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@ Example of calculation

© Geometric interpretation of the R-matrix

© Approximation of the colored Jones polynomial

@ Geometric interpretation of the limit
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Example of calculation

Review of the definition
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Example of calculation

Review of the definition

; min(N—1—ij) NN —1 — kI
R = Z 5"f+m5kd—m{/}{!g,§}!{N -1 —}j}!

m=0

w qU=(N=1)72) (j=(N-1)/2) =m(i=j)/2=m(m+1)/4
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Example of calculation

Review of the definition

min(N—1—ij)

p {IM{N —1— Kk}

Ri=" > OitmOkj-mp: -
— {ip{m{N —1—j}!
w qU=(N=1)72) (j=(N-1)/2) =m(i=j)/2=m(m+1)/4

min(N—1—ij)
BN {KP{N—1— 1}
Ru= 2 Otk jem Gy N — 1~ 7)1

m=0

< g (i-(v-1)/2) (j—(N-1)/2) —m(i—j)/24+m(m+1)/4.
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Example of calculation

Review of the definition

min(N—1—ij)

p {IM{N —1— Kk}

Ri=" > OitmOkj-mp: -
— {ip{m{N —1—j}!
w qU=(N=1)72) (j=(N-1)/2) =m(i=j)/2=m(m+1)/4

min(N—1—ij)
BN {KP{N—1— 1}
Ru= 2 Otk jem Gy N — 1~ 7)1

m=0

< g (i-(v-1)/2) (j—(N-1)/2) —m(i—j)/24+m(m+1)/4.

with {m} := ¢™/? — q=™/2? and {m}! := {1}{2} --- {m}.
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Example of calculation

Review of the definition

min(N—1—ij)
i ' ' {IPYN —1— k}!
Ri = mZ:O OOk —m T T N — 1 — 1

w qU=(N=1)72) (j=(N-1)/2) =m(i=j)/2=m(m+1)/4

min(N—1—ij)
BN . _ {kK}{N—1— [}
R I ]

< g (i-(v-1)/2) (j—(N-1)/2) —m(i—j)/24+m(m+1)/4.

with {m} := ¢™/? — q=™/2? and {m}! := {1}{2} --- {m}.

i J i J
N i / i
v/\v = Rl V/\V = (R7YHY,
k k1
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Example of calculation

An example of calculation
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An example of calculation

In(Li ) = Tig , quz-nya (L) X {{/t/}}
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Example of calculation

An example of calculation

M0 = T ey 1)

To calculate Jy(L; g) we leave the left-most strand without closing.
This gives a linear map

|l = [o® | @: CN — CN, which is a scalar
multiple by Schur’'s lemma.
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Example of calculation

An example of calculation

M0 = T ey 1)

To calculate Jy(L; g) we leave the left-most strand without closing.
This gives a linear map

|l = [o® | @: CN — CN, which is a scalar
multiple by Schur’'s lemma.

We fix a basis {ep, e1,...,en_1} of CV.
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Example of calculation

An example of calculation

M0 = T ey 1)

To calculate Jy(L; g) we leave the left-most strand without closing.
This gives a linear map

Bl = [ o® ] @: CN — CN, which is a scalar
multiple by Schur’'s lemma.

We fix a basis {ep, e1,...,en_1} of CN. The linear map is a scalar
multiple and so e; is multiplied by S for any i.
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Example of calculation

An example of calculation

M0 = T ey 1)

To calculate Jy(L; g) we leave the left-most strand without closing.
This gives a linear map

Bl = [ o® ] @: CN — CN, which is a scalar
multiple by Schur’'s lemma.

We fix a basis {ep, e1,...,en_1} of CN. The linear map is a scalar
multiple and so e; is multiplied by S for any /. Since

T(R%q(,\,z,l)/“)(L) - q—w(ﬁ)(Nz_l)/4 Try(¢n)

N-1
—w(B)(N2—1)/4 Z S q(2i—N+1)/2
i=0

—w(@(ne-1)/a 1V} ¢

=q 1} )
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Example of calculation

An example of calculation

M0 = T ey 1)

To calculate Jy(L; g) we leave the left-most strand without closing.
This gives a linear map

Bl = [ o® ] @: CN — CN, which is a scalar
multiple by Schur’'s lemma.

