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p-th variation along a sequence of partitions

p-th variation along a sequence of partitions

Let p > 1 and π = (πn)n≥1 be a sequence of partitions of [0,T ] with
|πn| = supi=0..N(πn) |tni+1 − tni | → 0.

Definition (p-th variation along a sequence of partitions)

S ∈ C ([0,T ],R) is said to have (finite) p-th variation along π = (πn)n≥1if the
sequence of measures

µn =
∑

[tj ,tj+1]∈πn

δ(· − tj)|S(tj+1)− S(tj)|p

converges weakly to a measure µS without atoms. We write S ∈ Vp(π) and call

[S ]p(t) := µS([0, t])

the p-th variation of S along π. [S ]p is a continuous, increasing function.
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p-th variation along a sequence of partitions

p-th variation along a sequence of partitions

Lemma (Characterization)

Let S ∈ C ([0,T ],R). S ∈ Vp(π) if and only if there exists a continuous increasing
function [S ]p such that

∀t ∈ [0,T ], [S ]πn(t) =
∑

[tj ,tj+1]∈πn:
tj≤t

|S(tj+1)− S(tj)|p
n→∞→ [S ]p(t).

The convergence is uniform.

Functions in Vp(π) do not necessarily have finite p-variation:

‖S‖p−var = sup
τ∈Π(0,T )

[S ]pτ =
∑
τ

|S(ui+1)− S(ui )|p ≥ lim
n

[S ]πn(T )

where Π([0,T ]) = set of finite partitions of [0,T ].
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p-th variation along a sequence of partitions

Examples of processes with sample paths in Vp(π)

Fractional Brownian motion (fBM) with Hurst index 0 < H < 1: real-valued
Gaussian process (BH(t), t ∈ R) with

E(BH(t)) = 0 E(BH(t),BH(s)) =
|t|2H + |s|2H + |t − s|2H

2

Proposition (Pratelli, 2011)

Let BH be a fBM on (Ω,F ,P) with H ∈ (0, 1) and πn = {kT/n : k = 0..n}. Then

P(BH ∈ V1/H(π) ) = 1 and [BH ]1/H
π (t) = t E[|BH(1)|1/H ] P− a.s.

while P(‖BH‖p−var =∞) = 1 for p = 1/H.

M Pratelli (2011) Séminaire de Probabilités XLIII, 215-219.

Typical sample paths of BH lie in CH−([0,T ]) (Dudley 1981)
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p-th variation along a sequence of partitions

Example: heat equation with space-time white noise

J Swanson (2007) Ann. Probability 35:2122–2159.

∂tu(t, x) =
1

2
∂xxu(t, x) + ẇ(t, x) u(0, x) = 0

ẇ(t, x) space-time white noise on [0,∞)× R.

u(t, x) =

∫
[0,t]×R

p(t − s, x − y)ẇ(s, y) p(t, x) =
exp(− x2

2t )
√

2πt

For a fixed x , t 7→ F (t) = u(t, x) is a Gaussian process with

E (F (t)) = 0 E (F (t)F (s)) =
1√
2π

(
|t + s|1/2 − |t − s|1/2

)
(Swanson 2007) u(., x) ∈ V4([0,T ]): if |πn| → 0 then

E

(
sup

t∈[0,T ]

∣∣∑
πn

|u(ti+1, x)− u(ti , x)|4 − 6

π
t
∣∣ ) n→∞→ 0

while at the same time: ‖u(., x)‖4−var =∞.
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p-th variation along a sequence of partitions

Example: Takagi-Landsberg functions

D = (Dn) dyadic partition sequence on [0, 1]: Dn = {k/2n, k = 0..2n}.
Faber-Schauder functions associated to Dn:

e0,0(t) = (min(t, 1− t))+ en,k(t) = 2−n/2e0,0(2nt − k), k ∈ Z, n ∈ N

SH(t) =
∞∑

m=0

2m( 1
2−H)

2m−1∑
k=0

θm,kem,k(t) θm,k ∈ {−1,+1}

Theorem (Mishura & Schied 2019): For any choice of θm,k ∈ {−1,+1},
SH ∈ Vp(π) for p = 1/H and [SH ]p = cH t where cH is a constant.

