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Link invariant from a Yang—Baxter operator
Braid presentation of a link

Theorem (J.W. Alexander)

Any knot or link can be presented as the closure of a braid.

n-braid group has
\

nln

l+1
e relations: ojo; = ojo; (|i —j| > 1),
1 \

@ generators: o; (i=1,2,...,n—1):
l
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Link invariant from a Yang—Baxter operator

Markov's theorem

Theorem (A.A. Markov)
B and [3' give equivalent links < (3 and (3’ are related by
e conjugation (aff < [a):

4
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Link invariant from a Yang—Baxter operator

Yang—Baxter operator

@ V: a N-dimensional vector space over C.
e R:V®V — V®V (R-matrix), u: V — V: isomorphisms,

@ a, b: non-zero complex numbers.

Definition (V. Turaev)
(R, i, a, b) is called an enhanced Yang—Baxter operator if it satisfies
o (Reldy)(ldy ®R)(R®Idy) = (Idy ®R)(R ® Idy)(ldy ®R),
(Yang—Baxter equation)
o R(u®u)=(np®pR,
] Trg(Ri(ldV ®,u,)) = ailbld\/.
Try: V ® V — Vs the operator trace. (For M € End(V ® V) given by a
matrix M}, Tro(M) is given by >, Mim.)
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Link invariant from a Yang—Baxter operator

Braid = endomorphism

N Ve v y VeV
Replace v/\ with , and V/\v with .
ye v Ve v

n-braid 3 = homomorphism ®(3): V®" — y&n

v
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Link invariant from a Yang—Baxter operator
Definition of an invariant
Definition
n-braid 8 = a link L.

T(Ru,ap)(L) = a= (b= Try (Tr2 (- (Tra (S(B)®")) - - .)>,

where Try: V&K — v@(k=1) is defined similarly.

=
/
A -

Ral|
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Link invariant from a Yang—Baxter operator

Invariance of T(g . p)(L) under braid relation and
conjugation

@ Invariance under the braid relation ojoj110; = 0j+10; = Tit1.

N k N VV®V VRVRV
(1 1%
\1 N

braid relation rQrevr VRVYV
Yang—Baxter equation

@ invariance under conjugation

(1®p)R=R(uop)

Try is invariant
under conjugation
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Link invariant from a Yang—Baxter operator

Invariance of T(g , .p)(L) under stabilization

@ invariance under stabilization

WL oo

@ invariance under stabilization
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Quantum (g, V) invariant

@ g: a Lie algebra,

@ V' its representation

=
an enhanced Yang—Baxter operator (R, 1, a, b).
=

quantum (g, V) invariant.

Definition
The quantum (s/(2,C), Vi) invariant is called the N-dimensional colored
Jones polynomial Jy(L; q). (g is a complex parameter.)

e Vj: N-dimensional irreducible representation of s/(2,C).
e J(L;q) is the ordinary Jones polynomial.
e Jy(unknot; g) = 1.
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Link invariant from a Yang—Baxter operator

Precise definition of the colored Jones polynomial

o V.=CN,
min(N—1—i,j)
. YN —1 — k!
e R! .= 01 itmOk. i—m { -
& mZO Wt mS MO N — 1 — j}1

y q( (/v 1)/2)( (N 1)/2) - —m(i~j)/2=m(m+1)/4
with {m} := ¢™/? — q=™/2 and {m}! := {1}{2} --- {m}.
o i = 5qu(2i—N+1)/2_
N-1

° R(ex ® e) Z Rk,e, ® e and p(e)) Z ,uje,
i,j=0

=
(R, w, q(N2_1)/4, 1) gives an enhanced Yang—Baxter operator.

Definition

—

In(L;q) = T(R p.gW2-1)/4 1)(K) X %: colored Jones polynomial. J
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Volume conjecture

Volume conjecture

Conjecture (Volume Conjecture, R. Kashaev, J. Murakami+H.M.)
K: knot

ot 98 IN(K; exp(2my/=T/N))|

_ 3
Jim - — VolI(S3\ K).

Definition (Simplicial volume (Gromov norm))

Vol(S3\ K) := Z Hyperbolic Volume of H;.
H;:hyperbolic piece

Definition (Jaco—Shalen—Johannson decomposition)

S3\ K can be uniquely decomposed as

sty (U)o (L)

with H; hyperbolic and E; Seifert-fibered.

v
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Volume conjecture

Example of JSJ decomposition

Hitoshi Murakami (Tokyo Institute of Technology) | An Introduction to the Volume Conjecture, | 6th June, 2009 13 /22




Colored Jones polynomial of &

Proof of the VC for @ is given by T. Ekholm.
Theorem (K. Habiro, T. L&)

(@ ) Z:l ﬁ ( (N—k)/2 (ka)/2> <q(N+k)/2 _ qf(N+k)/2> '

