$ is Haken.

$$
X \backslash(\sqcup \text { tori })=\sqcup \text { pieces }
$$

each piece is either hyperbolic or Seifert-fibered.

$$
\operatorname{Vol}(K):=\frac{1}{6 \pi} \sum \operatorname{Vol}(\text { hyperbolic pieces })=C(\text { Gromov norm of } X)
$$

Theorem

$$
\limsup _{k \rightarrow \infty} t\left(K, G_{k}\right)^{1 /\left[\pi: G_{k}\right]} \leq \exp (\operatorname{Vol}(K))
$$

Knots with 0 volumes

As a corollary, when $\operatorname{Vol}(K)=0$, we have

$$
\lim _{k \rightarrow \infty} t\left(K, G_{k}\right)^{1 /\left[\pi: G_{k}\right]}=\exp (\operatorname{Vol}(K))=1
$$

Knots with 0 volumes

As a corollary, when $\operatorname{Vol}(K)=0$, we have

$$
\lim _{k \rightarrow \infty} t\left(K, G_{k}\right)^{1 /\left[\pi: G_{k}\right]}=\exp (\operatorname{Vol}(K))=1
$$

- $\operatorname{Vol}(K)=0$ if and only if K is in the class
i) containing torus knots
ii) closed under connected sum and cabling.

More general limit: limit as $G \rightarrow \infty$

π : a countable group.
S : a finite symmetric set of generators, i.e. $g \in S \Rightarrow g^{-1} \in S$.

More general limit: limit as $G \rightarrow \infty$

π : a countable group.
S : a finite symmetric set of generators, i.e. $g \in S \Rightarrow g^{-1} \in S$.

- The length of $x \in \pi$:
$\ell_{S}(x)=$ smallest length of words representing x

More general limit：limit as $G \rightarrow \infty$

π ：a countable group．
S ：a finite symmetric set of generators，i．e．$g \in S \Rightarrow g^{-1} \in S$ ．
－The length of $x \in \pi$ ：

$$
\ell_{S}(x)=\text { smallest length of words representing } x
$$

－$S^{\prime}:$ another symmetric set of generators．Then $\exists k_{1}, k_{2}>0$ s．t．

$$
\forall x \in \pi, \quad k_{1} \ell_{S}(x)<\ell_{S^{\prime}}(x)<k_{2} \ell_{S}(x)
$$

（ ℓ_{S} and $\ell_{S^{\prime}}$ are quasi－isometric．）

More general limit: limit as $G \rightarrow \infty$

π : a countable group.
S : a finite symmetric set of generators, i.e. $g \in S \Rightarrow g^{-1} \in S$.

- The length of $x \in \pi$:

$$
\ell_{S}(x)=\text { smallest length of words representing } x
$$

- $S^{\prime}:$ another symmetric set of generators. Then $\exists k_{1}, k_{2}>0$ s.t.

$$
\forall x \in \pi, \quad k_{1} \ell_{S}(x)<\ell_{S^{\prime}}(x)<k_{2} \ell_{S}(x)
$$

(ℓ_{S} and $\ell_{S^{\prime}}$ are quasi-isometric.)

- It follows that

$$
\lim _{n \rightarrow \infty} \ell_{S}\left(x_{n}\right)=\infty \Longleftrightarrow \lim _{n \rightarrow \infty} \ell_{S^{\prime}}\left(x_{n}\right)=\infty
$$

More general limit

For a subgroup $G \subset \pi$ ，let
$\operatorname{diam}_{S}(G)=\min \left\{\ell_{S}(g), g \in G \backslash\{1\}\right\}$.

More general limit

For a subgroup $G \subset \pi$, let

$$
\operatorname{diam}_{S}(G)=\min \left\{\ell_{S}(g), g \in G \backslash\{1\}\right\}
$$

f : a function defined on a set of finite index normal subgroups of π.

$$
\lim _{\min _{G \rightarrow \infty}} f(G)=L
$$

means there is S such that

$$
\lim _{\operatorname{diam}_{s} G \rightarrow \infty} f(G)=L
$$

More general limit

For a subgroup $G \subset \pi$ ，let

$$
\operatorname{diam}_{S}(G)=\min \left\{\ell_{S}(g), g \in G \backslash\{1\}\right\}
$$

f ：a function defined on a set of finite index normal subgroups of π ．

$$
\lim _{\lim G \rightarrow \infty} f(G)=L
$$

means there is S such that

$$
\lim _{\operatorname{diam}_{s} G \rightarrow \infty} f(G)=L
$$

Similarly，we can define

$$
\lim _{\operatorname{diam} \sup _{G \rightarrow \infty}} f(G) .
$$

More general limit

For a subgroup $G \subset \pi$, let

$$
\operatorname{diam}_{S}(G)=\min \left\{\ell_{S}(g), g \in G \backslash\{1\}\right\}
$$

f : a function defined on a set of finite index normal subgroups of π.

$$
\lim _{\operatorname{diam} G \rightarrow \infty} f(G)=L
$$

means there is S such that

$$
\lim _{\operatorname{diam}_{s} G \rightarrow \infty} f(G)=L
$$

Similarly, we can define

$$
\limsup _{\operatorname{diam} G \rightarrow \infty} f(G)
$$

Remark: If $\lim _{k \rightarrow \infty} \operatorname{diam} G=\infty$ then $\cap G_{k}=\{1\} \quad$ (co-final).

Homology Growth and Volume

Conjecture

("volume conjecture") For every knot $K \subset S^{3}$,

$$
\limsup _{G \rightarrow \infty} t(K, G)^{1 /[\pi: G]}=\exp (\operatorname{Vol}(K)) .
$$

Homology Growth and Volume

Conjecture

("volume conjecture") For every knot $K \subset S^{3}$,

$$
\limsup _{G \rightarrow \infty} t(K, G)^{1 /[\pi: G]}=\exp (\operatorname{Vol}(K)) .
$$

- True: $L H S \leq R H S$. True for knots with Vol $=0$.

Homology Growth and Volume

Conjecture

("volume conjecture") For every knot $K \subset S^{3}$,

$$
\limsup _{G \rightarrow \infty} t(K, G)^{1 /[\pi: G]}=\exp (\operatorname{Vol}(K))
$$

- True: $L H S \leq R H S$. True for knots with Vol $=0$.
- To prove the conjecture one needs to find $\left\{G_{k}\right\}$ - finite index normal subgroups of $\pi \mathrm{s}$. t. $\lim _{k} \operatorname{diam}\left(G_{k}\right)=\infty$ and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} t\left(K, G_{k}\right)^{1 /\left[\pi: G_{k}\right]}=\exp (\operatorname{Vol}(K)) \tag{*}
\end{equation*}
$$

Homology Growth and Volume

Conjecture

("volume conjecture") For every knot $K \subset S^{3}$,

$$
\limsup _{G \rightarrow \infty} t(K, G)^{1 /[\pi: G]}=\exp (\operatorname{Vol}(K))
$$

- True: $L H S \leq R H S$. True for knots with $\mathrm{Vol}=0$.
- To prove the conjecture one needs to find $\left\{G_{k}\right\}$ - finite index normal subgroups of $\pi \mathrm{s}$. t. $\lim _{k} \operatorname{diam}\left(G_{k}\right)=\infty$ and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} t\left(K, G_{k}\right)^{1 /\left[\pi: G_{k}\right]}=\exp (\operatorname{Vol}(K)) \tag{*}
\end{equation*}
$$

It is unlikely that for any sequence G_{k} of normal subgroups s.t. $\lim \operatorname{diam} G_{k}=\infty$ one has (*). Which $\left\{G_{k}\right\}$ should we choose?

Expander family

Long-Lubotzky-Reid (2007): \forall hyperbolic knot, $\exists\left\{G_{k}\right\}$ - finite index normal subgroups, such that
π has property τ w.r.t. $\left\{G_{k}\right\}$.