A Schied, Y Mishura (2019) On (signed) Takagi-Landsberg functions: pth
variation, maximum, and modulus of continuity,
Journal of Mathematical Analysis and Applications, 473:258-272.
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p-th variation along a sequence of partitions

Example: Takagi-Landsberg functions

Figure: Takagi-Landsberg function: θmk = +1

R Cont Rough calculus: Lecture 4 2025 9 / 34



p-th variation along a sequence of partitions

Example: random Takagi-Landsberg functions

Figure: Random Takagi-Landsberg function: θmk IID Bernoulli variables

A Schied, Y Mishura (2019) On (signed) Takagi-Landsberg functions: pth
variation, maximum, and modulus of continuity,
Journal of Mathematical Analysis and Applications, 473:258-272.
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Rough change of variable formula

The rough change of variable formula

Consider S ∈ Vp(π) ∩ C 0([0,T ],Rd), with p ∈ N and f ∈ C p(R).

A Taylor expansion of order p yields

f (S(tni+1))−f (S(tni )) =

p∑
k=1

f (k)(S(tj))

k!
(S(tj+1)−S(tj)

k +rnj (S(tj+1)−S(tj))p

where supj r
n
j → 0 as n→∞ by uniform continuity of S .

Separating the term of order p and summing across the partition we get

f (S(T )− f (S(0)) =
∑
πn

p−1∑
k=1

f (k)(S(tj))

k!
(S(tj+1)− S(tj)

k

+
∑
πn

f (p)(S(tj))

p!
(S(tj+1)− S(tj)

p + rnj
∑
πn

(S(tj+1)− S(tj))p
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Rough change of variable formula

‘Rough’ Change of variable formula

Theorem ( R.C- Perkowski (2019))

Let p ∈ N, p ≥ 2 and S ∈ Vp(π). Then for every f ∈ C p(R,R)

f (S(t))− f (S(0)) =

∫ t

0

< ∇p−1f (S), dS > +
1

p!

∫ t

0

f (p)(S(s))d [S ]p(s),

where the integral is defined as a (pointwise) limit of compensated Riemann sums:∫ t

0

∇p−1f ◦ S .dS :=

∫ t

0

< ∇p−1f (S)(u), dS(u) >

= lim
n→∞

∑
πn

p−1∑
k=1

f (k)(S(tj))

k!
(S(tj+1 ∧ t)− S(tj ∧ t))k
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Rough change of variable formula

Pathwise integral

The pathwise integral∫ t

0

< ∇p−1f ◦ S , dS >:= lim
n

Rp−1(f ,S , πn)

is a pointwise limit of compensated Riemann sums

Rp−1(f ,S , πn) =
∑
πn

p−1∑
k=1

f (k)(S(tj))

k!
(S(tj+1 ∧ t)− S(tj ∧ t))k

It should be really seen as an integral of the (p − 1)−jet ∇p−1f of f

∇p−1f (x) = (f (k)(x), k = 0, 1, ..., p − 1)

with respect to a differential structure of order p − 1 constructed along S ∈ Vp(π)
using the powers of increments up to order p − 1.
Note that even after compensation this limit cannot be defined as a Young
integral!
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Rough change of variable formula

Example: Fractional Brownian motion

Our result allows to define a pathwise Ito-type integral + change of variable
formula for Fractional Brownian motion BH with any Hurst exponent 1 > H > 0.
Example: H = 1/4. Then p = 4, [BH ]4(t) = 3t and∫ t

0

∇3f ◦BH .dBH = lim
n→∞

∑
πn

f ′(BH(tj))∆jB
H+

f ”(BH(tj))

