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Outline
@ '"lto calculus without probability”
@ Ito-Follmer calculus for functionals of paths with finite quadratic variation.
© Properties of the pathwise integral: isometry and rough-smooth
decomposition.
@ Rough calculus for function(al)s of paths with finite p-th variation.
© The case of paths with fractional regularity (*)
@ M-functionals and integral representations. (*)
@ Transport of measures along rough trajectories.
@ Rough dynamics on manifolds.
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Lecture 3: Rough calculus for function(al)s of
paths with finite p-th variation.

0 p-th variation along a sequence of partitions
© Rough change of variable formula
@ Extension to vector-valued paths
© Rough-smooth decomposition of regular functionals
Reference: (click on title to download)
@ R Cont, N Perkowski (2019) Pathwise integration and change of variable

formulas for continuous paths with arbitrary regularity, Transactions of
AMS, 6:161-186.
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p-th variation along a sequence of partitions

Let p > 1 and m = (7,)n>1 be a sequence of partitions of [0, T] with
7| = SUPji=0.. N(m,) [th., —t7| = 0.

Definition (p-th variation along a sequence of partitions)

S € C([0, T],R) is said to have (finite) p-th variation along m = (m,)n>1if the
sequence of measures

=Y A 6)IS() - S

[tj’t]+1]€77n
converges weakly to a measure ps without atoms. We write S € Vj,(7) and call
[S1°(t) == us([0, £])

the p-th variation of S along 7. [S] is a continuous, increasing function.
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p-th variation along a sequence of partitions

Lemma (Characterization)

Let S € C([0, T],R). S € V,(m) if and only if there exists a continuous increasing
function [S]P such that

vee [0, Tl (Sl ()= D S(t) = S(H)P"=[SIP(b).
[tj ti1]€mn:

The convergence is uniform.

Functions in V() do not necessarily have finite p-variation:

15]lp—var = sup_[S]7 = Z |5 (uis1) = S(ui)[P = lim[S], (T)

Ten(o T)

where ([0, T]) = set of finite partitions of [0, T].
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Examples of processes with sample paths in V,(7)

Fractional Brownian motion (fBM) with Hurst index 0 < H < 1: real-valued
Gaussian process (B"(t), t € R) with

‘t|2H+|S‘2H+‘t—S|2H
2

E(B"(1)=0  E(B"(t),B"(s)) =

Proposition (Pratelli, 2011)

Let BY be a fBM on (Q, F,P) with H € (0,1) and m, = {kT/n: k = 0..n}. Then
P(By€ Viu(r) )=1 and  [Bu]¥"(t)=tE[Bu(1)""] P-as.

while P(|| Bu||p—var = 00) =1 for p=1/H.

M Pratelli (2011) Séminaire de Probabilités XLIII, 215-219.

Typical sample paths of B lie in C"=([0, T]) (Dudley 1981)
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Example: heat equation with space-time white noise
J Swanson (2007) Ann. Probability 35:2122-2159.

Deu(t, x) = %Gxxu(t,x) LX) u(0,x) =0

@ W(t, x) space-time white noise on [0,00) x R.

2
exp(—3;)

““’X)_/[ot] Pt sxyilsy) () = T2

o For a fixed x, t — F(t) = u(t,x) is a Gaussian process with
_ 1/2 (4 |1/2
E(F() =0  E(F(t)F(s)) = r<'t+5' ¢~ s]/2)

e (Swanson 2007) u(.,x) € V4([0, T]): if |mn| — O then
SUp | tl 7 tl7X | - 7t ng)ooo
<t€[0 7] | Z 110 = el ) ’ )

while at the same time: ||u(., x)||4=var = 0.
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p-th variation along a sequence of partiti

Example: Takagi-Landsberg functions

D = (D) dyadic partition sequence on [0,1]: D, = {k/2", k = 0..2"}.

Faber-Schauder functions associated to D,:

eo,0(t) = (min(t,1 —t))+ eni(t) =2""2eo(2"t — k), keZ neN

') 21
SH(E) =" 2"C"M N g vemu(t)  Omi € {~1,+1}
m=0 k=0

@ Theorem (Mishura & Schied 2019): For any choice of 0,, x € {—1,+1},
SH € V() for p=1/H and [S"]P = ciy t where cpy is a constant.