Expander family

Long-Lubotzky-Reid (2007): \forall hyperbolic knot, $\exists\left\{G_{k}\right\}$ - finite index normal subgroups, such that
π has property τ w.r.t. $\left\{G_{k}\right\}$.
\Leftrightarrow Cayley graphs of π / G_{k} w.r.t. a fixed symmetric set of generators form a family of expanders

Expander family

Long-Lubotzky-Reid (2007): \forall hyperbolic knot, $\exists\left\{G_{k}\right\}$ - finite index normal subgroups, such that
π has property τ w.r.t. $\left\{G_{k}\right\}$.
\Leftrightarrow Cayley graphs of π / G_{k} w.r.t. a fixed symmetric set of generators form a family of expanders
\Leftrightarrow the least non-zero eigenvalue of the Laplacian of the Cayley graphs of π / G_{k} is \geq a fixed $\epsilon>0$.

Expander family

Long-Lubotzky-Reid (2007): \forall hyperbolic knot, $\exists\left\{G_{k}\right\}$ - finite index normal subgroups, such that
π has property τ w.r.t. $\left\{G_{k}\right\}$.
\Leftrightarrow Cayley graphs of π / G_{k} w.r.t. a fixed symmetric set of generators form a family of expanders
\Leftrightarrow the least non-zero eigenvalue of the Laplacian of the Cayley graphs of π / G_{k} is \geq a fixed $\epsilon>0$.
Based on deep results of Bourgain-Gamburg (2007) on expanders from $S L(2, p)$.

Expander family

Long-Lubotzky-Reid (2007): \forall hyperbolic knot, $\exists\left\{G_{k}\right\}$ - finite index normal subgroups, such that
π has property τ w.r.t. $\left\{G_{k}\right\}$.
\Leftrightarrow Cayley graphs of π / G_{k} w.r.t. a fixed symmetric set of generators form a family of expanders
\Leftrightarrow the least non-zero eigenvalue of the Laplacian of the Cayley graphs of π / G_{k} is \geq a fixed $\epsilon>0$.
Based on deep results of Bourgain-Gamburg (2007) on expanders from $S L(2, p)$.

Conjecture

Justification: to follow.

Outline

（1）Homology Growth and volume

（2）Torsion and Determinant
（3）L^{2}－Torsion

4．Approximation by finite groups

Reidemeister Torsion

- \mathcal{C} : Chain complex of finite dimensional \mathbb{C}-modules (vector spaces).

$$
0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0 .
$$

Suppose \mathcal{C} is acyclic and based. Then the torsion $\tau(\mathcal{C})$ is defined.

Reidemeister Torsion

- \mathcal{C} : Chain complex of finite dimensional \mathbb{C}-modules (vector spaces).

$$
0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0
$$

Suppose \mathcal{C} is acyclic and based. Then the torsion $\tau(\mathcal{C})$ is defined.
c_{i} : base of C_{i}. Each ∂_{i} is given by a matrix.

Reidemeister Torsion

- \mathcal{C} : Chain complex of finite dimensional \mathbb{C}-modules (vector spaces).

$$
0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0 .
$$

Suppose \mathcal{C} is acyclic and based. Then the torsion $\tau(\mathcal{C})$ is defined. c_{i} : base of C_{i}. Each ∂_{i} is given by a matrix.

- Simplest case: \mathcal{C} is

$$
0 \rightarrow C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0
$$

$$
\tau(\mathcal{C})=\operatorname{det} \partial_{1} .
$$

Reidemeister Torsion

- \mathcal{C} : Chain complex of finite dimensional \mathbb{C}-modules (vector spaces).

$$
0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0 .
$$

Suppose \mathcal{C} is acyclic and based. Then the torsion $\tau(\mathcal{C})$ is defined. c_{i} : base of C_{i}. Each ∂_{i} is given by a matrix.

- Simplest case: \mathcal{C} is

$$
0 \rightarrow C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0
$$

$$
\tau(\mathcal{C})=\operatorname{det} \partial_{1}
$$

$$
0 \rightarrow C_{2} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0
$$

$$
\tau(\mathcal{C})=\left[\frac{\partial_{2}\left(c_{2}\right) \partial^{-1} c_{0}}{c_{1}}\right]
$$

Here $[a / b]$ is the determinant of the change matrix from b to a.

Torsion of chain of Hilbert spaces

\mathcal{C} : complex of finite dimensional Hilbert spaces over \mathbb{C}; acyclic. Choose orthonormal base c_{i} for each \mathcal{C}_{i}, define $\tau(\mathcal{C}, c)$. Change of base: $\quad \tau(\mathcal{C}):=|\tau(\mathcal{C}, c)|$ is well-defined.

Torsion of chain of Hilbert spaces

\mathcal{C} : complex of finite dimensional Hilbert spaces over \mathbb{C}; acyclic.
Choose orthonormal base c_{i} for each C_{i}, define $\tau(\mathcal{C}, c)$.
Change of base: $\quad \tau(\mathcal{C}):=|\tau(\mathcal{C}, c)|$ is well-defined.

- \mathcal{C} : complex of Hilbert spaces over $\mathbb{C}[\pi]$. Want to define $\tau(\mathcal{C})$.

$$
0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0 .
$$

More specifically,

$$
\begin{gathered}
C_{i}=\mathbb{Z}[\pi]^{n_{i}}, \quad \text { free } \mathbb{Z}[\pi]-\text { module, or } C_{i}=\ell^{2}(\pi)^{n_{i}} \\
\partial_{i} \in \operatorname{Mat}\left(n_{i} \times n_{i-1}, \mathbb{Z}[\pi]\right), \text { acting on the right. }
\end{gathered}
$$

Torsion of chain of Hilbert spaces

\mathcal{C} : complex of finite dimensional Hilbert spaces over \mathbb{C}; acyclic.
Choose orthonormal base c_{i} for each C_{i}, define $\tau(\mathcal{C}, c)$.
Change of base: $\quad \tau(\mathcal{C}):=|\tau(\mathcal{C}, c)|$ is well-defined.

- \mathcal{C} : complex of Hilbert spaces over $\mathbb{C}[\pi]$. Want to define $\tau(\mathcal{C})$.

$$
0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0 .
$$

More specifically,

$$
\begin{gathered}
C_{i}=\mathbb{Z}[\pi]^{n_{i}}, \quad \text { free } \mathbb{Z}[\pi]-\text { module, or } C_{i}=\ell^{2}(\pi)^{n_{i}} \\
\partial_{i} \in \operatorname{Mat}\left(n_{i} \times n_{i-1}, \mathbb{Z}[\pi]\right), \text { acting on the right. }
\end{gathered}
$$

- Need to define what is the determinant of a matrix $A \in \operatorname{Mat}(m \times n, \mathbb{Z}[\pi])$.

Trace on $\mathbb{C}[\pi]$

For square matrix A with complex entries: $\log \operatorname{det} A=\operatorname{tr} \log A$. One can define a good theory of determinant of there is a good trace.

Trace on $\mathbb{C}[\pi]$

For square matrix A with complex entries: $\log \operatorname{det} A=\operatorname{tr} \log A$. One can define a good theory of determinant of there is a good trace. Regular representation: $\mathbb{C}[\pi]$ acts on the right on the Hilbert space

$$
\ell^{2}(\pi)=\left\{\left.\sum_{g} c_{g} g\left|\sum\right| c_{g}\right|^{2}<\infty\right\}
$$

Trace on $\mathbb{C}[\pi]$

For square matrix A with complex entries: $\log \operatorname{det} A=\operatorname{tr} \log A$. One can define a good theory of determinant of there is a good trace. Regular representation: $\mathbb{C}[\pi]$ acts on the right on the Hilbert space

$$
\ell^{2}(\pi)=\left\{\left.\sum_{g} c_{g} g\left|\sum\right| c_{g}\right|^{2}<\infty\right\}
$$

Remark. If $\pi=\pi_{1}\left(S^{3} \backslash K\right), K$ is not a torus knot, then the regular representation is of type I_{1}.