2
(∆jB

H)2+
f (3)(BH(tj))

6
(∆jB

H)3

where ∆jB
H = BH(tj+1)− BH(tj)

Example: f (x) = x4∫ t

0

∇3f ◦BH .dBH = lim
n→∞

∑
πn

4 BH(tj)
3∆jB

H+6BH(tj)
2(∆jB

H)2+4BH(tj)(∆jB
H)3

|BH(t)|4 =

∫ t

0

∇3(f ◦ BH).dS +
t

8

The compensated Riemann sum converges pointwise but each term alone diverges.
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Rough change of variable formula

Example: compensated exponential

Proposition

Let X ∈ Vp(π) ∩ C 0([0,T ],R). There is a unique Z = E(X ) ∈ C 0([0,T ],R)
satisfying

∀t ≥ 0, Z (t) = 1 +

∫ t

0

Z (s).dX (s) i.e. dZ (t) = Z (t).dX (t)

Z is given by

Z (t) = E(X ) = exp

(
X (t)− [X ](t)

p!

)

E(X )(t) = 1 + lim
n→∞

∑
πn

eX (tj )−[X ]p(tj )/p!
p−1∑
k=1

(∆jX )k

Example: BH with H = 1/4. E(BH) = exp(BH(t)− t
8 )
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Rough change of variable formula

Isometry formula for the pathwise integral

p = 2 (Ananova-C. 2017), p ∈ 2N: (C.-Perkowski 2019)

Theorem (Isometry property of the pathwise integral)

Let p ∈ 2N, (πn) with |πn| → 0. If S ∈ Vp(π) ∩ Cα([0,T ],R) for some α > 0
with d [S ]pπ/dt > 0, then for any f ∈ C p(Rd),

f ◦ S ∈ Vp(π)

∫ .

0

(∇p−1f ◦ S) dS :=

∫ .

0

< ∇p−1f (S), dS >∈ Vp(π)

[f (S)]p(T ) = [

∫ .

0

(∇p−1f ◦S) dS ]p(T ) =

∫ T

0

|f ′(S)|pd [S ]p = ‖f ′◦S‖pLp([0,T ],d [S]p).

Proof:
∫ tj+1

tj
(∇p−1f ◦ S) dS = f ′(S(tj)).(S(tj+1)− S(tj)) + o(S(tj+1)− S(tj)) so

|
∫ tj+1

tj

(∇p−1f ◦ S) dS |p = |f ′(S(tj))|p|(S(tj+1)− S(tj))|p + εn |(S(tj+1)− S(tj))|p
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Rough change of variable formula

Isometry formula: examples

For X ∈ Vp(π) ∩ C 0([0,T ],R), the compensated exponential Z = E(X ) has
finite p−the variation and

[E(X )]pπ(T ) =

∫ T

0

|Z (t)|p d [X ]pπ =

∫ T

0

epX−
1

(p−1)! [X ]p d [X ]p

Fractional Brownian motion with H = 1/4, f ∈ C 4. Then

[f (BH)]4(t) = [

∫ .

0

∇3f ◦ BH .dBH ]4 =

∫ t

0

|f ′(BH(t))|4dt

[E(BH)]4(T ) = 3

∫ T

0

exp
(

4BH − t

2

)
dt
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Extension to vector-valued paths

Symmetric tensors

A symmetric p-tensor T on Rd is a p-tensor invariant under any permutation
σ ∈ Sp of its arguments: for (v1, v2, . . . , vp) ∈ (Rd)p

σT (v1, . . . , vp) := T (vσ1, vσ2, . . . , vσp) = T (v1, v2, . . . , vp)

The space Symp(Rd) of symmetric tensors of order p on Rd is naturally
isomorphic to the dual of the space Hp[X1, ...,Xd ] of homogeneous polynomials of
degree p on Rd .

Sp(Rd) =

p⊕
k=0

Symk(Rd).