A Schied, Y Mishura (2019) On (signed) Takagi-Landsberg functions: pth
variation, maximum, and modulus of continuity,
Journal of Mathematical Analysis and Applications, 473:258-272.
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N e A T L
Example: Takagi-Landsberg functions
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Figure: Takagi-Landsberg function: 6, = +1
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N e A T L
Example: random Takagi-Landsberg functions

Figure: Random Takagi-Landsberg function: 6, 11D Bernoulli variables

A Schied, Y Mishura (2019) On (signed) Takagi-Landsberg functions: pth
variation, maximum, and modulus of continuity,
Journal of Mathematical Analysis and Applications, 473:258-272.
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The rough change of variable formula

e Consider S € V,(7) N C°([0, T],RY), with p € N and f € CP(R).

@ A Taylor expansion of order p yields

p (k)
F(S(1)) =3 PO (54— S5+ 2(S(t510) - S(8))°

k=1

where sup; r’ — 0 as n — oo by uniform continuity of S.
@ Separating the term of order p and summing across the partition we get

f(k

F(S(T) - ZZ S(tis1) — S(t)*

(p) ;
+ 30 PO (56, 4) - s+ 175 (S(00) — S(6)

Th Th
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‘Rough’ Change of variable formula

Theorem ( R.C- Perkowski (2019))
Let pe N, p>2andS € V,(r). Then for every f € CP(R,R)

F(S(1)) — (5(0)) = /0 <V, af(S).dS > % /0 F0)(5(s))dIST°(s),

where the integral is defined as a (pointwise) limit of compensated Riemann sums:

t t
/v,,,lfos.ds ::/ < Vo 1£(S)(u), dS(u) >
0 0

_H'L“QOZZ k)(S(tj (S(tisa A ) = S(t A 1)
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1 change of variable formula

Pathwise integral

The pathwise integral
t
/ < Vpo1f05,dS >:=IlimRy_1(f, S, m,)
0 n

is a pointwise limit of compensated Riemann sums

Ro—1(f,S,mn) ZZ (S(tj+1/\t) S(tj A t))k

It should be really seen as an integral of the (p — 1)—jet V,_1f of f
folf(x) = (f(k)(x)’ k = 07 17 P 1)

with respect to a differential structure of order p — 1 constructed along S € V,(7)
using the powers of increments up to order p — 1.

Note that even after compensation this limit cannot be defined as a Young
integral!
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Rough change of variable formula

Example: Fractional Brownian motion

Our result allows to define a pathwise Ito-type integral 4+ change of variable

formula for Fractional Brownian motion B with any Hurst exponent 1 > H > 0.
Example: H =1/4. Then p = 4, [B"]*(t) = 3t and

FOB(5)) 5 gy
> e (1)

t " pH (.
/ VifoB".dB" = Iim Zf’(BH(tj))AjBH-l—M(AjBHf—I—
0 n—oo -

where AjBH = BH(fj+1) — BH(tj)

Example: f(x) = x*

n—oo

t
/ VsfoB".dB" = lim Y "4 B"(1;)°A;B"+6B"(1;)*(A;B")*+4B" (1)) (A;BM)?
0 -

t
t
|BY(t)* = /0 V3(f o B").dS + s

The compensated Riemann sum converges pointwise but each term alone diverges.
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Example: compensated exponential

Proposition

Let X € V,(m) N C°([0, T],R). There is a unique Z = £(X) € C°([0, T],R)
satisfying

Ve >0, Z(t)zl—i—/tZ(s).dX(s) fe. dZ(t) = Z(£).dX(t)
0

Z is given by

p!

o
- i X (1)~ X1 (5)/p! Xk
EX)(t) =1+ lim D e > (48X)

Tn k=1

Z(t) = £(X) = exp (X(t) - [X](t)>
1

Example: B" with H = 1/4. E(BH) = exp(BH(t) _ é)
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Isometry formula for the pathwise integral

= 2 (Ananova-C. 2017), p € 2N: (C.-Perkowski 2019)
Theorem (Isometry property of the pathwise integral)

Let p € 2N, (m,) with |m,| = 0. If S € V,(m) N C*([0, T],R) for some a: > 0
with d[S]P /dt > 0, then for any f € CP(RY),

foSe Vy(n) /'(v,,_lf 5S5) dS = / <V, 1£(S), dS >€ V()
0 0

]
FSIPT) = [ (Tomsfo8) dSP(T) = [ IF(S)IPISI = 1F oS oo 1y sy

Proof: [7*(Vp-1f 0 S) dS = f'(S(t;))-(S(tj+1) — (1)) + o(S(tj41) — S(t7)) s0

| /t_tm(vp_lfos) dS[P = F(S(5))IPI(S(t41) = S())I° + € [(S(t141) = S(8))I°
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Isometry formula: examples