Trace on $\mathbb{C}[\pi]$

For square matrix A with complex entries: $\log \operatorname{det} A=\operatorname{tr} \log A$. One can define a good theory of determinant of there is a good trace. Regular representation: $\mathbb{C}[\pi]$ acts on the right on the Hilbert space

$$
\ell^{2}(\pi)=\left\{\left.\sum_{g} c_{g} g\left|\sum\right| c_{g}\right|^{2}<\infty\right\}
$$

Remark. If $\pi=\pi_{1}\left(S^{3} \backslash K\right), K$ is not a torus knot, then the regular representation is of type I_{1}.

- Adjoint operator: $x=\sum c_{g} g \in \mathbb{C}[\pi]$, then $x^{*}=\sum \bar{c}_{g} g^{-1}$.

Trace on $\mathbb{C}[\pi]$

For square matrix A with complex entries: $\log \operatorname{det} A=\operatorname{tr} \log A$. One can define a good theory of determinant of there is a good trace. Regular representation: $\mathbb{C}[\pi]$ acts on the right on the Hilbert space

$$
\ell^{2}(\pi)=\left\{\left.\sum_{g} c_{g} g\left|\sum\right| c_{g}\right|^{2}<\infty\right\} .
$$

Remark. If $\pi=\pi_{1}\left(S^{3} \backslash K\right), K$ is not a torus knot, then the regular representation is of type $\|_{1}$.

- Adjoint operator: $x=\sum c_{g} g \in \mathbb{C}[\pi]$, then $x^{*}=\sum \bar{c}_{g} g^{-1}$.
- Similarly to the finite group case, define $\forall g \in \pi$,

$$
\begin{gathered}
\operatorname{tr}(g)=\delta_{g, 1} \\
\forall x \in \mathbb{C}[\pi], \operatorname{tr}(x)=\langle x, 1\rangle=\text { coeff. of } 1 \text { in } x .
\end{gathered}
$$

Trace

The trace can be extended to the Von Neumann algebra $\mathcal{N}(\pi) \supset \mathbb{C}[\pi]$.

Trace

The trace can be extended to the Von Neumann algebra $\mathcal{N}(\pi) \supset \mathbb{C}[\pi]$.

- $A \in \operatorname{Mat}(n \times n, \mathbb{C}[\pi])$. Define

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} \operatorname{tr}\left(A_{i j}\right) .
$$

Trace

The trace can be extended to the Von Neumann algebra $\mathcal{N}(\pi) \supset \mathbb{C}[\pi]$ ．
－$A \in \operatorname{Mat}(n \times n, \mathbb{C}[\pi])$ ．Define

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} \operatorname{tr}\left(A_{i j}\right) .
$$

－（not rigorous）Define $\operatorname{det}(A)$ using

$$
\log \operatorname{det} A=\operatorname{tr} \log A
$$

$$
\begin{aligned}
& =-\operatorname{tr} \sum_{p=1}^{\infty}(I-A)^{p} / p \\
& =-\sum \frac{\operatorname{tr}\left[(I-A)^{p}\right]}{p} .
\end{aligned}
$$

Trace

The trace can be extended to the Von Neumann algebra $\mathcal{N}(\pi) \supset \mathbb{C}[\pi]$ ．
－$A \in \operatorname{Mat}(n \times n, \mathbb{C}[\pi])$ ．Define

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} \operatorname{tr}\left(A_{i j}\right) .
$$

－（not rigorous）Define $\operatorname{det}(A)$ using

$$
\begin{aligned}
\log \operatorname{det} A & =\operatorname{tr} \log A \\
& =-\operatorname{tr} \sum_{p=1}^{\infty}(I-A)^{p} / p \\
& =-\sum \frac{\operatorname{tr}\left[(I-A)^{p}\right]}{p} .
\end{aligned}
$$

－Convergence of the RHS？

Fuglede-Kadison-Lück determinant for

 $A \in \operatorname{Mat}(m \times n, \mathbb{C}[\pi])$- $B:=A^{*} A$, where $\left(A^{*}\right)_{i j}:=\left(A_{j i}\right)^{*} . \quad \operatorname{ker}(B)=\operatorname{ker} A, \quad B \geq 0$.

Fuglede-Kadison-Lück determinant for

 $A \in \operatorname{Mat}(m \times n, \mathbb{C}[\pi])$- $B:=A^{*} A$, where $\left(A^{*}\right)_{i j}:=\left(A_{j i}\right)^{*} . \quad \operatorname{ker}(B)=\operatorname{ker} A, \quad B \geq 0$.
- Choose $k>\|B\|$. Let $C=B / k . \quad I \geq I-C \geq 0$, and $(I-C)^{p} \geq(I-C)^{p+1} \geq 0$.

Fuglede－Kadison－Lück determinant for

$A \in \operatorname{Mat}(m \times n, \mathbb{C}[\pi])$
－$B:=A^{*} A$ ，where $\left(A^{*}\right)_{i j}:=\left(A_{j i}\right)^{*} . \quad \operatorname{ker}(B)=\operatorname{ker} A, \quad B \geq 0$ ．
－Choose $k>\|B\|$ ．Let $C=B / k . \quad I \geq I-C \geq 0$ ，and $(I-C)^{p} \geq(I-C)^{p+1} \geq 0$ ．
－The sequence $\operatorname{tr}\left[(I-C)^{p}\right]$ is decreasing $\Rightarrow \lim \operatorname{tr}\left[(I-C)^{p}\right]=b \geq 0$ ． $b=b(A)$ depends only on A ，equal to the Von－Neumann dimension of ker A ．

Fuglede-Kadison-Lück determinant for

$A \in \operatorname{Mat}(m \times n, \mathbb{C}[\pi])$

- $B:=A^{*} A$, where $\left(A^{*}\right)_{i j}:=\left(A_{j i}\right)^{*} . \quad \operatorname{ker}(B)=\operatorname{ker} A, \quad B \geq 0$.
- Choose $k>\|B\|$. Let $C=B / k . \quad I \geq I-C \geq 0$, and $(I-C)^{p} \geq(I-C)^{p+1} \geq 0$.
- The sequence $\operatorname{tr}\left[(I-C)^{p}\right]$ is decreasing $\Rightarrow \lim \operatorname{tr}\left[(I-C)^{p}\right]=b \geq 0$. $b=b(A)$ depends only on A, equal to the Von- Neumann dimension of ker A.
- Use b as the correction term in the log series to define $\operatorname{det}_{\pi} C$:

$$
\log \operatorname{det}_{\pi} C=-\sum \frac{1}{p}\left(\operatorname{tr}\left[(I-C)^{p}\right]-b\right)=\text { finite or }-\infty
$$

Fuglede-Kadison-Lück determinant for

$A \in \operatorname{Mat}(m \times n, \mathbb{C}[\pi])$

- $B:=A^{*} A$, where $\left(A^{*}\right)_{i j}:=\left(A_{j i}\right)^{*} . \quad \operatorname{ker}(B)=\operatorname{ker} A, \quad B \geq 0$.
- Choose $k>\|B\|$. Let $C=B / k . \quad I \geq I-C \geq 0$, and $(I-C)^{p} \geq(I-C)^{p+1} \geq 0$.
- The sequence $\operatorname{tr}\left[(I-C)^{p}\right]$ is decreasing $\Rightarrow \lim \operatorname{tr}\left[(I-C)^{p}\right]=b \geq 0$. $b=b(A)$ depends only on A, equal to the Von- Neumann dimension of ker A.
- Use b as the correction term in the log series to define $\operatorname{det}_{\pi} C$:

$$
\log \operatorname{det}_{\pi} C=-\sum \frac{1}{p}\left(\operatorname{tr}\left[(I-C)^{p}\right]-b\right)=\text { finite or }-\infty
$$

- $B=k C, \quad \operatorname{det}_{\pi} B=k^{n-b} \operatorname{det} C \in \mathbb{R}_{\geq 0}, \quad \operatorname{det}_{\pi} A=\sqrt{\operatorname{det}_{\pi} B}$.