We fix a basis {ep, e1,...,en_1} of CN. The linear map is a scalar
multiple and so e; is multiplied by S for any /. Since
L) = g AN -1)/4 Tri(op)

N-1
—w(B)(N?—1)/4 Z S q(2:—N+1)/2

T(R7M7q(N271)/471)(

i=0
~w(g)(nv2-1)/a 1N}

=q 1} )

we have Jy(L; q) = g W(B(N2-1)/4g

Hitoshi Murakami (Tokyo Institute of Technology) | An Introduction to the Volume Conjecture, I 8th June, 2009

4/19



Example of calculation

How to label arcs
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Example of calculation

How to label arcs

i
/:>1+J_k—|—/ >0, k <], /\/vél—i—_/—k—i—/ 1<, k>
k1
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Example of calculation

How to label arcs
. ;

i J

v\/ S i+j=k+11>i k<] \/v;»/+j:k+/./§i,kzj.
b v

ko

i
J

\4
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Example of calculation

How to label arcs

i i
v\/=>i+j:k+/,/2i,k§j.\/V=>i+j=k+/./§i,k2j-
b v
ko kI

N-1

\ Label the incoming arc with N — 1.
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Example of calculation

How to label arcs

i i
v\/=>i+j:k+/,/2i,kéj.\/V=>i+j=k+/./§i,k2j-
b v
ko kI

N-1

The next one should be N — 1, since itis > N — 1.

L
.

)

\4
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Example of calculation

How to label arcs

i i
v\/=>i+j:k+/,/2i,k§j.\/V=>i+j=k+/./§i,k2j-
b v
ko kI

N-1
i
A N\UV-1

\ Choose i.
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Example of calculation

How to label arcs
. ;

i J
v\/ S i+j=k+11>i k<] \/v;»/+j:k+/./§i,kzj.
b v

k1 k1
N-1
i
NIV-1
i This is also i, since the sum of the labels
of the incoming arcs equals the sum of the
labels of the outgoing arcs.
Y
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Example of calculation

How to label arcs

i i
v\/=>i+j:k+/,/2i,k§j.\/V=>i+j=k+/./§i,k2j-
b v
ko kI

N-1

i
/N-lj

Choose j.

)
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Example of calculation

How to label arcs

i i
v\/=>i+j:k+/,/2i,k§j.\/V=>i+j=k+/./§i,k2j-
b v
ko kI

N-1
i
N N-1 Jj
k

%

)

Choose k.

Hitoshi Murakami (Tokyo Institute of Technology) | An Introduction to the Volume Conjecture, I 8th June, 2009 5/19



Example of calculation

How to label arcs
. ;

i J
v\/ S i+j=k+11>i k<] \/v;»/+j:k+/./§i,kzj.
b v

k1 kol

The sum of the labels of the incoming arcs
equals the sum of the labels of the outgoing
arcs.

Y
Hitoshi Murakami (Tokyo Institute of Technology) | An Introduction to the Volume Conjecture, I 8th June, 2009 5/19



Example of calculation

How to label arcs

i i
v\/=>i+j:k+/,/2i,kéj.\/V=>i+j=k+/./§i,k2j-
b v
ko kI

It should be N — 1 by the same reason.

Y
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Example of calculation

How to label arcs

i i
v\/=>i+j:k+/,/2i,k§j.\/V=>i+j=k+/./§i,k2j-
b v
ko kI

k=j,sinceN—1<N-1+j+k
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Example of calculation

colored Jones polynomial
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Example of calculation

colored Jones polynomial

Hitoshi Murakami (Tokyo Institute of Technology) | An Introduction to the Volume Conjecture, I 8th June, 2009 6 /19



Example of calculation

colored Jones polynomial

JN(@ ' Q)

