An Introduction to the Volume Conjecture, II Why we expect the conjecture is true.

Hitoshi Murakami

Tokyo Institute of Technology

8th June, 2009

1 Geometric interpretation of the R-matrix

2 Example

3 Approximation of the colored Jones polynomial

4 Geometric interpretation of the limit

Review of the definition

$$R_{kl}^{ij} := \sum_{m=0}^{\min(N-1-i,j)} \delta_{l,i+m} \delta_{k,j-m} \frac{\{l\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!} \times q^{\left(i-(N-1)/2\right)\left(j-(N-1)/2\right)-m(i-j)/2-m(m+1)/4},$$

$$(R^{-1})_{kl}^{ij} := \sum_{m=0}^{\min(N-1-i,j)} \delta_{l,i-m} \delta_{k,j+m} \frac{\{k\}!\{N-1-l\}!}{\{j\}!\{m\}!\{N-1-i\}!} \times q^{-\left(i-(N-1)/2\right)\left(j-(N-1)/2\right)-m(i-j)/2+m(m+1)/4},$$
with $\{m\} := q^{m/2} - q^{-m/2} \text{ and } \{m\}! := \{1\}\{2\} \cdots \{m\}.$

An example of calculation

$$J_N(L;q) := T_{(R,\mu,q^{(N^2-1)/4},1)}(L) \times \frac{\{1\}}{\{N\}}$$

To calculate $J_N(L;q)$ we leave the left-most strand without closing.

This gives a linear map $\varphi \colon \mathbb{C}^N \to \mathbb{C}^N$, which is a scalar multiple by Schur's lemma.

We fix a basis $\{e_0, e_1, \dots, e_{N-1}\}$ of C^N . The linear map is a scalar multiple and so e_i is multiplied by S for any i. Since

$$\begin{split} T_{(R,\mu,q^{(N^2-1)/4},1)}(L) &= q^{-w(\beta)(N^2-1)/4} \operatorname{Tr}_1(\phi\mu) \\ &= q^{-w(\beta)(N^2-1)/4} \sum_{i=0}^{N-1} S \, q^{(2i-N+1)/2} \\ &= q^{-w(\beta)(N^2-1)/4} \frac{\{N\}}{\{1\}} S, \end{split}$$

we have $J_N(L; q) = S$.

How to label arcs

$$\downarrow i \qquad j \\
\downarrow k \qquad l \qquad \downarrow i + j = k + l, \ l \ge i, \ k \le j, \qquad \downarrow i \qquad j \\
\downarrow k \qquad l \qquad \downarrow i + j = k + l, \ l \le i, \ k \ge j.$$

colored Jones polynomial

Quantum factorial at the N-th root of unity

$$\begin{split} q &= \zeta_N := \exp(2\pi\sqrt{-1}/N) \\ \Rightarrow &\quad \{k\}!\{N-k-1\}! \\ &= \pm \text{ (a power of } \zeta_N) \times (1-\zeta_N)(1-\zeta_N^2) \cdots (1-\zeta_N^k) \\ &\quad \times (1-\zeta_N)(1-\zeta_N^2) \cdots (1-\zeta_N^{N-1-k}) \\ &= \pm \text{ (a power of } \zeta_N) \times (1-\zeta_N)(1-\zeta_N^2) \cdots (1-\zeta_N^k) \\ &\quad \times (1-\zeta_N^{N-1})(1-\zeta_N^{N-2}) \cdots (1-\zeta_N^{k+1}) \\ &= \pm \text{ (a power of } \zeta_N) \times 2^{N-1} \sin(\pi/N) \sin(2\pi/N) \cdots \sin((N-1)\pi/N) \\ &= \pm \text{ (a power of } \zeta_N) \times N \end{split}$$

- $(\zeta_N)_{k+} := (1-\zeta_N)\cdots(1-\zeta_N^k), (\zeta_N)_{k-} := (1-\zeta_N)\cdots(1-\zeta_N^{N-1-k}).$
- $(\zeta_N)_{k^+}(\zeta_N)_{k^-} = \pm (a \text{ power of } \zeta_N) \times N.$
- $\{k\}! = \pm (a \text{ power of } \zeta_N) \times (\zeta_N)_{k+1}$ $\{N-1-k\}!=\pm(a \text{ power of } \zeta_N)\times(\zeta_N)_{k-1}$