Fuglede-Kadison-Lück determinant for

$A \in \operatorname{Mat}(m \times n, \mathbb{C}[\pi])$

- $B:=A^{*} A$, where $\left(A^{*}\right)_{i j}:=\left(A_{j i}\right)^{*} . \quad \operatorname{ker}(B)=\operatorname{ker} A, \quad B \geq 0$.
- Choose $k>\|B\|$. Let $C=B / k . \quad I \geq I-C \geq 0$, and $(I-C)^{p} \geq(I-C)^{p+1} \geq 0$.
- The sequence $\operatorname{tr}\left[(I-C)^{p}\right]$ is decreasing $\Rightarrow \lim \operatorname{tr}\left[(I-C)^{p}\right]=b \geq 0$. $b=b(A)$ depends only on A, equal to the Von- Neumann dimension of ker A.
- Use b as the correction term in the log series to define $\operatorname{det}_{\pi} C$:

$$
\log \operatorname{det}_{\pi} C=-\sum \frac{1}{p}\left(\operatorname{tr}\left[(I-C)^{p}\right]-b\right)=\text { finite or }-\infty
$$

- $B=k C, \quad \operatorname{det}_{\pi} B=k^{n-b} \operatorname{det} C \in \mathbb{R}_{\geq 0}, \quad \operatorname{det}_{\pi} A=\sqrt{\operatorname{det}_{\pi} B}$.

Most interesting case: A is injective $(b=0), m=n$, but not invertible.

FKL determinant - Example: Finite group

- $D \in \operatorname{Mat}(n \times n, \mathbb{C})$. Let $p(\lambda)=\operatorname{det}(\lambda I+D)$.

$$
\operatorname{det}^{\prime} D:=\text { coeff. of smallest degree of } p=\prod_{\lambda \text { eigenvalue } \neq 0} \lambda
$$

FKL determinant - Example: Finite group

- $D \in \operatorname{Mat}(n \times n, \mathbb{C})$. Let $p(\lambda)=\operatorname{det}(\lambda I+D)$.

$$
\operatorname{det}^{\prime} D:=\text { coeff. of smallest degree of } p=\prod_{\lambda \text { eigenvalue } \neq 0} \lambda
$$

- $\pi=\{1\}, \quad A \in \operatorname{Mat}(m \times n, \mathbb{C})$. Then in general $\operatorname{det}_{\{1\}} A \neq \operatorname{det} A$.

$$
\operatorname{det}_{\{1\}} A=\sqrt{\operatorname{det}^{\prime}\left(A^{*} A\right)}=\prod \text { (non-zero singular values). }
$$

FKL determinant - Example: Finite group

- $D \in \operatorname{Mat}(n \times n, \mathbb{C})$. Let $p(\lambda)=\operatorname{det}(\lambda I+D)$.

$$
\operatorname{det}^{\prime} D:=\text { coeff. of smallest degree of } p=\prod_{\lambda \text { eigenvalue } \neq 0} \lambda
$$

- $\pi=\{1\}, \quad A \in \operatorname{Mat}(m \times n, \mathbb{C})$. Then in general $\operatorname{det}_{\{1\}} A \neq \operatorname{det} A$.

$$
\operatorname{det}_{\{1\}} A=\sqrt{\operatorname{det}^{\prime}\left(A^{*} A\right)}=\prod \text { (non-zero singular values). }
$$

- $|\pi|<\infty, \quad A \in \operatorname{Mat}(m \times n, \mathbb{C}[\pi])$. Then A is given by a matrix $D \in \operatorname{Mat}(m|\pi| \times n|\pi|, \mathbb{C})$.

$$
\operatorname{det}_{\pi} A=\left(\operatorname{det}^{\prime}\left(D^{*} D\right)\right)^{1 / 2|\pi|}
$$

FKL determinant－Example：$\pi=\mathbb{Z}^{\mu}$

－$f\left(t_{1}^{ \pm 1}, \ldots, t_{\mu}^{ \pm 1}\right) \in \mathbb{C}\left[\mathbb{Z}^{\mu}\right] \equiv \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{\mu}^{ \pm 1}\right]$ ．
Assume $f \neq 0 . \quad f: 1 \times 1$ matrix．

FKL determinant- Example: $\pi=\mathbb{Z}^{\mu}$

- $f\left(t_{1}^{ \pm 1}, \ldots, t_{\mu}^{ \pm 1}\right) \in \mathbb{C}\left[\mathbb{Z}^{\mu}\right] \equiv \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{\mu}^{ \pm 1}\right]$.

Assume $f \neq 0 . \quad f: 1 \times 1$ matrix.

- It is known that (Lück) $\operatorname{det}_{\mathbb{Z}^{\mu}}(f)$ is the Mahler measure:

$$
\operatorname{det}_{\mathbb{Z}^{\mu}} f=M(f):=\exp \left(\int_{\mathbb{T}^{\mu}} \log |f| d \sigma\right)
$$

where $\mathbb{T}^{\mu}=\left\{\left(z_{1}, \ldots, z_{\mu}\right) \in \mathbb{C}^{\mu}| | z_{i} \mid=1\right\}$, the μ-torus. $d \sigma$: the invariant measure normalized so that $\int_{\mathbb{T}^{\mu}} d \sigma=1$.

FKL determinant- Example: $\pi=\mathbb{Z}^{\mu}$

- $f\left(t_{1}^{ \pm 1}, \ldots, t_{\mu}^{ \pm 1}\right) \in \mathbb{C}\left[\mathbb{Z}^{\mu}\right] \equiv \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{\mu}^{ \pm 1}\right]$.

Assume $f \neq 0 . \quad f: 1 \times 1$ matrix.

- It is known that (Lück) $\operatorname{det}_{\mathbb{Z}^{\mu}}(f)$ is the Mahler measure:

$$
\operatorname{det}_{\mathbb{Z}^{\mu}} f=M(f):=\exp \left(\int_{\mathbb{T}^{\mu}} \log |f| d \sigma\right)
$$

where $\mathbb{T}^{\mu}=\left\{\left(z_{1}, \ldots, z_{\mu}\right) \in \mathbb{C}^{\mu}| | z_{i} \mid=1\right\}$, the μ-torus. $d \sigma$: the invariant measure normalized so that $\int_{\mathbb{T}^{\mu}} d \sigma=1$.

- $f(t) \in \mathbb{Z}\left[t^{ \pm 1}\right], f(t)=a_{0} \prod_{j=1}^{n}\left(t-z_{j}\right), z_{j} \in \mathbb{C}$. Then

$$
M(f)=a_{0} \prod_{\left|z_{i}\right|>1}\left|z_{j}\right| .
$$

Outline

(1) Homology Growth and volume
2. Torsion and Determinant
(3) L^{2}-Torsion
4. Approximation by finite groups

L^{2}－Torsion，L^{2}－homology of $\mathbb{C}[\pi]$－complex

$$
\begin{gathered}
\mathcal{C}: \quad 0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0 . \\
C_{i}=\ell^{2}(\pi)^{n_{i}}, \quad \partial_{i} \in \operatorname{Mat}\left(n_{i} \times n_{i-1}, \mathbb{C}[\pi]\right) .
\end{gathered}
$$

L^{2}-Torsion, L^{2}-homology of $\mathbb{C}[\pi]$ - complex

$$
\begin{gathered}
\mathcal{C}: \quad 0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0 . \\
C_{i}=\ell^{2}(\pi)^{n_{i}}, \quad \partial_{i} \in \operatorname{Mat}\left(n_{i} \times n_{i-1}, \mathbb{C}[\pi]\right) .
\end{gathered}
$$

- \mathcal{C} is of det-class if $\operatorname{det}_{\pi}\left(\partial_{i}\right) \neq 0 \forall i$. In that case

$$
\tau^{(2)}(\mathcal{C}):=\frac{\operatorname{det}_{\pi}\left(\partial_{1}\right) \operatorname{det}_{\pi}\left(\partial_{3}\right) \operatorname{det}_{\pi}\left(\partial_{5}\right) \ldots}{\operatorname{det}_{\pi}\left(\partial_{2}\right) \operatorname{det}_{\pi}\left(\partial_{4}\right) \ldots}
$$