N 11 N 1) pi,N—1 ij
E:R,N 1 In_ 1) RN71,,' (R™ ),J MJN:

gy N TN -1
=2 G e

« q(—l—12—2lj—2_] +3N+-6Ni+2Nj—3N?) /4
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Quantum factorial at the N-th root of unity
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Quantum factorial at the N-th root of unity

q = (n = exp(2mV/=1/N)
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Quantum factorial at the N-th root of unity

q = (n = exp(2mV/=1/N)
=
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Quantum factorial at the N-th root of unity
q = (n = exp(2my/—1/N)
{KY{N — k — 1}

=
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Quantum factorial at the N-th root of unity

q = (n = exp(2mV/=1/N)
7 KN — k— 1}
= & (a power of () x (1 —Cn)(1 = CRy) -+ (1 —CR)

x(T=Cw)I =GR A—¢u )
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Quantum factorial at the N-th root of unity
q = (n = exp(2mV/=1/N)
7 KN — k— 1)
= =+ (a power of () x (1 —(w)(1 = ¢R) -+ (1 —¢R)
X (L=¢n)(1=CR) - (1=¢y 75
+(a Power of ¢n) x (1= ¢w)(1—CR) -+ (1= CR)
X (1=¢y =) 1=
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Quantum factorial at the N-th root of unity
q = (n = exp(2my/—1/N)
7 KN — k— 1)

= =+ (a power of () x (1= ¢w)(L —¢F) -~ (1 — CX)

(L= =GR 1=
=*(a pover of ¢n) x (1= Cn)(1 = GR) -+~ (1 = C)
X (L=¢y D=y (1=
— + (a power of ¢y) x 2V L sin(n/N)sin(27/N) - - -sin((N — 1)7/N)
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Quantum factorial at the N-th root of unity

q = (n = exp(2my/=1/N)
7 KN — k— 1)

= & (a power of () x (1 —Cn)(1 = CRy) -+ (1 —CR)
X (1=¢w) A=) @=¢y™ )
(a IOOWer of ¢n) x (1= ¢n)(1—¢R) -~ (1 —¢)
eV [ e PR (e aviny)
(
(

a power of () x 2N=Lsin(w/N)sin(27/N) - --sin((N — 1)7/N)

+
X
+
+ (a power of () x N
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Geometric interpretation of the R-matrix

Quantum factorial at the N-th root of unity

q = (n = exp(2mV/=1/N)
KN — k- 1)1
= =+ (a power of () x (1 = Cw)(1 = CR) -~ (L —¢)
1= =GR (1= ¢y
a Power of (n) x (1= Cw)(1 = CR) -~ (1= CR)
L-Gv A=) (=)
a power of (y) x oN-1 sin(w/N)sin(2r/N) - - -sin((N — 1)7/N)
(a power of (i) x N

X (
(
(
(

+
X
+
==

o (Wit = (1= Cw) (1= CR), (G- 1= (1= Cw) -+~ (1= Gy 7).
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Geometric interpretation of the R-matrix

Quantum factorial at the N-th root of unity
q = (n = exp(2mV/=1/N)

7 KN — k— 1}
= =+ (a power of ¢y) x (1 —C¢n)(1—Ch)--- (1 — (,’\(,)
X (L= =GR) - (L =¢y5)

=+ (a power of (y) x (1 —Cn)(1—CR) -~ (1 —<¢F)

X (L=¢y D=y (1=
— + (a power of ¢y) x 2V L sin(n/N)sin(27/N) - - -sin((N — 1)7/N)
==+ (a power of {y) x N
o (Cn)k+ = (1=Cn) -+ (1= CR). ()= (T=Cw) - (1= ¢y 7).
o (Cn)k+(Cn)k- = *(a power of (n) x N.
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Geometric interpretation of the R-matrix

Quantum factorial at the N-th root of unity
q = (n = exp(2mV/=1/N)
7 KN — k— 1)

= =+ (a power of () x (1 —(n)(1 — 4,2\,) (1= (,’\(,)

