
Automorphic Forms Learning Seminar Notes
Austin Lei

Fall 2024

These notes are essentially a summary of Goldfeld’s Automorphic Forms and L-functions for the Group
GL(n,Z).

1 Discrete Group Actions

1.1 Action of a Topological Space

• Left group action of G on X: continuous if x → g ◦ x is continuous for all g. We denote the set of
orbits G\X (right cosets).

• Γ ⊆ G is discrete if for any compact K, there exists finitely many γ ∈ Γ such that γK ∩K 6= ∅.

• SL(2,Z) is a discrete subgroup of SL(2,R).

• Γ∞ =

{(
1 m
0 1

)
|m ∈ Z

}
.

• Proof that SL(2,Z) is discrete: Finitely many γ ∈ Γ∞\SL(2,Z) such that a rectangle intersects itself
after translation by Γ. Multiplication by something in Γ∞ corresponds to translation, and only finitely
many possible translate can hit the same rectangle.

• Standard action of SL(2,Z) on H, and fundamental domain.

1.2 Iwasawa Decomposition

• Iwasawa decompostion for GL(2,R): We can express

g = zkd,

where z is upper triangular with 1 in the lower right corner, k is orthogonal, and d is diagonal with
the same entry along the diagonal. k and d are unique up to multiplication by ±I, and z is unique.

• Generalized upper half-plane: hn is the set of all matrices in GL(n,R) of the form xy, where x is upper
triangular with 1s on the diagonal, and

y =


y1y2 . . . yn−1

y1y2 . . . yn−2

. . .

y1

1

 .

• h3 does not have complex structure, compared to h2. This is what makes GL(n) automorphic forms
different.

• Iwasawa decomposition for GL(n): We have that

GL(n,R) = hnO(n,R)Zn,

where Zn is the center of GL(n,R), i.e. diagonal matrices with everything the same along the diagonal.
Letting g = zkd be the decomposition, k and d are unique up to multiplication by ±I, and z is unique.
Hence

hn ∼= GL(n,R)/(O(n,R)R∗),
defining an action of GL(n,R) (and GL(n,Z)) on hn.
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• Proof of decomposition: explicit computation involving factoring ggT in terms of upper and lower
triangular matrices.

1.3 Siegel Sets

• Siegel set: Σa,b ⊆ hn is the set of z = x · y ∈ hn such that |xi,j | ≤ b and yi > a.

• Γn = GL(n,Z) acts discretely on hn. In particular, for any z ∈ hn, there are only finitely many g ∈ Γn

such that gz ∈ Σ√3/2,1/2. In fact, we can write

GL(n,R) =
⋃
g∈Γn

gΣ√3/2,1/2.

Hence Σ√3/2,1/2 serves as a ”good approximation” for a fundamental domain for hn.

• Proof idea: Reduce to SL(n,R) and SL(n,Z). Show that if φ(γz) is minimized for γ ∈ SL(n,Z),
where φ is the norm of the last row (which exists because SL(n,Z) is a lattice) then γz ∈ Σ∗√

3/2,1/2

(determinant 1 version). This proves the cover of GL(n,R) by elements of Σ√3/2,1/2.

• Proof of discreteness of action: We show that there are finitely many γ ∈ SL(n,Z) such that γz ∈
Σ∗√

3/2,1/2
. (This is good enough because GL(n,Z)/SL(n,Z) = Z/2Z.) Define φi(z) = ‖eiγz‖, well-

defined on SL(n,R)/SO(n,R). Letting z = xy and explicitely computing φi(z) shows that γz ∈
Σ∗√

3/2,1/2
=⇒ φi(z) bounded, hence since eiγz has lattice structure, there are only finitely many ith

rows of γ so that γz lies in Σ∗√
3/2,1/2

, and hence finitely many γ.

1.4 Haar Measure

• Topological group: A topological space G such that G is a group, and

(g, h) 7→ g · h−1

is continuous in both variables; i.e. multiplication and inversion is continuous.

• Locally compact: every point has compact neighborhood

• Hausdorff: distinct elements can be separated by opens

• In particular, GL(n,R) is a locally compact Hausdorff topological group, coming from the subspace
topology of GL(n,R) ⊆ Mat(n,R) = gl(n,R).