For any p-tensor T we define the symmetric part

Sym(T ) :=
1

p!

∑
σ∈Sk

σT ∈ Symp(Rd)

where Sp of {1, . . . , k} is the group of permutations of {1, 2, ..., p}
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Extension to vector-valued paths

Extension to vector functions

Consider now a continuous Rd -valued path S ∈ C ([0,T ],Rd) and a sequence of
partitions πn = {tn0 , . . . , tnN(πn)} with tn0 = 0 < ... < tnk < ... < tnN(πn) = T . Then

µn =
∑
πn

(S(tj+1)− S(tj))⊗ ...⊗ (S(tj+1)− S(tj))︸ ︷︷ ︸
p times

δ(· − tj)

defines a tensor-valued measure on [0,T ] with values in Symp(Rd). This space of
measures is in duality with the space C ([0,T ],Hp[X1, ...,Xd ]) of continuous
functions taking values in homogeneous polynomials of degree p =
homogeneous polynomials of degree p with continuous time-dependent
coefficients.
This motivates the following definition:
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Extension to vector-valued paths

Definition (p-th variation of a vector-valued function)

Let p ∈ 2N be an (even) integer, and S ∈ C ([0,T ],Rd) a continuous path and
π = (πn)n≥1 a sequence of partitions of [0,T ]. S ∈ C ([0,T ],Rd) is said to have a
p-th variation along π = (πn)n≥1 if osc(S , πn)→ 0 and the sequence of
tensor-valued measures

µn
S =

∑
πn

(S(tj+1)− S(tj))⊗p δ(· − tj)

converges to a Symp(Rd)-valued measure µS without atoms in the following

sense: ∀f ∈ C ([0,T ],Sp(Rd)),

< f , µn >=
∑
πn

< f (tj), (S(tj+1)− S(tj))⊗p >
n→∞→ < f , µS > .

We write S ∈ Vp(π) and call [S ]p(t) := µ([0, t]) the p-th variation of S .
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Extension to vector-valued paths

Theorem (Rough change of variable formula: vector case)

Let p ∈ 2N be an even integer, let (πn) be a sequence of partitions of [0,T ] and
S ∈ Vp(π) ∩ C ([0,T ],Rd). Then for every f ∈ C p(R,R) the limit of compensated
Riemann sums∫ t

0

< ∇p−1f ◦ S , dS >:= lim
n→∞

∑
πn

p−1∑
k=1

1

k!
< ∇k f (S(tj)), (S(tj+1 ∧ t)− S(tj ∧ t))⊗k >

exists for every t ∈ [0,T ] and satisfies

f (S(t))− f (S(0)) =

∫ t

0

< ∇p−1f ◦ S , dS > +
1

p!

∫ t

0

< ∇pf (S(t))), d [S ]p(u) > .
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Extension to vector-valued paths

Extension to non-anticipative functionals

We now consider non-anticipative functionals i.e. maps
F : [0,T ]× D([0,T ],Rd) 7→ R such that F (t, x) = F (t, x(t ∧ .))

Definition (Horizontal and vertical derivatives)

A non-anticipative functional F is said to be:

horizontally differentiable at (t, x) ∈ Λd
T if the finite limit exists

DF (t, x) := lim
h→0+

F (t + h, xt)− F (t, xt)

h
.

vertically differentiable at (t, x) ∈ Λd
T if the map

Rd → R, e 7→ F (t, x(t ∧ .) + e1[t,T ])

is differentiable at 0; its gradient at 0 is denoted by ∇xF (t, x).
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Extension to vector-valued paths

Smooth functionals

Definition (C1,p
b (Λd

T ) functionals)

We denote by C1,p
b (Λd

T ) the set of non-anticipative functionals F ∈ C0,0
l (Λd

T ), such
that

F is horizontally differentiable with DF continuous at fixed times,

F is p times vertically differentiable with ∇j
xF ∈ C0,0

l (Λd
T ) for j = 1..p

DF ,∇j
xF ∈ B(Λd

T ) for j = 1..p.
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Extension to vector-valued paths