L^{2}-Torsion, L^{2}-homology of $\mathbb{C}[\pi]$ - complex

$$
\begin{gathered}
\mathcal{C}: \quad 0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0 . \\
C_{i}=\ell^{2}(\pi)^{n_{i}}, \quad \partial_{i} \in \operatorname{Mat}\left(n_{i} \times n_{i-1}, \mathbb{C}[\pi]\right) .
\end{gathered}
$$

- \mathcal{C} is of det-class if $\operatorname{det}_{\pi}\left(\partial_{i}\right) \neq 0 \forall i$. In that case

$$
\tau^{(2)}(\mathcal{C}):=\frac{\operatorname{det}_{\pi}\left(\partial_{1}\right) \operatorname{det}_{\pi}\left(\partial_{3}\right) \operatorname{det}_{\pi}\left(\partial_{5}\right) \ldots}{\operatorname{det}_{\pi}\left(\partial_{2}\right) \operatorname{det}_{\pi}\left(\partial_{4}\right) \ldots} .
$$

- L^{2}-homology (no need to be of det-class)

$$
H_{i}^{(2)}:=\operatorname{ker} \partial_{i} / \overline{\operatorname{Im}\left(\partial_{i-1}\right)} .
$$

L^{2}-Torsion, L^{2}-homology of $\mathbb{C}[\pi]$ - complex

$$
\begin{gathered}
\mathcal{C}: \quad 0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0 . \\
C_{i}=\ell^{2}(\pi)^{n_{i}}, \quad \partial_{i} \in \operatorname{Mat}\left(n_{i} \times n_{i-1}, \mathbb{C}[\pi]\right) .
\end{gathered}
$$

- \mathcal{C} is of det-class if $\operatorname{det}_{\pi}\left(\partial_{i}\right) \neq 0 \forall i$. In that case

$$
\tau^{(2)}(\mathcal{C}):=\frac{\operatorname{det}_{\pi}\left(\partial_{1}\right) \operatorname{det}_{\pi}\left(\partial_{3}\right) \operatorname{det}_{\pi}\left(\partial_{5}\right) \ldots}{\operatorname{det}_{\pi}\left(\partial_{2}\right) \operatorname{det}_{\pi}\left(\partial_{4}\right) \ldots} .
$$

- L^{2}-homology (no need to be of det-class)

$$
H_{i}^{(2)}:=\operatorname{ker} \partial_{i} / \overline{\operatorname{Im}\left(\partial_{i-1}\right)} .
$$

- \mathcal{C} is L^{2}-acyclic if $H_{i}^{(2)}=0 \forall i$.

L^{2}－Torsion of manifolds：Definition

－\tilde{X} is a π－space such that $p: \tilde{X} \rightarrow X:=\tilde{X} / \pi$ is a regular covering． \tilde{X}, X manifold．

L^{2}－Torsion of manifolds：Definition

－\tilde{X} is a π－space such that $p: \tilde{X} \rightarrow X:=\tilde{X} / \pi$ is a regular covering． \tilde{X}, X manifold．
－Finite triangulation of $X: C(\tilde{X})$ becomes a complex of free $\mathbb{Z}[\pi]$－modules． If $C(\tilde{X})$ is of det－class，then L^{2}－torsion，denoted by $\tau^{(2)}(\tilde{X})$ ，can be defined．Depends on the triangulation．

L^{2}-Torsion of manifolds: Definition

- \tilde{X} is a π-space such that $p: \tilde{X} \rightarrow X:=\tilde{X} / \pi$ is a regular covering. \tilde{X}, X manifold.
- Finite triangulation of $X: C(\tilde{X})$ becomes a complex of free $\mathbb{Z}[\pi]$-modules.
If $C(\tilde{X})$ is of det-class, then L^{2}-torsion, denoted by $\tau^{(2)}(\tilde{X})$, can be defined. Depends on the triangulation.
- If $C(\tilde{X})$ is acyclic and of det-class for one triangulation, then it is acyclic and of det-class for any other triangulation, and $\tau^{(2)}(\tilde{X})$ of the two triangulations are the same: we can define $\tau^{(2)}(\tilde{X})$.

L^{2}－Torsion of knots：universal covering

－K a knot in $S^{3} . \quad X=S^{3}-K, \quad \tilde{X}$ ：universal covering． $\pi=\pi_{1}(X)$ ．Then \tilde{X} is a π－space with quotient X ．

L^{2}-Torsion of knots: universal covering

- K a knot in $S^{3} . \quad X=S^{3}-K, \quad \tilde{X}$: universal covering. $\pi=\pi_{1}(X)$. Then \tilde{X} is a π-space with quotient X.
- $C(\tilde{X})$ is acyclic and is of det-class.

$$
\tau^{(2)}(K):=\tau^{(2)}(\tilde{X})
$$

L^{2}－Torsion of knots：universal covering

－K a knot in $S^{3} . \quad X=S^{3}-K, \quad \tilde{X}$ ：universal covering． $\pi=\pi_{1}(X)$ ．Then \tilde{X} is a π－space with quotient X ．
－$C(\tilde{X})$ is acyclic and is of det－class．

$$
\tau^{(2)}(K):=\tau^{(2)}(\tilde{X}) .
$$

－Theorem（Lück－Schick）

$$
\log \tau^{(2)}(K)=-\operatorname{Vol}(K) .
$$

based on results of Burghelea－Friedlander－Kappeler－McDonald， Lott，and Mathai．

L^{2}－Torsion of knots：computing using knot group

－$\pi=\pi_{1}\left(S^{3} \backslash K\right)$ ．

$$
\pi=\left\langle a_{1}, \ldots, a_{n+1} \mid r_{1}, \ldots, r_{n}\right\rangle
$$

L^{2}－Torsion of knots：computing using knot group

－$\pi=\pi_{1}\left(S^{3} \backslash K\right)$ ．

$$
\pi=\left\langle a_{1}, \ldots, a_{n+1} \mid r_{1}, \ldots, r_{n}\right\rangle
$$

－Y ：2－CW complex associated with this presentation．X and Y are homotopic．
Y has 10－cell，$(n+1) 1$－cells，and $n 2$－cells．\tilde{Y} ：universal covering．

$$
C(\tilde{Y}): \quad 0 \rightarrow \mathbb{Z}[\pi]^{n} \xrightarrow{\partial_{2}} \mathbb{Z}[\pi]^{n+1} \xrightarrow{\partial_{1}} \mathbb{Z}[\pi] \rightarrow 0 .
$$

L^{2}-Torsion of knots: computing using knot group

- $\pi=\pi_{1}\left(S^{3} \backslash K\right)$.

$$
\pi=\left\langle a_{1}, \ldots, a_{n+1} \mid r_{1}, \ldots, r_{n}\right\rangle .
$$

- Y: 2-CW complex associated with this presentation. X and Y are homotopic. Y has 10 -cell, $(n+1) 1$-cells, and $n 2$-cells. \tilde{Y} : universal covering.

$$
\begin{gathered}
C(\tilde{Y}): \quad 0 \rightarrow \mathbb{Z}[\pi]^{n} \xrightarrow{\partial_{2}} \mathbb{Z}[\pi]^{n+1} \xrightarrow{\partial_{1}} \mathbb{Z}[\pi] \rightarrow 0 . \\
\partial_{1}=\left(\begin{array}{c}
a_{1}-1 \\
a_{2}-1 \\
\vdots \\
a_{n+1}-1
\end{array}\right), \quad \partial_{2}=\left(\frac{\partial r_{i}}{\partial a_{j}}\right) \in \operatorname{Mat}(n \times(n+1), \mathbb{Z}[\pi])
\end{gathered}
$$

L^{2}-Torsion of knots: computing using knot group

By definition

$$
\tau^{(2)}(K)=\frac{\operatorname{det}_{\pi} \partial_{1}}{\operatorname{det}_{\pi} \partial_{2}}
$$

L^{2}-Torsion of knots: computing using knot group

By definition

$$
\tau^{(2)}(K)=\frac{\operatorname{det}_{\pi} \partial_{1}}{\operatorname{det}_{\pi} \partial_{2}}
$$

Let

$$
\partial_{2}^{\prime}:=\left(\frac{\partial r_{i}}{\partial a_{j}}\right)_{i, j=1}^{n} \in \operatorname{Mat}(n \times n, \mathbb{Z}[\pi])
$$