• (left) Haar measure: For locally compact Hausdorff topological group, we want a positive Borel measure
µ on G, left invariant on the action by G, i.e. µ(gE) = µ(E). Same for right. If left invariant measure
means right invariant measure on G, G is unimodular.

Can define differential one form, such that that we have integrals for compactly supported f : G→ C
ˆ
G

f(g) dµ(g) ,

and ˆ
E

dµ(g) = µ(E).

This dµ(g) is the Haar measure.

• Key theorem: For any locally compact Hausdorff topological group, there exists a unique left Haar
measure on G, up to positive real multiples. Proof of uniquness: Fubini.
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• Haar measure on GL(n,R): For g = (gi,j)i,j ∈ GL(n,R), the unique left-right invariant measure on
GL(n,R) is

dµ(g) =

∏
1≤i,j≤n dgi,j

det(g)
n .

Proof: Decompose GL(n,R) into Zn (center of GL(n,R)) and elements that are 1 on the diagonal and
xr,s and (r, s), and do casework.

1.5 Invariant measure on coset spaces

• Let G be a locally compact Hausdorff topological group, and H a compact subgroup of G, with
corresponding Haar measure µ and ν, respectively. Then there exists a unique (up to scalar multiple)
quotient measure µ̃ on G/H such that

ˆ
G

f(g) dµ(g) =

ˆ
G/H

(ˆ
H

f(gh) dν(h)

)
dµ̃(gH) .

• hn and GL(n,R): The measure left invariant GL(n,R) measure on hn can be expressed as

d∗z = d∗xd∗y,

with
d∗x =

∏
1≤i<j≤n

dxi,j

and
d∗y =

∏
1≤i≤k

y
−k(n−k)−1
k dyk .

Proof: Check invariance under diagonal matrices, upper triangular matrices with 1s on diagonal, and
transpositions.

1.6 Volume of SL(n,Z)\SL(n,R)/SO(n,R)
• Note that SL(n,R)/SO(n,R) ∼= GL(n,R)/(O(n,R) · R∗).

• The volume of SL(n,Z)\SL(n,R)/SO(n,R) can be explicitly computed to be

n2n−1
n∏
`=2

ζ(`)

Vol(S`−1)
.

• Proof idea: Induction.

• Base case (n = 2): Can directly integrate using the fundamental domain. Or use the technique from
the general case.

• General case: Define a test function f , then create a periodic function

F (z) =
∑
m∈Zn

f(m · z).

Split sum in casework by last row: take out common factor `, then treat as coset of Pn\hn, where
Pn is anything with en as the last row. Integrate over a fundamental domain Γn\hn. Now break up
`en · z via the Iwasawa decomposition into three components; one that is integrating over SL(n− 1,Z),
one over (R/Z)n−1 (corresponding to xj,n), and one integrating over (0,∞); corresponding to t =(∏n−1

i=1 y
n−i
i

)−1/n

. Applying spherical integration techniques, this can be computed in terms of f̂(0).

Now, applying Poisson summation, replace f by f̂ , and get the same formula but with f̂ and f switched.
Choosing an appropriate f , this gives the desired result.
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2 Invariant differential operators

• The periodic functions e2πinx on L2(Z\R) are precisely the eigenfunctions for the Laplacian operator
d2

dx2 , with eigenvalue −4π2n2. This directly leads to Fourier theory.

• Thus, we are motivated to consider differential operators invariant under the discrete group, and their
eigenvalues/functions.

2.1 Lie algebra

• Associative algebra: Associative algebra A over field K is a vector space over K with an associative
product closed in A satisfying the distributive law.

• Lie algebra: Vector space over K with bilinear map [·, ·] : L× L→ L such that

– [a, βb+ γc] = β[a, b] + γ[a, c]

– [a, a] = 0

– [a, b] = −[b, a]

– [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

• Given an associative algebra A, the associated Lie algebra Lie(A) is A equipped with the bracket

[a, b] = ab− ba.