X (1= ¢u)(1=¢R)-- 1=y 79
= = (a power of {n) x (1 —(n)(1—CR) -+ (1= ¢)
x (1= =gy (-G
— + (a power of ¢y) x 2V L sin(n/N)sin(27/N) - - -sin((N — 1)7/N)
==+ (a power of {y) x N

o (Wit = (1= Cw) (1= CR), (G- 1= (1= Cw) -+~ (1= Gy 7).
® (Cn)i+(Cn) k- = £(a power of {n) x N.

o {k}! = +(a power of {n) X (Cn)k+,
{N —1— k}! = +(a power of {n) X (Cn) k-
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Geometric interpretation of the R-matrix

R-matrix as a product of quantum factorial
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Geometric interpretation of the R-matrix

R-matrix as a product of quantum factorial

(YN —1— k}!
{iP{m{N —1—j}!

Rll;jl — Z +(a power of (y) X O1,i+mOkj—m
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Geometric interpretation of the R-matrix

R-matrix as a product of quantum factorial

(YN —1— k}!
{iP{m{N —1—j}!

Rll;jl — Z +(a power of (y) X O1,i+mOkj—m

+(a power of (y) x N?
e 5 i m§ —m
zm: PRI (Y e (o) (S )i () () -
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Geometric interpretation of the R-matrix

R-matrix as a product of quantum factorial

(YN —1— k}!
{iP{m{N —1—j}!

Rll;jl — Z +(a power of (y) X O1,i+mOkj—m

+(a power of (y) x N?
= 5 i m(s —m
Emj hitmCk.j (SN ) (SN i+ (SN )i+ ()= (Sn)i-
o +(a power of (y) x N2
B NS Sk
(R7H] ij MOt () e ()i () (Cn) (G
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Geometric interpretation of the R-matrix

R-matrix as a product of quantum factorial

(YN —1— k}!
{iP{m{N —1—j}!

Rll;jl — Z +(a power of (y) X O1,i+mOkj—m

+(a power of (y) x N?
= 5 i m(s —m
Emj hitmCk.j (SN ) (SN i+ (SN )i+ ()= (Sn)i-
o +(a power of (y) x N2
B NS Sk
(R7H] ij MOt () e ()i () (Cn) (G

=

| - +(a power of (y) x N*2
In(Kin) = > ( II (CN)m+(<N)ii(CN)ki(CN)ﬂF(CN)IﬂF)

labellings +-crossings
i7.j? k7 I
on arcs
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Geometric interpretation of the R-matrix

Approximation of the quantum factorial

k
log(Cn)k = . log(1 — Chy)

Jj=1
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Geometric interpretation of the R-matrix

Approximation of the quantum factorial

k
log(Cn)k = . log(1 — Chy)

j=1
k

- Z Iog(l — exp(27r\/—_1j/N))
j=1
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Geometric interpretation of the R-matrix

Approximation of the quantum factorial

k
log(Cn)k = . log(1 — Chy)

j=1
k
- Z Iog(l — exp(27r\/—_1j/N))
j=1
(x :==Jj/N)
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Geometric interpretation of the R-matrix

Approximation of the quantum factorial

k
log(Cn)k = . log(1 — Chy)

j=1
k
= Z log (1 — exp(2mv/—1j/N))
j=1
(x:=Jj/N)
k/N
N N/O log (1 — exp(2mv/—1x)) dx
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Geometric interpretation of the R-matrix

Approximation of the quantum factorial

k
log(Cn)k = . log(1 — Chy)

j=1
k
= Z log (1 — exp(2mv/—1j/N))
j=1
(x:=Jj/N)
k/N
N N/O log (1 — exp(2mv/—1x)) dx

(v := exp(2mv/—1x))
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Geometric interpretation of the R-matrix

Approximation of the quantum factorial

k
log(Cn)k = . log(1 — Chy)

j=1
k
= Z log (1 — exp(2mv/—1j/N))
j=1
(x:=Jj/N)
k/N
N N/O log (1 — exp(2mv/—1x)) dx

(y := exp(2mv—1x))
exp(2mv/=1k/N) Iog(l B y)

N
2/ —1 J1 y
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Geometric interpretation of the R-matrix

Approximation of the quantum factorial by dilogarithm
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Geometric interpretation of the R-matrix

Approximation of the quantum factorial by dilogarithm
o (dilog function)

Li2(2) :=—/02Mdyzz%.

y
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Geometric interpretation of the R-matrix

Approximation of the quantum factorial by dilogarithm

o (dilog function)

Li2(2) :=—/02Mdyzz%.

