This is a sample syllabus. The schedule and topics covered for your section are likely to be different.
Meeting | Date | Topics | Reading | |
---|---|---|---|---|
1 | Wed.9/3 | Double integrals over rectangles | 15.1, 15.2 | |
2 | Mon.9/8 | Double integrals over general regions | 15.3 | |
3 | Wed.9/10 | Polar coordinates, applications of double integrals | 15.4, 15.5 | |
4 | Mon.9/15 | More applications, triple integrals | 15.5, 15.6 | |
5 | Wed.9/17 | Cylindrical coordinates, spherical coordinates | 15.7, 15.8 | |
6 | Mon.9/22 | Spherical coordinates, change of variables | 15.8, 15.9 | |
7 | Wed.9/24 | Change of variables | 15.9 | |
8 | Mon.9/29 | Review | ||
9 | Wed.10/1 | 1st Midterm | ||
10 | Mon.10/6 | Vector fields | 16.1 | |
11 | Wed.10/8 | Line integrals | 16.2 | |
12 | Mon.10/13 | Fundamental theorem for line integrals | 16.3 | |
13 | Wed.10/15 | Green’s theorem | 16.4 | |
14 | Mon.10/20 | Curl and divergence | 16.5 | |
15 | Wed.10/22 | Parametric surfaces, surface area | 16.6 | |
16 | Mon.10/27 | Surface integrals | 16.7 | |
17 | Wed.10/29 | Stokes Theorem | 16.8 | |
Mon.11/3 | Academic Holiday | |||
18 | Wed.11/5 | Divergence Theorem | 16.9 | |
19 | Mon.11/10 | Review | ||
20 | Wed.11/12 | 2nd Midterm | ||
21 | Mon.11/17 | Complex functions | ||
22 | Wed.11/19 | |||
23 | Mon.11/24 | Cauchy-Riemann equations | ||
Wed.11/26 | Thanksgiving | |||
24 | Mon.12/1 | Contour integrals and Cauchy’s Theorem | ||
25 | Wed.12/3 | |||
26 | Mon.12/8 | Review |