R-matrix as a product of quantum factorial

$$R_{kl}^{ij} = \sum_{m} \pm (\text{a power of } \zeta_{N}) \times \delta_{l,i+m} \delta_{k,j-m} \frac{\{l\}! \{N-1-k\}!}{\{i\}! \{m\}! \{N-1-j\}!}$$

$$= \sum_{m} \delta_{l,i+m} \delta_{k,j-m} \frac{\pm (\text{a power of } \zeta_{N}) \times N^{2}}{(\zeta_{N})_{m^{+}} (\zeta_{N})_{i^{+}} (\zeta_{N})_{k^{+}} (\zeta_{N})_{j^{-}} (\zeta_{N})_{l^{-}}}$$

$$(R^{-1})_{kl}^{ij} = \sum_{m} \delta_{l,i-m} \delta_{k,j+m} \frac{\pm (\text{a power of } \zeta_{N}) \times N^{-2}}{(\zeta_{N})_{m^{+}} (\zeta_{N})_{i^{-}} (\zeta_{N})_{k^{-}} (\zeta_{N})_{j^{+}} (\zeta_{N})_{l^{+}}}$$

 \Rightarrow

$$J_{N}(K;\zeta_{N}) = \sum_{\substack{\text{labellings} \\ i,j,k,l \\ \text{on arcs}}} \left(\prod_{\substack{\pm\text{-crossings}}} \frac{\pm(\text{a power of }\zeta_{N}) \times N^{\pm 2}}{(\zeta_{N})_{m^{+}}(\zeta_{N})_{i^{\pm}}(\zeta_{N})_{j^{\mp}}(\zeta_{N})_{l^{\mp}}} \right)$$

Approximation of the quantum factorial

$$\log(\zeta_N)_{k^+} = \sum_{j=1}^k \log(1 - \zeta_N^j)$$

$$= \sum_{j=1}^k \log(1 - \exp(2\pi\sqrt{-1}j/N))$$

$$(x := j/N)$$

$$\approx N \int_0^{k/N} \log(1 - \exp(2\pi\sqrt{-1}x)) dx$$

$$(y := \exp(2\pi\sqrt{-1}x))$$

$$= \frac{N}{2\pi\sqrt{-1}} \int_1^{\exp(2\pi\sqrt{-1}k/N)} \frac{\log(1 - y)}{y} dy$$

Approximation of the quantum factorial by dilogarithm

(dilog function)

$$\operatorname{Li}_2(z) := -\int_0^z \frac{\log(1-y)}{y} \, dy = \sum_{n=1}^\infty \frac{z^n}{n^2}.$$

•

$$\log(\zeta_N)_{k^+} \underset{N \to \infty}{pprox} rac{N}{2\pi\sqrt{-1}} \left[\operatorname{Li}_2(1) - \operatorname{Li}_2(\zeta_N^k)
ight].$$

•

$$(\zeta_N)_{k^{\pm}} \underset{N \to \infty}{\approx} \exp \left[-\frac{N}{2\pi\sqrt{-1}} \operatorname{Li}_2(\zeta_N^{\pm k}) \right].$$

Approximation of the colored Jones polynomial by dilogarithm

$$\begin{split} &J_N(K;\zeta_N) \underset{N \to \infty}{\approx} \\ &\sum_{\text{labellings}} (\text{polynomial of } N) \times (\text{power of } \zeta_N) \\ &\exp \left[\frac{N}{2\pi \sqrt{-1}} \right] \\ &\sum_{\text{exergings}} \left\{ \text{Li}_2(\zeta_N^m) + \text{Li}_2(\zeta_N^{\pm i}) + \text{Li}_2(\zeta_N^{\mp j}) + \text{Li}_2(\zeta_N^{\pm i}) + \text{Li}_2(\zeta_N^{\mp l}) + \text{log terms} \right\} \end{split}$$

where a log term comes from powers of ζ_N . For example

$$q^{k^2} = \exp\left(\frac{N}{2\pi\sqrt{-1}}\left(\frac{2\pi\sqrt{-1}k}{N}\right)^2\right) = \exp\left[\frac{N}{2\pi\sqrt{-1}}(\log\zeta_N^k)^2\right].$$

crossings

Approximation of the colored Jones polynomial by integral

$$J_N(K;\zeta_N) \underset{N \to \infty}{\approx} \sum_{i_1,\dots,i_c} \text{(polynomial of } N\text{)} \exp\left[\frac{N}{2\pi\sqrt{-1}}V(\zeta_N^{i_1},\dots,\zeta_N^{i_c})\right]$$

(ignore polynomials since exp grows much bigger)

$$\underset{N\to\infty}{\approx} \sum_{i_1,\dots,i_c} \exp\left[\frac{N}{2\pi\sqrt{-1}}V(\zeta_N^{i_1},\dots,\zeta_N^{i_c})\right]$$

$$\underset{N\to\infty}{\approx} \int_{J_1}\dots\int_{J_c} \exp\left[\frac{N}{2\pi\sqrt{-1}}V(z_1,\dots,z_c)\,dz_1\dots dz_c\right],$$

where

• i_1, \ldots, i_c : labellings on arcs.

$$V(\zeta_N^{i_1}, \dots, \zeta_N^{i_c}) := \sum_{\cdot} \left\{ \operatorname{Li}_2(\zeta_N^m) + \operatorname{Li}_2(\zeta_N^{\pm i}) + \operatorname{Li}_2(\zeta_N^{\mp j}) + \operatorname{Li}_2(\zeta_N^{\pm k}) + \operatorname{Li}_2(\zeta_N^{\mp l}) \right\}.$$

• J_1, \ldots, J_c : contours.