@ For X € V,(m) N CO([0, T],R), the compensated exponential Z = £(X) has
finite p—the variation and

T T ) R
ECOR(T) = / Z(e)P dIX)? = / P g xpp

0

o Fractional Brownian motion with H =1/4, f € C*. Then
. t
[F(BM*(t) = [/ Vsf o BH.dB"]* :/ If'(BH(t))*dt
0 0

[E(BMH(T) = 3/0Texp (43” . %) dt
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Symmetric tensors

A symmetric p-tensor T on RY is a p-tensor invariant under any permutation
o € &, of its arguments: for (v1,va,...,v,) € (RY)P

oT(vi,.. V) = T(Vo1,Vo2s -, Vop) = T(vi, va,...,Vp)
The space Symp(Rd) of symmetric tensors of order p on R is naturally
isomorphic to the dual of the space H,[Xi, ..., Xg] of homogeneous polynomials of
degree p on RY.
P
Sp(R?) = @B Sym, (RY).
k=0

For any p-tensor T we define the symmetric part

Sym(T) := ll > oT € Sym,(R)

T 0EG

where &, of {1,..., k} is the group of permutations of {1,2,..., p}
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1sion to vector-valued paths

Extension to vector functions

Consider now a continuous R-valued path S € C([0, T],R9) and a sequence of
partitions m, = {tg,..., ty b with tf =0 < ... <t <. <ty =T. Then

P = (S(tiy1) = S(4) ® ... @ (S(tjs1) — S(4)) (- — )

Tn

p times

defines a tensor-valued measure on [0, T] with values in Sym,(R?). This space of
measures is in duality with the space C([0, T],H,[Xi, ..., Xg]) of continuous
functions taking values in homogeneous polynomials of degree p =

homogeneous polynomials of degree p with continuous time-dependent
coefficients.

This motivates the following definition:
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Definition (p-th variation of a vector-valued function)

Let p € 2N be an (even) integer, and S € C([0, T],RY) a continuous path and

7 = (7,)n>1 @ sequence of partitions of [0, T]. S € C([0, T],R?) is said to have a
p-th variation along m = (m,)n>1 if 0sc(S, m,) — 0 and the sequence of
tensor-valued measures

g = (S(t) = S(H)*P 8(-— 1)

Tn

converges to a Symp(Rd)—valued measure ps without atoms in the following
sense: Vf € C([0, T],Sp(RY)),

< fvﬂ“n >= Z < f(tJ)v(S(tJJrl) - S(tj))®p > ”__>>DQ < fnU/S >

Tn

We write S € V,(7) and call [S]P(t) := u([0, t]) the p-th variation of S.
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Rough calculus: Lecture 4

Theorem (Rough change of variable formula: vector case)

Let p € 2N be an even integer, let (m,) be a sequence of partitions of [0, T| and

S € V() N C([0, T],R?). Then for every f € CP(R,R) the limit of compensated
Riemann sums

/t < Vp_1f08§,dS >:= lim ZZ— < VHF(5(8)), (S(t41 A 1) — S(t A 1)EF >
0

n— oo
Tn k=1

exists for every t € [0, T] and satisfies

£(S(t)) — £(S(0)) :/0 <V, 1f0S,dS > +:!/0 < VPF(S(t))), d[S]P(u) >

21/34



Extension to non-anticipative functionals

We now consider non-anticipative functionals i.e. maps
F : [0, T] x D([0, T],R9) + R such that F(t,x) = F(t,x(t A.))
Definition (Horizontal and vertical derivatives)
A non-anticipative functional F is said to be:
e horizontally differentiable at (t,x) € A if the finite limit exists

DF(t,x) := lim Flt+ h’X"‘z = Fltx)
—0+

o vertically differentiable at (t,x) € /\C% if the map
RY >R, e F(t,x(tA.)+elp7)

is differentiable at 0; its gradient at O is denoted by V,F(t, x).
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Smooth functionals

Definition (C;”(A9) functionals)
We denote by C}P(A%) the set of non-anticipative functionals F € CY°(A4), such
that