Lück showed that

$$
\tau^{(2)}(K)=\frac{1}{\operatorname{det}_{\pi} \partial_{2}^{\prime}}
$$

L^{2}-Torsion of knots: computing using knot group

By definition

$$
\tau^{(2)}(K)=\frac{\operatorname{det}_{\pi} \partial_{1}}{\operatorname{det}_{\pi} \partial_{2}}
$$

Let

$$
\partial_{2}^{\prime}:=\left(\frac{\partial r_{i}}{\partial a_{j}}\right)_{i, j=1}^{n} \in \operatorname{Mat}(n \times n, \mathbb{Z}[\pi])
$$

Lück showed that

$$
\tau^{(2)}(K)=\frac{1}{\operatorname{det}_{\pi} \partial_{2}^{\prime}}
$$

It follows that

$$
\log \operatorname{det}_{\pi}\left(\partial_{2}^{\prime}\right)=\operatorname{Vol}(K)
$$

L^{2}-Torsion of knots: Figure 8 knot

$$
\begin{gathered}
\pi=\left\langle a, b \mid a b^{-1} a^{-1} b a=b a b^{-1} a^{-1} b\right\rangle . \\
\partial_{2}^{\prime}=\frac{\partial r}{\partial a}=1-a b^{-1} a^{-1}+a b^{-1} a^{-1} b-b-b a b^{-1} a^{-1}
\end{gathered}
$$

L^{2}-Torsion of knots: Figure 8 knot

$$
\begin{gathered}
\pi=\left\langle a, b \mid a b^{-1} a^{-1} b a=b a b^{-1} a^{-1} b\right\rangle . \\
\partial_{2}^{\prime}=\frac{\partial r}{\partial a}=1-a b^{-1} a^{-1}+a b^{-1} a^{-1} b-b-b a b^{-1} a^{-1}
\end{gathered}
$$

Then

$$
\log \operatorname{det}_{\pi}\left(\frac{\partial r}{\partial a}\right)=\operatorname{Vol}(K)
$$

L^{2}-Torsion: free abelian group $\pi=\mathbb{Z}^{\mu}$

$$
\begin{gathered}
\mathcal{C}: \quad 0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0 . \\
C_{i}=\mathbb{Z}\left[\mathbb{Z}^{\mu}\right]^{n_{i}}, \quad \partial_{i} \in \operatorname{Mat}\left(n_{i} \times n_{i-1}, \mathbb{Z}\left[\mathbb{Z}^{\mu}\right]\right) .
\end{gathered}
$$

L^{2}-Torsion: free abelian group $\pi=\mathbb{Z}^{\mu}$

$$
\begin{gathered}
\mathcal{C}: \quad 0 \rightarrow C_{n} \xrightarrow{\partial_{\eta}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0 . \\
C_{i}=\mathbb{Z}\left[\mathbb{Z}^{\mu}\right]^{n_{i}}, \quad \partial_{i} \in \operatorname{Mat}\left(n_{i} \times n_{i-1}, \mathbb{Z}\left[\mathbb{Z}^{\mu}\right]\right) .
\end{gathered}
$$

$\mathcal{C} \otimes F$: complex over F - fractional field of $\mathbb{Z}\left[\mathbb{Z}^{\mu}\right]=\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{\mu}^{ \pm 1}\right]$.

L^{2}－Torsion：free abelian group $\pi=\mathbb{Z}^{\mu}$

$$
\begin{gathered}
\mathcal{C}: \quad 0 \rightarrow C_{n} \xrightarrow{\partial_{\eta}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0 . \\
C_{i}=\mathbb{Z}\left[\mathbb{Z}^{\mu}\right]^{n_{i}}, \quad \partial_{i} \in \operatorname{Mat}\left(n_{i} \times n_{i-1}, \mathbb{Z}\left[\mathbb{Z}^{\mu}\right]\right) .
\end{gathered}
$$

$\mathcal{C} \otimes F$ ：complex over F－fractional field of $\mathbb{Z}\left[\mathbb{Z}^{\mu}\right]=\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{\mu}^{ \pm 1}\right]$ ．
If \mathcal{C} is F－acyclic \Longrightarrow Reidemeister torsion $\tau^{R}(\mathcal{C})$ can be defined． Milnor－Turaev formula to calculate Reidemeister torsion．In this case， $\tau^{R}(\mathcal{C}) \in \mathbb{Z}\left(t_{1}^{ \pm 1}, \ldots, t_{\mu}^{ \pm \mu}\right)$ ，a rational function．

L^{2}-Torsion: free abelian group $\pi=\mathbb{Z}^{\mu}$

$$
\begin{gathered}
\mathcal{C}: \quad 0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0 . \\
C_{i}=\mathbb{Z}\left[\mathbb{Z}^{\mu}\right]^{n_{i}}, \quad \partial_{i} \in \operatorname{Mat}\left(n_{i} \times n_{i-1}, \mathbb{Z}\left[\mathbb{Z}^{\mu}\right]\right) .
\end{gathered}
$$

$\mathcal{C} \otimes F$: complex over F - fractional field of $\mathbb{Z}\left[\mathbb{Z}^{\mu}\right]=\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{\mu}^{ \pm 1}\right]$.
If \mathcal{C} is F-acyclic \Longrightarrow Reidemeister torsion $\tau^{R}(\mathcal{C})$ can be defined. Milnor-Turaev formula to calculate Reidemeister torsion. In this case, $\tau^{R}(\mathcal{C}) \in \mathbb{Z}\left(t_{1}^{ \pm 1}, \ldots, t_{\mu}^{ \pm \mu}\right)$, a rational function.
For $\mathcal{C}: L^{2}$-acyclic $\Longleftrightarrow F$-acyclic (Lück, Elek).

L^{2}-Torsion: free abelian group $\pi=\mathbb{Z}^{\mu}$

$$
\begin{gathered}
\mathcal{C}: \quad 0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0 . \\
C_{i}=\mathbb{Z}\left[\mathbb{Z}^{\mu}\right]^{n_{i}}, \quad \partial_{i} \in \operatorname{Mat}\left(n_{i} \times n_{i-1}, \mathbb{Z}\left[\mathbb{Z}^{\mu}\right]\right) .
\end{gathered}
$$

$\mathcal{C} \otimes F$: complex over F - fractional field of $\mathbb{Z}\left[\mathbb{Z}^{\mu}\right]=\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{\mu}^{ \pm 1}\right]$.
If \mathcal{C} is F-acyclic \Longrightarrow Reidemeister torsion $\tau^{R}(\mathcal{C})$ can be defined.
Milnor-Turaev formula to calculate Reidemeister torsion. In this case, $\tau^{R}(\mathcal{C}) \in \mathbb{Z}\left(t_{1}^{ \pm 1}, \ldots, t_{\mu}^{ \pm \mu}\right)$, a rational function.
For $\mathcal{C}: L^{2}$-acyclic $\Longleftrightarrow F$-acyclic (Lück, Elek).
Theorem
If \mathcal{C} is F-acyclic, then

$$
\tau^{(2)}(\mathcal{C})=M\left(\tau^{R}(\mathcal{C})\right)
$$

L^{2}－Torsion for abelian covering of links

L a link of μ components．$X=S^{3} \backslash L$ ．

$$
\pi=\pi_{1}(X)
$$

Abelianization map ab：$\pi \rightarrow \mathbb{Z}^{\mu}$ ．
\tilde{X}^{ab} ：abelian covering corresponding to $\operatorname{ker}(\mathrm{ab}), \mathbb{Z}^{\mu}$－space．
Let $\Delta_{0}(L)$ be the（first）Alexander polynomial．

L^{2}-Torsion for abelian covering of links

L a link of μ components. $X=S^{3} \backslash L$.

$$
\pi=\pi_{1}(X) .
$$

Abelianization map ab: $\pi \rightarrow \mathbb{Z}^{\mu}$.
$\tilde{X}^{\text {ab }}$: abelian covering corresponding to $\operatorname{ker}(\mathrm{ab}), \mathbb{Z}^{\mu}$-space.
Let $\Delta_{0}(L)$ be the (first) Alexander polynomial.

