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Complexification of the Volume Conjecture

Complexification

Conjecture (Volume Conjecture, R. Kashaev, J. Murakami+H.M.)

27 lim 'Og“"’(K;eX‘;\(/Z“/__l/N))‘ = Vol(S3\ K).

N—oo

Conjecture (Complexification of VC, J. Murakami, M. Okamoto,
T. Takata, Y. Yokota,+H.M.)

g Il epmy L)) Vol(S3\ K) + V=1 CS(5° \ K)

2w lim
N—oo N
(mod 7%\/—17Z).

Here CS is the SL(2; C) Chern-Simons invariant.

We may regard the left hand side as the definition of the Chern—Simons

invariant for general knots.
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Deform the parameter 27/ —1

In VC, the limit corresponds to the complete hyperbolic structure of
S3\ K (if it is hyperbolic).
The complete structure can be deformed to incomplete ones.

If we deform the parameter 271/ —1, does the limit corresponds to an
incomplete hyperbolic structure?

@ Let us consider the limit
log Iy (K; exp((u+ 277\/—1)/N)>
lim

N—oo N
When u = 0, we have the (complexified) Volume Conjecture.
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Generalization for &

Theorem (Yokota+H.M.)
3O c C: neighborhood of 0. If u € O\ my/—1Q, the following limit exists

o log JN(® rexp((u + 2mv/—1)/N))

N—oo N

Put
! H(u) := (u+ 2mv/—1) X (the limit above).

e H(u) is differentiable,
d H(u) . .
o v(u):= 2T — 2m+/—1 satisfies the following.
Vol(@© ) + V=1CS(@ )

= —V—1H(u) — mu + uv(u)vV—1/4 — k() /2 (mod 72v/—1Z).

v
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Deformation of the hyperbolic structure

Deformation of the hyperbolic structure

° @ u is the closed hyperbolic three-manifold defined by v, that is, it is
defined by the following representation of m; <S3 \@) — SL(2;C):

exp(u/2) x )
0 exp(—u/2)/)’
exp(v(u)/2) . )
0 exp(—v(u)/2) )

Here the meridian goes around @ , and the longitude goes along @

meridian —

longitude +—

@ When u = 0 this gives the holonomy representation, that is, each
loop in (53 \@) is identified with a deck transformation of the

universal cover of S3 \@ , which is
Isom (H3) = PSL(2; C) = SL(2; C)/+.
@ For u # 0, the hyperbolic structure is incomplete.
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Deformation of the hyperbolic structure

Dehn surgery

o If @ 4 is incomplete, we can complete it by attaching either a point
or a circle.

@ 1y, is the attaching circle.

o If pu+ qv(u) = 2my/—1, this is the (p, q)-Dehn surgery.

o r(7yy) := length(v,) + v/ —1torsion(,), where

> length is its length,
» torsion measures how the circle is twisted (mod 2).
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Proof of the generalization of VC for the figure-eight knot

Precise expression of the limit

N—-1 J
Iy (@ : q> _ Z oM (1 _ q—N—k> (1 _ q—N+k> _
j=0 k=1
Put
H(z,w) := Lio(z7'w™) — Lio(zw ™) + log z log w,
where

Lio(x) == — /OX Mdt.

t
If 8 is near 2my/—1 € C and not a rational multiple of 27y/—1, then
9 lim log JN(® ;exp(6/N))

N—oo N

= H(y,exp(8)),
where y satisfies

y + y_1 = exp(f) + exp(—6) — 1.
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Proof of the generalization of VC for the figure-eight knot

Approximation of the summand by dilogarithm

q :=exp(6/N)
log (ﬁ (1 _ q—Nj:k)>
Zj: log (1 — exp(+k6O/N — 0))
k=1

J/N
~ N/ log(1 — exp(£fs — 6)) ds
0

N—oo
:ﬂ exp(+j0/N—0) |Og(1 _ t)
+0 exp(—0) t

:j:ﬂﬁ (Liz(exp(—0)) — Liz(exp(£j8/N — 69))) .

dt
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Approximation of Jy by an integral

In (@ ;exp(6/ N))
Z exp(j0) exp [I: (Liz(exp(—jO/N — 6)) — Liz(exp(jO/N — 9)))

=0
1

N—»oo

N—

=Y exp [%H(exp(ﬁ/N% e><P(9))]

J=0

~ /C exp [%H(X,exp(Q))] dx

for a suitable contour C.
To find the ‘maximum’ of {H(x, exp(#))}, we will find a solution y to the

dH
equation E(x,exp(ﬁ)) =0, which is

log [exp(6) + exp(—0) — x — x~1]

=0.
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Saddle point method

@ Choose y so that
y+y ! =exp(f) +exp(—0) — 1,

then

In (@ ;exp(9/N)) W exp [%H(%exp(e))]

&
v (@ exp(0/M)
0 lim
N—oo N
Putting u := 0 — 2w/ —1, we have

Iy (@ exp((u+ 27V =T)/N)
(u+27v/—1) lim = H(u)
N—oo N
with H(u) := H(y, exp(8)).
Note that this can be done rigorously.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, Il 9th June, 2009 11 /20

= H(y,exp(8)).