Y n=1

() 5= HalD) — Lia(ch)
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Geometric interpretation of the R-matrix

Approximation of the quantum factorial by dilogarithm

o (dilog function)
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Approximation of the colored Jones polynomial

Approximation of the colored Jones polynomial by
dilogarithm
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Approximation of the colored Jones polynomial

Approximation of the colored Jones polynomial by
dilogarithm
In(KiCn)  ~

Z (polynomial of N)
labellings

[ N
exp | ——
P 2w/ —1

Z {Liz(g,\",’) + Lia(CGET) + Lin(¢F) + Lin(CE%) + Lia(¢F") + log terms}

crossings
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Approximation of the colored Jones polynomial

Approximation of the colored Jones polynomial by
dilogarithm

In(K; Cn) ol

Z (polynomial of N)

labellings

[ N
exp | ——
P 2w/ —1

Z {Liz(g,\",’) + Lia(CGET) + Lin(¢F) + Lin(CE%) + Lia(¢F") + log terms}
crossings
where a log term comes from powers of (. For example

g = exp (2775_—1 (277\7\,__”()2) = exp [27ry—_1(|°g sz] :
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Approximation of the colored Jones polynomial

Approximation of the colored Jones polynomial by integral
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Approximation of the colored Jones polynomial

Approximation of the colored Jones polynomial by integral
Put

V(¢ ,...,C :
> {Lig(g,'\’,’) + Liz(gf\i") + Lia (&) + Lia(¢E%) + Lia(¢') + log terms} :

crossings

where i1,. .., ic are labellings on arcs.
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Approximation of the colored Jones polynomial

Approximation of the colored Jones polynomial by integral
Put

( yen ,( ;
> {Lig(g,'\’]) + Liz(gf\i") + Lia (&) + Lia(¢E%) + Lia(¢') + log terms} :
crossings

where i1,. .., ic are labellings on arcs.

In(K; Cn) Nl Z (polynomial of N)exp

Il’ -5

N i ic
271‘—\/__1V(CN7 .. "CN):|

(ignore ponnomiaIs since exp grows much bigger)
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Approximation of the colored Jones polynomial

Approximation of the colored Jones polynomial by integral
Put

( yen ,( ;
> {LiQ(CN) + Liz(gf\i") + Lia (&) + Lia(¢E%) + Lia(¢') + log terms} :
crossings

where i1,. .., ic are labellings on arcs.

In(K; Cn) Nl Z (polynomial of N)exp [

Il’ -5

N i ic
271‘—\/__1V(CN7 .. "CN):|

(ignore ponnomiaIs since exp grows much bigger)

N . .
= ——V(Cy, -, G
N—oo Z &P |:27T\/ -1 ( N ' N):|

1yl
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Approximation of the colored Jones polynomial

Approximation of the colored Jones polynomial by integral
Put

( yen ,( ;
> {LiQ(CN) + Liz(gf\i") + Lia (&) + Lia(¢E%) + Lia(¢') + log terms} :
crossings

where i1,. .., ic are labellings on arcs.

In(K; Cn) Nl Z (polynomial of N)exp [

yee05lc

N i ic
mV(CN, .. "CN):|

(ignore polynomials since exp grows much bigger)

N . .
= ——V(Cy, -, G
N—oo Z &P |:27T\/ -1 ( N ' N):|

yeensic
A / / ex [ N V(z z.)dzy -+ dz ]
N:oo n ) p 27_(_\/_—1 1,---54c 1 cl»
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Approximation of the colored Jones polynomial

Approximation of the colored Jones polynomial by integral
Put

( yen ,C ;
> {LiQ(CN) + Liz(gf\i") + Lia (&) + Lia(¢E%) + Lia(¢') + log terms} :
crossings

where i1,. .., ic are labellings on arcs.