Proposition

$C\left(\tilde{X}^{\mathrm{ab}}\right)$ is of det-class. $C\left(\tilde{X}^{\mathrm{ab}}\right)$ is acyclic if and only if $\Delta_{0}(L) \neq 0$. If $\Delta_{0}(L) \neq 0$

$$
\tau^{(2)}\left(\tilde{X}^{\mathrm{ab}}\right)=\frac{1}{M\left(\Delta_{0}(L)\right)} .
$$

If $\mu=1$, then $\Delta_{0} \neq 0$ always.

Outline

(1) Homology Growth and volume

(2) Torsion and Determinant
(3) L^{2}-Torsion

4 Approximation by finite groups

Finite quotient

$\mathcal{C}: \mathbb{Z}[\pi]$-complex, free finite rank. G a normal subgroup, $\pi \rightarrow \Gamma=\pi / G$.

$$
\mathcal{C}_{G}:=\mathcal{C} \otimes_{\mathbb{Z}[\pi]} \mathbb{Z}[\Gamma] .
$$

Finite quotient

$\mathcal{C}: \mathbb{Z}[\pi]$－complex，free finite rank．G a normal subgroup，$\pi \rightarrow \Gamma=\pi / G$ ．

$$
\mathcal{C}_{G}:=\mathcal{C} \otimes_{\mathbb{Z}[\pi]} \mathbb{Z}[\Gamma] .
$$

－If Γ is finite，then \mathcal{C}_{G} is a \mathbb{Z}－complex of free finite rank \mathbb{Z}－modules． \mathcal{C}_{G} may not be acyclic even when \mathcal{C} is．But the Betti numbers of \mathcal{C}_{G} are ＂small＂compared to［ $\pi: G]$ ．

Finite quotient

$\mathcal{C}: \mathbb{Z}[\pi]$-complex, free finite rank. G a normal subgroup, $\pi \rightarrow \Gamma=\pi / G$.

$$
\mathcal{C}_{G}:=\mathcal{C} \otimes_{\mathbb{Z}[\pi]} \mathbb{Z}[\Gamma]
$$

- If Γ is finite, then \mathcal{C}_{G} is a \mathbb{Z}-complex of free finite rank \mathbb{Z}-modules. \mathcal{C}_{G} may not be acyclic even when \mathcal{C} is. But the Betti numbers of \mathcal{C}_{G} are "small" compared to $[\pi: G]$.
- If \mathcal{C}_{G} is acyclic, then $\tau^{R}\left(\mathcal{C}_{G}\right)=t(\mathcal{C}, G)$ (Milnor-Turaev formula), where

$$
t(\mathcal{C}, G):=\frac{\left|\operatorname{Tor} H_{0}\left(\mathcal{C}_{G}, \mathbb{Z}\right)\right|\left|\operatorname{Tor} H_{2}\left(\mathcal{C}_{G}, \mathbb{Z}\right)\right| \ldots}{\left|\operatorname{Tor} H_{1}\left(\mathcal{C}_{G}, \mathbb{Z}\right)\right|\left|\operatorname{Tor} H_{3}\left(\mathcal{C}_{G}, \mathbb{Z}\right)\right|}
$$

Finite quotient

$\mathcal{C}: \mathbb{Z}[\pi]$-complex, free finite rank. G a normal subgroup, $\pi \rightarrow \Gamma=\pi / G$.

$$
\mathcal{C}_{G}:=\mathcal{C} \otimes_{\mathbb{Z}[\pi]} \mathbb{Z}[\Gamma]
$$

- If Γ is finite, then \mathcal{C}_{G} is a \mathbb{Z}-complex of free finite rank \mathbb{Z}-modules. \mathcal{C}_{G} may not be acyclic even when \mathcal{C} is. But the Betti numbers of \mathcal{C}_{G} are "small" compared to [$\pi: G$].
- If \mathcal{C}_{G} is acyclic, then $\tau^{R}\left(\mathcal{C}_{G}\right)=t(\mathcal{C}, G)$ (Milnor-Turaev formula), where

$$
t(\mathcal{C}, G):=\frac{\left|\operatorname{Tor} H_{0}\left(\mathcal{C}_{G}, \mathbb{Z}\right)\right|\left|\operatorname{Tor} H_{2}\left(\mathcal{C}_{G}, \mathbb{Z}\right)\right| \ldots}{\left|\operatorname{Tor}_{1}\left(\mathcal{C}_{G}, \mathbb{Z}\right)\right|\left|\operatorname{Tor} H_{3}\left(\mathcal{C}_{G}, \mathbb{Z}\right)\right|}
$$

- In general,

$$
\lim _{\operatorname{diam} G \rightarrow \infty} \operatorname{tr}_{\pi / G}(x)=\operatorname{tr}_{\pi}(x)
$$

Finite quotient

$\mathcal{C}: \mathbb{Z}[\pi]$-complex, free finite rank. G a normal subgroup, $\pi \rightarrow \Gamma=\pi / \mathcal{G}$.

$$
\mathcal{C}_{G}:=\mathcal{C} \otimes_{\mathbb{Z}[\pi]} \mathbb{Z}[\Gamma] .
$$

- If Γ is finite, then \mathcal{C}_{G} is a \mathbb{Z}-complex of free finite rank \mathbb{Z}-modules. \mathcal{C}_{G} may not be acyclic even when \mathcal{C} is. But the Betti numbers of \mathcal{C}_{G} are "small" compared to [π : $G]$.
- If \mathcal{C}_{G} is acyclic, then $\tau^{R}\left(\mathcal{C}_{G}\right)=t(\mathcal{C}, G)$ (Milnor-Turaev formula), where

$$
t(\mathcal{C}, G):=\frac{\left|\operatorname{Tor} H_{0}\left(\mathcal{C}_{G}, \mathbb{Z}\right)\right|\left|\operatorname{Tor}_{2}\left(\mathcal{C}_{G}, \mathbb{Z}\right)\right| \ldots}{\left|\operatorname{Tor}_{1}\left(\mathcal{C}_{G}, \mathbb{Z}\right)\right|\left|\operatorname{Tor} H_{3}\left(\mathcal{C}_{G}, \mathbb{Z}\right)\right|} .
$$

- In general,

$$
\lim _{\operatorname{diam} G \rightarrow \infty} \operatorname{tr}_{\pi / G}(x)=\operatorname{tr}_{\pi}(x) \text {. }
$$

Question When

$$
\lim _{\operatorname{diam} G \rightarrow \infty} t(\mathcal{C}, G)^{1 /[\pi: G]}=\tau^{(2)} \mathcal{C} ?
$$

Full result for $\pi=\mathbb{Z}$

Theorem

$$
\pi=\mathbb{Z} . \quad G_{k}=k \mathbb{Z} \subset \mathbb{Z}
$$

$$
\lim _{k \rightarrow \infty} t\left(\mathcal{C}, G_{k}\right)^{1 / k}=\tau^{(2)} \mathcal{C}
$$

Full result for $\pi=\mathbb{Z}$

Theorem

$$
\pi=\mathbb{Z} . \quad G_{k}=k \mathbb{Z} \subset \mathbb{Z}
$$

$$
\lim _{k \rightarrow \infty} t\left(\mathcal{C}, G_{k}\right)^{1 / k}=\tau^{(2)} \mathcal{C}
$$

- Proof of theorem used a special case, a result of Lück (Riley, Gonzalez-Acuna, and Short) based on Gelfond-Baker theory of diophantine approximation): $f \in \mathbb{Q}[\mathbb{Z}]$, then

$$
\operatorname{det}_{\mathbb{Z}} f=\lim _{n \rightarrow \infty} \operatorname{det}_{\mathbb{Z} / k}\left(f_{\mathbb{Z} / k}\right)
$$

and a result relating $\operatorname{det}_{\mathbb{Z}_{k}}$ to |Tor|.