@ F is horizontally differentiable with DF continuous at fixed times,

o Fis p times vertically differentiable with V4F € C*°(A4) for j = 1..p

e DF,VLF € B(AY) for j = 1..p.
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Expansions for smooth functionals

Smooth functionals may be used to obtain Taylor-type expansions:
Lemma (Lemma 2.2 in C-Ananova 2017)
Let S € C%([0, T],R) for some o >0 and F € C}J’2(/\T) be a Lipschitz map such
that V,F € Cy*(A7). Define
REon(S) = F(t+ h,S) — F(t,5) — Vo, F(t,5).(S(t + h) — S(1))
There exists C(F, T,||S||lo) > 0 which only depends on (F, T,||S||«) such that
2
IR e+n(S) < C(F. T, [Slla)  [A]*

@ Unlike the Taylor expansion for functions we have o + o < 2a: there is loss

of regularity due to piecewise-constant approximation of the path S.

@ Typical examples of S € V,(7) will have Holder regularity a = p —e.
a2+a>1/pifa>((1+ %)1/2 —1)/2. This latter bound is < 1/p so
typical examples of S € V,(7) will satisfy this condition.
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Functional change of variable formula: general case

Theorem (C.- Perkowski, 2019)

Let p € 2N F € CpP(A7), and S € V,,(7) for a sequence of partitions (,) with
|7a| — 0. Then the limit of compensated Riemann sums

/t p-1F(5).dS = lim >~ Z ka (i, S7_)(S(tiya A t) = S(t A B))K
0 n—o00 ,

[t lem, k=1

t
exists and  F(£,S) = F(0, ) + / T, 1F(S).dS

/DFuS )du + = /VPF ).d[S]?

This extends the pathwise integral to all ‘exact forms’:
T, 1CpP i= {T,1F, F € CyP(A1)}
R Cont
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Pathwise isometry formula: p € 2N

Theorem (Pathwise Isometry formula: general case)

Let p € N be an even integer, (7,) a sequence of partitions with mesh size going
to zero, and S € V,(m) N C([0, T],R) with o > ((1 + 4)1/2 —1)/2. Let

»

F € CpP(A7T) NLip(AT, d) be such that V. F € Cy (At). Then

F(S) € Vi (), /O (Ty1FoS)dS € Vy(r)  and

. t
[ (TosF o S).dSP(0) = [ 19F o SPAISP = I9F(S)Fago s

Denoting J, = Tp_1 (Cllj”’(/\r) N Lip(Ar, doo)), the pathwise integral thus
defines an isometry

Is: 6 € J, c LP([0, T], d[S]P) / 6.dS € V()
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Isometry formula: proof

IRe(s, £)] = [F(t, 52) — F(s, 5,) — VuF (5, S)(S(t) - S(s))| < Cle — |+, (1)
Let ve(s,t) := Vo, F(s,S:)(S(t) — S(s)). Then

E |F(tj+1asq+1)7F(tjaSU)|p: § |RF(tjvtj+1)+7F(tjvtj+1)|p
[tj,tira]€mn: [tj, ti+1] €
1<t

ti1<t
~(p
= Y b+ (F) X Relt g el g
[%E+1]<Etﬂ'ni k=1 [tj, tir1]€mn:
1 <

ti1<t

()

Since S € V() we have

t
Jm S b )P = [V SEPASPE. o)
[ty ti1]€mn:
ti1<t
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We need show that the double sum on the right hand side of (2) vanishes. Let
ke {l,...,p} and write qx := p/(p — k) € [1,00] and let g, = p/k be its
conjugate exponent. Holder's inequality yields

‘Z[tjwtj+1]€77n RF(tJ7 tJ'H-) ’)/F(tj, tf""l)pil(’

ti 1<t
7 /qk I/Qk
(Z[r,,t,ﬂ]em Re(t 1)) ( Stggatens 7F(tf"tf'+1)|(p_k)qk)
tj1<t 1<t
(p—=k)/p
= (Ztgatern ReCt: ge)l) (St goters E(G 12) )
ti 1<t ti 1<t

By (1) the first sum on the right hand side is bounded by

P k/p p(a+a?) k/p
(St g IR 520P) " < c(z[f, golers 01 = 51707)
tj+1 t
< (tx max{[tin — PO [ 0] € 7, 40 < E})NP, (4)

which converges to zero for n — oo because for o > (/1 + % —1)/2 we have

p(a+a?) > 1 and k > 0. Moreover, by (3) the sum over |[yg(tj, tj41)[P is
bounded and this concludes the proof.
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Rough-smooth decomposition of regular functi