In(K; Cn) Nl Z (polynomial of N)exp [

Il’ -5

N i ic
mV(CN, .. "CN):|

(ignore ponnomiaIs since exp grows much bigger)

N . .
= ——V(Cy, -, G
N—oo Z &P |:27T\/ -1 ( N ’ N):|

1yl

N
~ o exp | V(21,2 dzy - dze |
o~ /J / xp [% Va1, z) o ]

where Ji, ..., J. are suitable contours.
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Saddle point method
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Saddle point method

As in the case of® , we want to find the maximum of

‘exp [#_—1 V(z1,...,2zc)dz; - -+ dzc}
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Saddle point method
As in the case of® , we want to find the maximum of

‘exp [#_—1 V(z1,...,2zc)dz; - -+ dzc}
V(x1,...,xc): the maximum of {Im V/(z1,...,2c)}(z,....2 )€ x oo x de-
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Saddle point method
As in the case of@ we want to find the maximum of

‘exp [m V(z1,...,2zc)dz; - -+ dzc}
V(x1,...,xc): the maximum of {Im V/(z1,...,2c)}(z,....2 )€ x oo x de-

@ We may need to change the contours Jk.

@ (x1,...,xc) is called the saddle point.
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Approximation of the colored Jones polynomial

Saddle point method

As in the case of@ we want to find the maximum of
‘exp [m V(z1,...,2c)dz1 - - dzc

V(x1,...,xc): the maximum of {Im V/(z, .,ZC)}(ZIP'.7ZC)€J1X,,.XJC.
@ We may need to change the contours Ji
@ (x1,...,xc) is called the saddle point.
=
JN( vCN) Noo exp |:2 \/— (X17 y X ) )
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Approximation of the colored Jones polynomial

Saddle point method

As in the case of@ we want to find the maximum of

‘exp [m V(z1,...,2zc)dz; - -+ dzc}

V(x1,...,xc): the maximum of {Im V(z1,...,2c)} ...z
@ We may need to change the contours Jk.

@ (x1,...,xc) is called the saddle point.
=

€J1>< X Jce

In(K; Cn) =V, xe) |

N:oo P |:2 \/ —

(x1,...,xc) satisfies the following equations.
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Approximation of the colored Jones polynomial

Saddle point method

As in the case of@ we want to find the maximum of

‘exp [m V(z1,...,2zc)dz; - -+ dzc}

V(x1,...,xc): the maximum of {Im V(z1,...,2c)} ...z
@ We may need to change the contours Jk.

@ (x1,...,xc) is called the saddle point.
=

€J1>< X Jce

K; ~ 4 .
JN( vCN) Noo exp |:2 \/— (X17 y X ) )
(x1,...,xc) satisfies the following equations.

oV

8Zk(xl,...,xc):O (k=1,...,¢)
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Approximation of the colored Jones polynomial

Saddle point method

As in the case of@ we want to find the maximum of
‘exp [m V(z1,...,2zc)dz; - -+ dzc}
V(x1,...,xc): the maximum of {Im V(z1,...,2c)} ...z

@ We may need to change the contours Jk.

€J1>< X Jce

@ (x1,...,xc) is called the saddle point.

=
In(K; Cn) Nioo exp [2 \/_V(Xl,..., x|,
(x1,...,xc) satisfies the following equations.
oV
aZk(xl,...,xc) =0 (k=1,...,0)
=

27v/ =1 lim In(Ki ) =V(x1,..., %)
N—oo N
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Difficulties

Difficulties so far:

Hitoshi Murakami (Tokyo Institute of Technology) | An Introduction to the Volume Conjecture, I 8th June, 2009 14 /19



Difficulties

Difficulties so far:

@ Replacing the summation with an integral

by EXPL\/— V(¢ .',Cf\?)}

.05l

N
~ " V(z,...,z)dz - d
e R R R L
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Difficulties

Difficulties so far:

@ Replacing the summation with an integral

by EXPL\/— V(¢ -',Cf\?)}

1,5l
Nc: / / exp |: N V(z Z, )dz dz, :|
NN ) ] 2 /_1 1,---34c 1 c| -

@ How to apply the saddle point method. In particular, which saddle
point to choose. In general, we have many solutions to the system of
equations.