Partial result $\pi=\mathbb{Z}^{\mu}$

Consider only lattice $G<\mathbb{Z}^{\mu}$ such that rk $G=\mu$.

Partial result $\pi=\mathbb{Z}^{\mu}$

Consider only lattice $G<\mathbb{Z}^{\mu}$ such that rk $G=\mu$.
Theorem
$A \in \operatorname{Mat}\left(m \times n, \mathbb{C}\left[\mathbb{Z}^{\mu}\right]\right)$. Then

$$
\operatorname{det}_{\mathbb{Z}^{\mu}} A=\limsup _{\operatorname{diam} G \rightarrow \infty} \operatorname{det}_{\mathbb{Z}^{\mu} / G}\left(A_{G}\right)
$$

Application：Link case

$L: \mu$－component link in S^{3} ．Assume $\Delta_{0}(L) \neq 0$（always the case if $\mu=1$ ）．

$$
t(L, G)=\left|\operatorname{Tor} H_{1}\left(X_{G}^{\mathrm{br}}, \mathbb{Z}\right)\right|
$$

Application: Link case

$L: \mu$-component link in S^{3}. Assume $\Delta_{0}(L) \neq 0$ (always the case if $\mu=1$).

$$
t(L, G)=\left|\operatorname{Tor} H_{1}\left(X_{G}^{\mathrm{br}}, \mathbb{Z}\right)\right|
$$

Corollary
(Silver-Williams)

$$
M\left(\Delta_{0}(L)\right)=\limsup _{\operatorname{diam} G \rightarrow \infty} t(L, G)^{1 /\left[\mathbb{Z}^{\mu}: G\right]}
$$

If $\mu=1$, then lim sup can be replaced by lim.
was proved by Silver and Williams using tools from symbolic dynamics.

Application: Link case

$L: \mu$-component link in S^{3}. Assume $\Delta_{0}(L) \neq 0$ (always the case if $\mu=1$).

$$
t(L, G)=\left|\operatorname{Tor} H_{1}\left(X_{G}^{\mathrm{br}}, \mathbb{Z}\right)\right|
$$

Corollary
(Silver-Williams)

$$
M\left(\Delta_{0}(L)\right)=\limsup _{\operatorname{diam} G \rightarrow \infty} t(L, G)^{1 /\left[\mathbb{Z}^{\mu}: G\right]}
$$

If $\mu=1$, then lim sup can be replaced by lim.
was proved by Silver and Williams using tools from symbolic dynamics.

- For knots: Question of Gordon, answered by Riley and by Gonzalez-Acuna and Short.
$\Delta_{0}=0$

When $\Delta_{0}=0$, it's natural to take $\Delta(L)=\Delta_{s}(L)$, the smallest s such that $\Delta_{s}(L) \neq 0$.

$\Delta_{0}=0$

When $\Delta_{0}=0$, it's natural to take $\Delta(L)=\Delta_{s}(L)$, the smallest s such that $\Delta_{s}(L) \neq 0$.
Conjecture (Silver and Williams):

$$
\limsup _{\operatorname{diam} G \rightarrow \infty} t(L, G)^{1 /\left[\mathbb{Z}^{\mu}: G\right]}=M(\Delta(L))
$$

$\Delta_{0}=0$

When $\Delta_{0}=0$, it's natural to take $\Delta(L)=\Delta_{s}(L)$, the smallest s such that $\Delta_{s}(L) \neq 0$.
Conjecture (Silver and Williams):

$$
\limsup _{\operatorname{diam} G \rightarrow \infty} t(L, G)^{1 /\left[\mathbb{Z}^{\mu}: G\right]}=M(\Delta(L))
$$

Proposition

$$
\limsup _{\operatorname{diam} G \rightarrow \infty} t(L, G)^{1 /\left[\mathbb{Z}^{\mu}: G\right]} \geq M(\Delta(L))
$$

Used a theorem of Schinzel-Bombieri-Zannier (2000) on co-primeness of specializations of multivariable polynomials.

Knot case: Expander family

$$
0 \rightarrow C_{2} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0, \quad \tau^{(2)}=\frac{\operatorname{det}_{\pi} \partial_{1}}{\operatorname{det}_{\pi} \partial_{2}}
$$

Knot case：Expander family

$$
0 \rightarrow C_{2} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0, \quad \tau^{(2)}=\frac{\operatorname{det}_{\pi} \partial_{1}}{\operatorname{det}_{\pi} \partial_{2}}
$$

One can prove the volume conjecture

$$
\exp (\operatorname{Vol}(K))=\underset{\operatorname{diam} G \rightarrow \infty}{\lim \sup } t(K, G)^{1 /[\pi: G]}
$$

if one can approximate both $\operatorname{det}_{\pi} \partial_{1}, \operatorname{det}_{\pi} \partial_{2}$ by finite quotients．

Knot case: Expander family

$$
0 \rightarrow C_{2} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0, \quad \tau^{(2)}=\frac{\operatorname{det}_{\pi} \partial_{1}}{\operatorname{det}_{\pi} \partial_{2}}
$$

One can prove the volume conjecture

$$
\exp (\operatorname{Vol}(K))=\lim _{\operatorname{diam} \sup _{G \rightarrow \infty}} t(K, G)^{1 /[\pi: G]}
$$

if one can approximate both $\operatorname{det}_{\pi} \partial_{1}, \operatorname{det}_{\pi} \partial_{2}$ by finite quotients. A convergence criterion of Lück: For $A \in \operatorname{Mat}(m \times n, \mathbb{Z}[\pi]), B=A^{*} A$, if the eigenvalues of the B_{G} near 0 "behaves well", then

$$
\operatorname{det}_{\pi} A=\lim _{G \rightarrow \infty} \operatorname{det}_{\pi / G} A_{G}
$$

Knot case: Expander family

$$
0 \rightarrow C_{2} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0, \quad \tau^{(2)}=\frac{\operatorname{det}_{\pi} \partial_{1}}{\operatorname{det}_{\pi} \partial_{2}}
$$

One can prove the volume conjecture

$$
\exp (\operatorname{Vol}(K))=\lim _{\operatorname{diam} \sup _{G \rightarrow \infty}} t(K, G)^{1 /[\pi: G]}
$$

if one can approximate both $\operatorname{det}_{\pi} \partial_{1}, \operatorname{det}_{\pi} \partial_{2}$ by finite quotients.
A convergence criterion of Lück: For $A \in \operatorname{Mat}(m \times n, \mathbb{Z}[\pi]), B=A^{*} A$, if the eigenvalues of the B_{G} near 0 "behaves well", then

$$
\operatorname{det}_{\pi} A=\lim _{G \rightarrow \infty} \operatorname{det}_{\pi / G} A_{G} .
$$

For expander family, requirements of Lück criterion are satisfied trivially for $A=\partial_{1}$:
∂_{1} can be approximated by finite quotients (from expander family).

Knot case: Expander family

$$
0 \rightarrow C_{2} \xrightarrow{\partial_{2}} C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0, \quad \tau^{(2)}=\frac{\operatorname{det}_{\pi} \partial_{1}}{\operatorname{det}_{\pi} \partial_{2}}
$$

One can prove the volume conjecture

$$
\exp (\operatorname{Vol}(K))=\lim _{\operatorname{diam} \sup _{\rightarrow \infty}} t(K, G)^{1 /[\pi: G]}
$$

if one can approximate both $\operatorname{det}_{\pi} \partial_{1}, \operatorname{det}_{\pi} \partial_{2}$ by finite quotients.
A convergence criterion of Lück: For $A \in \operatorname{Mat}(m \times n, \mathbb{Z}[\pi]), B=A^{*} A$, if the eigenvalues of the B_{G} near 0 "behaves well", then

$$
\operatorname{det}_{\pi} A=\lim _{G \rightarrow \infty} \operatorname{det}_{\pi / G} A_{G} .
$$

For expander family, requirements of Lück criterion are satisfied trivially for $A=\partial_{1}$:
∂_{1} can be approximated by finite quotients (from expander family). Same for ∂_{2} ? Yes \Longrightarrow 'volume conjecture" for hyperbolic knots.

THANK YOU!