Jj=0 k=1

q — exp(2my/—1/N)

N-1

In (@ ;exp(27r\/—_1/N)) = ﬁ f(N; k)

j=0 k=1

-

with f(N; k) := 4sin?(kr/N).
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Proof of the volume conjecture for the figure-eight knot

Find the maximum of the summands

N—-1 J
Iy (@ 2VIN) = ST T F(N: k) with £(N; k) i= 4sin®(kr/N).

j=0 k=1
Graph of f(N; k)
SIN:K)
A
4 ,,,,,,,,,,,,,,,
M \
0 ‘ ‘ >
NI SN/G

Put g(N;j) = j/;:1 f(N; k).

j o[-~ [N/6 ] --- 5N/6 11
f(N; k) <1l| 1 |>1 1 <1
g(N;j) | 1|\ | maximum | Y\
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Proof of the volume conjecture for the figure-eight knot

Limit of the sum is the limit of the maximum
e Maximum of {g(N;)}o<j<n—1is g(N;5N/6).
° Jy (@) ;eXP(27T\/—_1//V)) = >0 g (N:)).
U
g(N;5N/6) < Jy (@ ;exp(27r\/—_1/N)) < N x g(N;5N/6)

log g(N:5N/6) - logJy  logN | logg(N;5N/6)
N B S T N

4
lim log g(N;5N/6) < i log Jn < lim IogN+ lim log g(N;5N/6)
N— oo N—oo N N—oo N N—oco N
lim Iogg(N;5N/6)S lim IogJNS lim log g(N;5N/6)
N— o0 N—oo N N— oo N
lim Iogg(N;SN/6)S lim IogJNS lim log g(N;5N/6)
N—oo N N—oo N N— oo N
!
. log Jn . logg(N;5N/6)
lim = |lim ———~

A A A
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Proof of the volume conjecture for the figure-eight knot

Calculation of the limit of the maximum

&
~ log Iy (@:exp(27f\/—1/N)) _ logg(N;5N/6)
lim = |lim —————~
N—oo N N—oo N
5N/6 5N/6

= lim Z log f(N: k) =2 lim Z log (2sin(km/N))

2 571'/6 2
=< / log (2sin x) dx = —=A(57/6) = 0.323066 ... .,
0 T

s

where A(0) := — fo log |2sin x| dx is the Lobachevsky function.
What is A(57/6)?
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Lobachevsky function A(6)

Some properties of A := — foa log |2 sin x| dx.
@ Ais an odd function and has period 7.
o A(20) = 2A(0) + 2A(0 + 7/2). (AN(nf) = nS2Z1 A + kr/n) in
general.)
The first property is easy.
To prove the second, we use the double angle formula of sine:

sin(2x) = 2sin x cos x.

= log |2sin(2x)| = log |2sin x| + log|2sin(x + 7/2)|. O

So we have A(57/6) = —A(x/6)
N(m/3) = 2N(7/6) + 2\(27/3) = 2A\(7/6) — 2\(7/3)

- A(57/6) = —A(r/3).

- 2r Jim_log Jy ((8) Lexp(2my/—1 //v)) /N = 6A(r/3)
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Hyperbolic geometry

Decomposition of S\ & into two tetrahedra

What is 6A(r/3)?
Theorem (W. Thurston)

We can regard both pieces in the right hand side as regular ideal
hyperbolic tetrahedra.

= S3 \@ possesses a complete hyperbolic structure.
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Hyperbolic geometry

|deal hyperbolic tetrahedron
o M3 := {(x,y,z) | z> 0}: with hyperbolic metric ds := —W.
@ ldeal hyperbolic tetrahedron : tetrahedron with geodesic faces with

four vertices in the boundary at infinity.

@ We may assume
» One vertex is at (00, 00, 00).
» The other three are on xy-plane.

Ideal hyperbolic
tetrahedron

A(a, B,7)
| Top view Ideal hyperbolic tetrahedron is

/ defined (up to isometry) by the
‘ similarity class of this triangle.

Vol(A(a, 3,7)) = Ma)+A(B)+A(7).
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Proof of the volume conjecture for the figure-eight knot - conclusion

Proof of VC - conclusion

2y (@ Lexp(2my/—1 /N)) — 6A(1/3)

= 2 Vol(regular ideal hyperbolic tetrahedron)

:VO|(53\®>

= Volume Conjecture for @ .
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Final remarks

So far the Volume Conjecture is proved for

@ torus knots (Kashaev and Tirkkonen)

e torus links of type (2,2m) (Hikami)

o figure-eight knot (Ekholm)

@ 5 knot (hyperbolic) (Kashaev and Yokota)
e Whitehead doubles of torus knots (Zheng)
o twisted Whitehead links (Zheng)
@ Borromean rings (Garoufalidis and L&)
e Whitehead chains (van der Veen)
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