Expansions for smooth functionals

Smooth functionals may be used to obtain Taylor-type expansions:

Lemma (Lemma 2.2 in C-Ananova 2017)

Let S ∈ Cα([0,T ],R) for some α > 0 and F ∈ C1,2
b (ΛT ) be a Lipschitz map such

that ∇ωF ∈ C1,1
b (ΛT ). Define

RF
t,t+h(S) = F (t + h,S)− F (t,S)−∇ωF (t,S).(S(t + h)− S(t))

There exists C (F ,T , ‖S‖α) > 0 which only depends on (F ,T , ‖S‖α) such that

‖RF
t,t+h(S)‖ ≤ C (F ,T , ‖S‖α) |h|α

2+α

Unlike the Taylor expansion for functions we have α2 + α < 2α: there is loss
of regularity due to piecewise-constant approximation of the path S .

Typical examples of S ∈ Vp(π) will have Hölder regularity a = p − ε.
α2 + α > 1/p if α > ((1 + 4

p )1/2 − 1)/2. This latter bound is < 1/p so

typical examples of S ∈ Vp(π) will satisfy this condition.
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Extension to vector-valued paths

Functional change of variable formula: general case

Theorem (C.- Perkowski, 2019)

Let p ∈ 2N F ∈ C1,p
b (ΛT ), and S ∈ Vp(π) for a sequence of partitions (πn) with

|πn| → 0. Then the limit of compensated Riemann sums∫ t

0

Tp−1F (S).dS = lim
n→∞

∑
[tj ,tj+1]∈πn

p−1∑
k=1

1

k!
∇k
ωF (tj ,S

n
tj−)(S(tj+1 ∧ t)− S(tj ∧ t))k

exists and F (t,St) = F (0,S0) +

∫ t

0

Tp−1F (S).dS

+

∫ t

0

DF (u,Su)du +
1

p!

∫ t

0

∇p
xF (.,S).d [S ]p

This extends the pathwise integral to all ‘exact forms’:
Tp−1C1,p

b := {Tp−1F , F ∈ C1,p
b (ΛT )}
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Extension to vector-valued paths

Pathwise isometry formula: p ∈ 2N

Theorem (Pathwise Isometry formula: general case)

Let p ∈ N be an even integer, (πn) a sequence of partitions with mesh size going
to zero, and S ∈ Vp(π) ∩ Cα([0,T ],R) with α > ((1 + 4

p )1/2 − 1)/2. Let

F ∈ C1,p
b (ΛT ) ∩ Lip(ΛT , d∞) be such that ∇xF ∈ C1,1

b (ΛT ). Then

F (S) ∈ Vp(π),

∫ .

0

(Tp−1F ◦ S)dS ∈ Vp(π) and

[

∫ .

0

(Tp−1F ◦ S).dS ]p(t) =

∫ t

0

|∇xF ◦ S |pd [S ]p = ‖∇xF (S)‖pLp([0,t],d [S]p).

Denoting Jp = Tp−1

(
C1,p
b (ΛT ) ∩ Lip(ΛT , d∞)

)
, the pathwise integral thus

defines an isometry

IS : φ ∈ Jp ⊂ Lp([0,T ], d [S ]p) 7→
∫ .

0

φ.dS ∈ Vp(π)
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Extension to vector-valued paths

Isometry formula: proof

|RF (s, t)| := |F (t,St)−F (s,Ss)−∇ωF (s,Ss)(S(t)−S(s))| ≤ C |t − s|α+α2

. (1)

Let γF (s, t) := ∇ωF (s,Ss)(S(t)− S(s)). Then∑
[tj ,tj+1]∈πn:

tj+1≤t

|F (tj+1,Stj+1 )− F (tj ,Stj )|p =
∑

[tj ,tj+1]∈πn:
tj+1≤t

|RF (tj , tj+1) + γF (tj , tj+1)|p

=
∑

[tj ,tj+1]∈πn:
tj+1≤t

|γF (tj , tj+1)|p +

p∑
k=1

(
p

k

) ∑
[tj ,tj+1]∈πn:

tj+1≤t

RF (tj , tj+1)kγF (tj , tj+1)p−k .