Saddle point method

 $V(x_1,\ldots,x_c)$: the 'maximum' of $\{\operatorname{Im} V(z_1,\ldots,z_c)\}_{(z_1,\ldots,z_c)\in J_1\times\cdots\times J_c}$ to find the maximum of $\left| \exp \left[\frac{N}{2\pi\sqrt{-1}} V(z_1, \dots, z_c) \, dz_1 \cdots dz_c \right] \right|$. $J_N(K;\zeta_N) \underset{N\to\infty}{\approx} \exp\left[\frac{N}{2\pi\sqrt{-1}}V(x_1,\ldots,x_c)\right],$

By the saddle point method, (x_1, \ldots, x_c) satisfies the following.

$$\frac{\partial V}{\partial z_k}(x_1,\ldots,x_c)=0 \quad (k=1,\ldots,c)$$

$$\Rightarrow$$

$$2\pi\sqrt{-1}\lim_{N\to\infty}\frac{J_N(K;\zeta_N)}{N}=V(x_1,\ldots,x_c)$$

Difficulties

Difficulties so far:

Replacing the summation into an integral

$$\sum_{i_1,\dots,i_c} \exp\left[\frac{N}{2\pi\sqrt{-1}}V(\zeta_N^{i_1},\dots,\zeta_N^{i_c})\right]$$

$$\underset{N\to\infty}{\approx} \int_{J_1}\dots\int_{J_c} \exp\left[\frac{N}{2\pi\sqrt{-1}}V(z_1,\dots,z_c)\,dz_1\dots dz_c\right].$$

 How to apply the saddle point method. In particular, which saddle point to choose. In general, we have many solutions to the system of equations.

$$\int_{J_1} \cdots \int_{J_c} \exp \left[\frac{N}{2\pi \sqrt{-1}} V(z_1, \dots, z_c) dz_1 \cdots dz_c \right]$$

$$\underset{N \to \infty}{\approx} \exp \left[\frac{N}{2\pi \sqrt{-1}} V(x_1, \dots, x_c) \right].$$

Decomposition into octahedra (by D. Thurston)

Decompose the knot complement into (topological, truncated) tetrahedra.

Around each crossing, put an octahedron:

• Decompose the octahedron into five tetrahedra:

Decomposition into topological tetrahedra

Pull the vertices to the point at infinity:

• $S^3 \setminus K$ is now decomposed into topological, truncated tetrahedra, decorated with complex numbers $\zeta_N^{i_k}$.

Decomposition into hyperbolic tetrahedra

- Each topological, truncated tetrahedron is decorated with a complex number $\zeta_N^{\prime k}$.
- We want to regard it as a hyperbolic, ideal tetrahedron.
- Recall that we have replaced a summation over i_k into an integral over z_k .
- Replace $\zeta_N^{i_k}$ with a complex variable z_k .
- Regard the tetrahedron decorated with z_k as an hyperbolic, ideal tetrahedron parametrized by z_k .

Hyperbolic structure on the knot complement

- Now the knot complement is decomposed into ideal, hyperbolic tetrahedra parametrized by z_1, \ldots, z_c .
- Choose z_1, \ldots, z_c so that we can glue these tetrahedra well, that is,
 - around each edge, the sum of angles is 2π .
 - the triangles that appear in the boundary torus make the torus Euclidean.
- These conditions are the same as the system of equations that we used in the saddle point method!

$$\frac{\partial V}{\partial z_{\nu}}(x_1,\ldots,x_c)=0 \quad (k=1,\ldots,c)$$

- \Rightarrow (x_1, \dots, x_c) gives the complete hyperbolic structure.
- Then, what does $V(x_1,\ldots,x_c) (= 2\pi \sqrt{-1} \lim_{N\to\infty} \frac{J_N(K,\zeta_N)}{N})$ mean?

Geometric meaning of the limit

Recall: $V(x_1, \ldots, x_c)$ is the sum of $Li_2(x_k)$ (and log), where x_k defines an ideal hyperbolic tetrahedron. We use the following formula:

Vol(tetrahedron parametrized by z) = Im Li₂(z) – log |z| arg(1 – z).

Therefore we finally have

$$\operatorname{Im}\left(2\pi\sqrt{-1}\lim_{N\to\infty}\frac{J_N(K,\zeta_N)}{N}\right)=\operatorname{Vol}(S^3\setminus K).$$

$$2\pi \lim_{N\to\infty} \frac{|J_N(K,\zeta_N)|}{N} = \operatorname{Vol}(S^3 \setminus K),$$

which is the Volume Conjecture.