N
——V(z1,...,2z.)dz -+ d
Jo ool o oa o

~
~

N
—V(x1,...,xc)| -
N—oo P |:27T\/—_1 (Xl’ - ):|
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Decomposition into octahedra (by D. Thurston)
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Decomposition into octahedra (by D. Thurston)

Decompose the knot complement into (topological, truncated) tetrahedra.
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Geometric interpretation of the limit

Decomposition into octahedra (by D. Thurston)

Decompose the knot complement into (topological, truncated) tetrahedra.

@ Around each crossing, put an octahedron:
i \
V\/ = ﬁ
A Ve
k1

k 1
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Geometric interpretation of the limit

Decomposition into octahedra (by D. Thurston)

Decompose the knot complement into (topological, truncated) tetrahedra.

@ Around each crossing, put an octahedron:
i J i\ J
V\/ = ﬁ
A <
k1

k 1

@ Decompose the octahedron into five tetrahedra:

VA
B

NS
W= NP
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Geometric interpretation of the limit

Decomposition into topological tetrahedra
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Geometric interpretation of the limit

Decomposition into topological tetrahedra

@ Pull the vertices to the point at infinity:

i j

¢A
\/

e 53\ K is now decomposed into topological, truncated tetrahedra,
decorated with complex numbers (:,'\k,.

/
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Geometric interpretation of the limit

Decomposition into hyperbolic tetrahedra
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Geometric interpretation of the limit

Decomposition into hyperbolic tetrahedra

@ Each topological, truncated tetrahedron is decorated with a complex
number (.
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Geometric interpretation of the limit

Decomposition into hyperbolic tetrahedra

@ Each topological, truncated tetrahedron is decorated with a complex
number (.

o We want to regard it as a hyperbolic, ideal tetrahedron.
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Geometric interpretation of the limit

Decomposition into hyperbolic tetrahedra

@ Each topological, truncated tetrahedron is decorated with a complex
number (.

o We want to regard it as a hyperbolic, ideal tetrahedron.

@ Recall that we have replaced a summation over iy into an integral
over zj.
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Geometric interpretation of the limit

Decomposition into hyperbolic tetrahedra

@ Each topological, truncated tetrahedron is decorated with a complex
number (.

o We want to regard it as a hyperbolic, ideal tetrahedron.

@ Recall that we have replaced a summation over iy into an integral
over zj.

@ Replace (5 with a complex variable z.
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Geometric interpretation of the limit

Decomposition into hyperbolic tetrahedra

@ Each topological, truncated tetrahedron is decorated with a complex
number (.

o We want to regard it as a hyperbolic, ideal tetrahedron.

@ Recall that we have replaced a summation over iy into an integral
over zj.

@ Replace (5 with a complex variable z.

@ Regard the tetrahedron decorated with z, as an hyperbolic, ideal
tetrahedron parametrized by z.
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Geometric interpretation of the limit

Hyperbolic structure on the knot complement
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Geometric interpretation of the limit

Hyperbolic structure on the knot complement

@ Now the knot complement is decomposed into ideal, hyperbolic
tetrahedra parametrized by z;, ..., z.
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Geometric interpretation of the limit

Hyperbolic structure on the knot complement

@ Now the knot complement is decomposed into ideal, hyperbolic
tetrahedra parametrized by z;, ..., z.
@ Choose z,...,z: so that we can glue these tetrahedra well, that is,
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Geometric interpretation of the limit

Hyperbolic structure on the knot complement

@ Now the knot complement is decomposed into ideal, hyperbolic
tetrahedra parametrized by z;, ..., z.
@ Choose z,...,z: so that we can glue these tetrahedra well, that is,
» around each edge, the sum of angles is 27,
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Geometric interpretation of the limit