(2)

Since S ∈ Vp(π) we have

lim
n→∞

∑
[tj ,tj+1]∈πn:

tj+1≤t

|γF (tj , tj+1)|p =

∫ t

0

|∇ωF (s,S(s))|pd[S ]p(s). (3)
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Extension to vector-valued paths

We need show that the double sum on the right hand side of (2) vanishes. Let
k ∈ {1, . . . , p} and write qk := p/(p − k) ∈ [1,∞] and let q′k = p/k be its
conjugate exponent. Hölder’s inequality yields∣∣∣∑[tj ,tj+1]∈πn:

tj+1≤t
RF (tj , tj+1)kγF (tj , tj+1)p−k

∣∣∣
≤
(∑

[tj ,tj+1]∈πn:
tj+1≤t

|RF (tj , tj+1)|kq′k
)1/q′k

(∑
[tj ,tj+1]∈πn:

tj+1≤t
|γF (tj , tj+1)|(p−k)qk

)1/qk

=
(∑

[tj ,tj+1]∈πn:
tj+1≤t

|RF (tj , tj+1)|p
)k/p(∑

[tj ,tj+1]∈πn:
tj+1≤t

|γF (tj , tj+1)|p
)(p−k)/p

.

By (1) the first sum on the right hand side is bounded by(∑
[tj ,tj+1]∈πn:

tj+1≤t
|RF (tj , tj+1)|p

)k/p
≤ c
(∑

[tj ,tj+1]∈πn:
tj+1≤t

|tj+1 − tj |p(α+α2)
)k/p

≤ (t ×max{|tj+1 − tj |p(α+α2)−1 : [tj , tj+1] ∈ πn, tj+1 ≤ t})k/p, (4)

which converges to zero for n→∞ because for α > (
√

1 + 4
p − 1)/2 we have

p(α + α2) > 1 and k > 0. Moreover, by (3) the sum over |γF (tj , tj+1)|p is
bounded and this concludes the proof.
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Rough-smooth decomposition of regular functionals

Rough-smooth decomposition

‘Signal+noise’ decomposition for smooth functionals of a rough process:

Theorem (Rough-smooth decomposition: general case)

Let p ∈ N be an even integer, let α > ((1 + 4
p )1/2 − 1)/2, and let

S ∈ Vp(π) ∩ Cα([0,T ],R) be a path with strictly increasing p-th variation [S ]p

along (πn). Then any X ∈ C1,p
b (S) admits a unique decomposition

∃!φ ∈ Tp−1C1,p
b , X = X (0) + A +

∫ t

0

< φ ◦ S , dS >

where φ = Tp−1F is an exact form and [A]p = 0.

For S martingale, p = 2 this coincides with the semimartingale
decomposition. Here: strictly pathwise/ non-probabilistic.

Such decompositions were obtained in the rough path setting by Hairer &
Pillai (2013), Friz & Shekhar (2013). Here we do not require any rough path
machinery, nor any extension of the path S : our constructions are ’canonical’
and pathwise.
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Rough-smooth decomposition of regular functionals

Rough-smooth decomposition: proof

Existence is a consequence of the change of variable formula. Consider two such
decompositions X − X0 = A + M = Ã + M̃. Since [A]p = [Ã]p = 0 and

|(A− Ã)(t)− (A− Ã)(s)|p . |A(t)− A(s)|p + |Ã(t)− Ã(s)|p,

we get A− Ã ∈ Vp(π) and [A− Ã]p ≡ 0. But then also

[M − M̃]p = [A− Ã]p ≡ 0. Now

M(t) =

∫ t

0

∇ωF (s,Ss)dS(s), M̃(t) =

∫ t

0

∇ωF̃ (s,Ss)dS(s)

for some F , F̃ ∈ C 1,p
b (ΛT ), and by Theorem 13 we have

0 = [M − M̃]p(T ) =

∫ T

0

|∇ω(F − F̃ )(s,Ss)|pd[S ]p(s).