Rough-smooth decomposition

‘Signal+-noise’ decomposition for smooth functionals of a rough process:
Theorem (Rough-smooth decomposition: general case)

Let p € N be an even integer, let a > ((1 + %)1/2 —1)/2, and let

S e Vy(m) N C([0, T],R) be a path with strictly increasing p-th variation [S]P
along (m,). Then any X € C}P(S) admits a unique decomposition

t
3Np €T, 1CpP, X:X(O)+A+/ <$oS,dS >
0

where ¢ = T,_1F is an exact form and [A]P = 0.

@ For S martingale, p = 2 this coincides with the semimartingale
decomposition. Here: strictly pathwise/ non-probabilistic.

@ Such decompositions were obtained in the rough path setting by Hairer &
Pillai (2013), Friz & Shekhar (2013). Here we do not require any rough path
machinery, nor any extension of the path S: our constructions are 'canonical’
and pathwise.
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Rough-smooth decomposition: proof

Existence is a consequence of the change of variable formula. Consider two such
decompositions X — Xo = A+ M = A+ M. Since [A]? = [A]? =0 and

(A= A)(t) = (A= A)(s)P S A(t) — A(s)IP + |A(t) — As)I?,

we get A— A € V,(r) and [A — A]? = 0. But then also
[M— M]P=[A— AP =0. Now

t t
M(t) = / VoF(s, S:)dS(s),  M(t) = / V. F (s, S:)dS(s)
0 0
for some F,F ¢ C;’p(/\r), and by Theorem 13 we have
~ T ~
0=[M—M(T) = / IVu(F = F)(s, 5)[Pd[S]?(s).
0
Since (F — F)(s, Ss) is continuous in s and [S]? is strictly increasing we have

Vo(F = F)(-,S) = 0. This means that M — M = 0, and then also A— A = 0.
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Relation with ‘rough path integration’

Define a control function as a continuous map ¢: A1 — R, such that
c(t,t) =0 and c(s,u) + c(u, t) < c(s, t).

Definition (Reduced rough path of order p)

Let p > 1. A reduced rough path of finite p-variation is a map
X=(1,X!,...,XP)y: Ar — S, (RY),
such that

Lp]

Z |X§,t‘p/k < C(Sa t)) (57 t) S AT;
k=1

for some control function ¢ and the reduced Chen relation holds

Xs,t = Sym(xs,u ® Xu,t)v (57 U), (u7 t) €EAT.

Rough calculus: Lecture 4 005 313



A canonical reduced rough path for S € V,(7)

Lemma
Let p>1, S e C([0, T],RY) N V,(m) where
= (t§), tg =0, teg = inf{t e [t T],  [S(t) — S(t)[ = 27"}

Then for any q > p with |q| = | p] we obtain a reduced rough path of finite
q-variation by setting X2 () :=1,

XEA(S) = 15 (S(6) = S(s), k=1,...[p) L,

Py — L 50— S(sNELP! — L (1S1P(£) — [STP(s
Xse (5) = LpJ!(S(t) S(s))® LpJ!([S] (1) = [517(s))-

Furthermore X : S — X(S) is a non-anticipative functional.
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Proposition

Let p > 1, let X be a reduced rough path of finite p-variation and let
Y € D>L(pJ /p([O, T]). Then the ‘rough path integral’
t Lp]
K(Y)(t) = /0 VhaX(s) = fim 30 S XE ).

wen([0,t]
O g e k=1

defines a function in C([0, T],R), and it is the unique function with Ix(Y)(0) =0
for which there exists a control function ¢ with

[ ove.axe) - S0k X e (s ear
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Rough-smooth decomposition of regular functi

Pathwise integral as canonical rough integral

Proposition (C- Perkowski 2019)

Let p € 2N be an even integer, S € V() and X the canonical reduced rough
path of order p associated to S, defined above. Then

/ (VF(S(s)). dX(s)) = / (Vo1 F(S),dS),
0 0

Rough integral Pathwise integral

where the right hand side is the pathwise integral defined as a limit of
compensated Riemann sums.
Note that, unlike the typical rough path construction:

@ The construction is canonical: only the path S itself is used to construct X

@ We do NOT need S to have finite p-variation. In fact in all our examples
above § € V, () but ||S||p—var = 0.
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