Proof of the generalization of VC for the figure-eight knot

Calculation of the volume using dilogarithm

e A(z), A(w): ideal hyperbolic tetrahedra parametrized by complex
numbers z and w, respectively.

@ S3 \@ = A(z) UA(w) if z(z — 1)w(w — 1) = 1. (This is just the
glueing condition. The hyperbolic structure may not be complete.
The completion condition is w(1 — z) = 1.)

@ Introduce parameters u and y so that

expu=w(l—2z), (meridian)

y+yt =exp(u) + exp(—uv) — 1.

Note that z, w and y are defined by u.
@ Use the formula:

Vol(A(z)) = ImLix(2) + log |z| arg(1 — z).
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Proof of the generalization of VC for the figure-eight knot

Calculation of the volume by H function

Vol($3\ )

=ImH(u) — mReu — Reulmlog(z(1 — z))

Since d,;lfju) = log(z(z — 1)),

VoI(S3\®): ImH(u)—ﬂReu—%Reulm v(u)

putting v(u) —2d:( u) —2my/—1.

Indeed, exp(v(u)) corresponds to the longitude z?(1 — z)2.
We will show:

length~y, = —% Im (u@) .
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Proof of the generalization of VC for the figure-eight knot

Length of the geodesic v, (W. Neumann and D. Zagier)
On OH3 = S2 = C U {oo):

p := meridian — [z — exp(u)z + c exp(u/2)]

A = longitude — [z — exp(v)z + d exp(v/2)].

@ When u = 0, we have the complete structure.
= the corresponding representation is a parallel transport.

@ When u # 0, we have an incomplete structure.

= Since the meridian and the longitude commute, their images have
cexp(u/2)  dexp(v/2)
1—exp(u) 1—exp(v)
Changing the coordinate, the fixed points are assumed to be O and
0.
=

the same two fixed points; and oo.

p— [z — exp(u)z]

A=z — exp(v)z].
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Proof of the generalization of VC for the figure-eight knot

Calculation of the complex length

exp(v)z
(]
=
=
&
j=
°
meridian exp(u)z

e Choose (p, q) so that pu+ qv = 2mv/—1 (p,q € R).

@ Assume p and g are coprime integers.

@ u defines an incomplete structure whose completion is the
(p, q)-Dehn surgery.

P Z‘ =1

e Choose (r,s) so that ‘r

o = rutsh e Hi(0(S*\ ).
(*. the meridian of the attached solid torus is identified with pu + g,

and the meridian and ~y, make a basis of H;(9(S3 \@ ))-)
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Proof of the generalization of VC for the figure-eight knot

Calculation of length and torsion

@ 7, corresponds to the multiplication by exp(ru + sv), and so
exp(length ++/—1torsion) = exp(%(ru + sv)).

o In M3, this defines Im(£(ru + sv))-rotation, and an upward shift by
exp(Re(%(ru + sv))) in coordinate, which has length Re(£(ru + sv)).

pu—+qv =2my/—1,
ru+sv = *(length 4++/—1torsion).

1
@ lengthvy, = —— Im (uVv).
gth vy o (UV) ,
v
(Here we choose the negative sign since v = u X ‘—_ and the
uv

orientation of (u, v) should be positive on C.)
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Proof of the generalization of VC for the figure-eight knot

Conclusion

1 1 1
length~y, = —o- Im (uv) = o ImuRev + > Reulmyv.

=

Vol($3\Q)) = Im H( u)—ﬂReu——ReuImv(u)
= Re(—v/—1H(u) —7Tu+uv(u)\/—_/4—7r/£('yu)/2),

The Chern=Simons invariant is obtained by T. Yoshida's formula.
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Generalization of VC to hyperbolic knots

Conjecture
For any hyperbolic knot K, the following limit exists

- log In(K; exp((u + 2mv/—1)/N))
N—oo N

for small u. Put

H(K; u) := (u+ 2m\/—1) x (the limit above).

e H(K;u) is differentiable,
dH(K; u)
du

Vol(K,) = ImH(K; u) — mReu — Reulm v(K; u)/2.

o v(K;u):=2 — 2m+/—1 satisfies the following.
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Appendix

Small parameter

The previous conjecture should be compared with:

Theorem (S. Garoufalidis and T. L&)
For any K, Je s.t. if |a] < e

1

Nlinoo In(K: exp(a/N)) = A(K;expa)’

where A(K; t) is the Alexander polynomial.

What happens between 274/—1 and 07
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FAQs

Q1. Is Jun Murakami your relative?

Al. No!
Q2. How about Haruki Murakami?
A2. Neverl!
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