Since (F − F̃ )(s,Ss) is continuous in s and [S ]p is strictly increasing we have
∇ω(F − F̃ )(·,S) ≡ 0. This means that M − M̃ ≡ 0, and then also A− Ã ≡ 0.
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Rough-smooth decomposition of regular functionals

Relation with ‘rough path integration’

Define a control function as a continuous map c : ∆T → R+ such that
c(t, t) = 0 and c(s, u) + c(u, t) ≤ c(s, t).

Definition (Reduced rough path of order p)

Let p ≥ 1. A reduced rough path of finite p-variation is a map
X = (1,X1, . . . ,Xbpc) : ∆T −→ Sbpc(Rd),
such that

bpc∑
k=1

|Xk
s,t |p/k ≤ c(s, t), (s, t) ∈ ∆T ;

for some control function c and the reduced Chen relation holds

Xs,t = Sym(Xs,u ⊗ Xu,t), (s, u), (u, t) ∈ ∆T .
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Rough-smooth decomposition of regular functionals

A canonical reduced rough path for S ∈ Vp(π)

Lemma

Let p ≥ 1, S ∈ C ([0,T ],Rd) ∩ Vp(π) where

πn = (tnk ), tn0 = 0, tnk+1 = inf{t ∈ [tnk ,T ], |S(t)− S(tnk )| ≥ 2−n}.

Then for any q > p with bqc = bpc we obtain a reduced rough path of finite
q-variation by setting X0

s,t(S) := 1,

Xk
s,t(S) :=

1

k!
(S(t)− S(s))⊗k , k = 1, . . . , bpc − 1,

Xbpcs,t (S) :=
1

bpc!
(S(t)− S(s))⊗bpc − 1

bpc!
([S ]p(t)− [S ]p(s)).

Furthermore X : S 7→ X(S) is a non-anticipative functional.
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Rough-smooth decomposition of regular functionals

Proposition

Let p ≥ 1, let X be a reduced rough path of finite p-variation and let

Y ∈ Dbpc/pX ([0,T ]). Then the ‘rough path integral’

IX(Y )(t) =

∫ t

0

〈Y (s),dX(s)〉 = lim
π∈Π([0,t])
|π|→0

∑
[tj ,tj+1]∈π

bpc∑
k=1

〈Y k(tj),X
k
tj ,tj+1
〉,

defines a function in C ([0,T ],R), and it is the unique function with IX(Y )(0) = 0
for which there exists a control function c with

∣∣∣ ∫ t

s

〈Y (r),dX(r)〉 −
bpc∑
k=1

〈Y k(s),Xk
s,t〉
∣∣∣ . c(s, t)

bpc+1
p , (s, t) ∈ ∆T .
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Rough-smooth decomposition of regular functionals

Pathwise integral as canonical rough integral

Proposition (C- Perkowski 2019)

Let p ∈ 2N be an even integer, S ∈ Vp(π) and X the canonical reduced rough
path of order p associated to S, defined above. Then∫ t

0

〈∇f (S(s)),dX(s)〉︸ ︷︷ ︸
Rough integral

=

∫ t

0

〈∇p−1f (S),dS〉︸ ︷︷ ︸
Pathwise integral

,

where the right hand side is the pathwise integral defined as a limit of
compensated Riemann sums.

Note that, unlike the typical rough path construction:

The construction is canonical: only the path S itself is used to construct X

We do NOT need S to have finite p-variation. In fact in all our examples
above S ∈ Vp(π) but ‖S‖p−var =∞.
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