Hyperbolic structure on the knot complement

@ Now the knot complement is decomposed into ideal, hyperbolic
tetrahedra parametrized by z;, ..., z.
@ Choose z,...,z: so that we can glue these tetrahedra well, that is,

» around each edge, the sum of angles is 27,
> the triangles that appear in the boundary torus make the torus
Euclidean.
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Geometric interpretation of the limit

Hyperbolic structure on the knot complement

@ Now the knot complement is decomposed into ideal, hyperbolic
tetrahedra parametrized by z;, ..., z.
@ Choose z,...,z: so that we can glue these tetrahedra well, that is,
» around each edge, the sum of angles is 27,
> the triangles that appear in the boundary torus make the torus
Euclidean.
@ These conditions are the same as the system of equations that we
used in the saddle point method!
oV

8—Zk(X1,...,XC):O (k:].,...,C)
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Geometric interpretation of the limit

Hyperbolic structure on the knot complement

@ Now the knot complement is decomposed into ideal, hyperbolic
tetrahedra parametrized by z;, ..., z.
@ Choose z,...,z: so that we can glue these tetrahedra well, that is,
» around each edge, the sum of angles is 27,
> the triangles that appear in the boundary torus make the torus
Euclidean.
@ These conditions are the same as the system of equations that we
used in the saddle point method!

oV
8—Zk(X1,...,XC):O (k:].,...,C)
® = (x1,...,xc) gives the complete hyperbolic structure.
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Geometric interpretation of the limit

Hyperbolic structure on the knot complement

@ Now the knot complement is decomposed into ideal, hyperbolic
tetrahedra parametrized by z;, ..., z.
@ Choose z,...,z: so that we can glue these tetrahedra well, that is,

» around each edge, the sum of angles is 27,
> the triangles that appear in the boundary torus make the torus

Euclidean.
@ These conditions are the same as the system of equations that we
used in the saddle point method!
oV
8—Zk(X]_,...,XC):O (k:].,...,C)
® = (x1,...,xc) gives the complete hyperbolic structure.
In(K
@ Then, what does V(xi,...,x:)(=271v—-1 Nlim W) mean?
—0Q0
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Geometric interpretation of the limit

Geometric meaning of the limit
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Geometric interpretation of the limit

Geometric meaning of the limit

Recall: V(x1,...,xc) is the sum of Lix(xx) (and log), where xi defines an
ideal hyperbolic tetrahedron.
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Geometric interpretation of the limit

Geometric meaning of the limit
Recall: V(x1,...,xc) is the sum of Lix(xx) (and log), where xi defines an
ideal hyperbolic tetrahedron. We use the following formula:

Vol(tetrahedron parametrized by z) = Im Lix(z)— log |z| arg(1 — z).
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Geometric interpretation of the limit

Geometric meaning of the limit

Recall: V(x1,...,xc) is the sum of Lix(xx) (and log), where xi defines an
ideal hyperbolic tetrahedron. We use the following formula:

Vol(tetrahedron parametrized by z) = Im Lix(z)— log |z| arg(1 — z).

Therefore we finally have
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Geometric interpretation of the limit

Geometric meaning of the limit

Recall: V(x1,...,xc) is the sum of Lix(xx) (and log), where xi defines an
ideal hyperbolic tetrahedron. We use the following formula:

Vol(tetrahedron parametrized by z) = Im Lix(z)— log |z| arg(1 — z).

Therefore we finally have

Im (27r\/—_1N|Lm W) = Vol(S3\ K).
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Geometric interpretation of the limit

Geometric meaning of the limit

Recall: V(x1,...,xc) is the sum of Lix(xx) (and log), where xi defines an

ideal hyperbolic tetrahedron. We use the following formula:
Vol(tetrahedron parametrized by z) = Im Lix(z)— log |z| arg(1 — z).

Therefore we finally have

Im (27r\/—_1N|Lm W) = Vol(S3\ K).

[ In(K, ()

21 lim = Vol(53\ K),

N—oo

which is the Volume Conjecture.
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