• Universal enveloping algebra: For any Lie algebra L over K, consider the tensor algebra

T (L) = ⊕∞k=0 ⊗k L,

where the tensor product is taken over K. Let I(L) be the two-sided ideal generated by X ⊗ Y − Y ⊗
X − [X,Y ]. Then the universal enveloping algebra is precisely

U(L) = T (L)/I(L),

an associative algebra with the product X ◦ Y = X ⊗ Y (mod I(L)). In particular, by definition,

L ⊆ Lie(U(L))

with the inclusion respecting the bracket.

2.2 Universal enveloping algebra of gl(n,R)
• gl(n,R): Precisely Mat(n,R), with Lie bracket

[α, β] = αβ − βα.

• We have the (left invariant) differential operators Dα, for α ∈ gl(n,R), acting on the set of smooth
functions GL(n,R)→ C, via

DαF (g) =
∂

∂t
F (g exp(tα))|t=0 =

∂

∂t
F (g + tgα)|t=0.

Denote Dn to be the associative algebra generated by the Dα, where the multiplication is composition.

• Some properties of the differential operators:

– Dα(FG) = DαF ·G+ F ·DαG

– Dα(F (G(g))) = (DαF )(G(g))Dα(G)(g)
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– Dα+β = Dα +Dβ

– Dα ◦Dβ −Dβ ◦Dα = D[α,β].

– Dα ◦Dβ = Dβ ◦Dα =⇒ Dαβ = Dαβ .

In particular, Dn can be realized as the universal enveloping algebra of gl(n,R). Letting [D,D′] =
D ◦D′−D′ ◦D be the bracket for the induced Lie algebra (from the universal enveloping algebra), we
have that [Dα, Dβ ◦D] = [Dα, Dβ ] ◦D +Dβ ◦ [Dα, D].

Proof of properties: Direct calculation using multivariate chain rule.

• If f : GL(n,R) → C is left-invariant by GL(n,Z) and right-invariant by Zn, then for all D ∈ Dn, Df
is also left-invariant by GL(n,Z) and right-invariant by Zn.

2.3 The center of the universal enveloping algebra of gl(n,R)
• Denote Dn to be the center of the universal enveloping algebra Dn.

• If D ∈ Dn, and f is a smooth function

f : GL(n,Z)\GL(n,R)/(O(n,R)Zn)→ C,

then Df is also well defined over GL(n,Z)\GL(n,R)/(O(n,R)Zn); i.e. it is left-invariant by GL(n,Z)
and right invariant by O(n,R)Zn.

• Proof idea: Use the fact that SO(n,R) is generated by exp of skew-symmetric matrices, and that exp
commutes well with the definition of D. Then use that D lies in the center, and f is right-invariant by
O(n,R) (including δ1!).

• Casimir operators: Let Ei,j be the matrix with 1 at i, j and 0 elsewhere, and let Di,j = DEi,j . Then
for each m ≥ 2, we have the Casimir operator

n∑
i1=1

n∑
i2=1

· · ·
n∑

im=1

Di1,i2 ◦Di2,i3 ◦ · · · ◦Dim,i1 ,

which lies in Dn.

• For gl(n,R): The center is a rank n algebra. Any element in the center can be expressed as a polynomial
in R in the Casimir operators defined before and DIn . Moreover, DIn annihilates any function invariant
under Zn.

2.4 Eigenfunctions of invariant differential operators

• We want a smooth function f : hn → C that is an eigenfunction for all D ∈ Dn; i.e. we want

Df(z) = λDf(z)

for all D in the center of the universal enveloping algebra and z ∈ hn.

• Power function: We have the Is function, a generalization of the imaginary part function raised to the
power s;

Is(z) =

n−1∏
i=1

n−1∏
j=1

y
bi,jsj
i ,

where

bi,j =

{
ij i+ j ≤ n
(n− i)(n− j) i+ j > n
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• On GL(2,R), this is just ys. We have that ∆ = y2( ∂2

∂x2 + ∂2

∂y2 ) generates D2 for functions over h2 (we

can ignore DI2 , as all functions are right-invariant by the center). In particular, note that

∆Is(z) = s(s− 1)Is(z).

• Claim: Dk
i,jIs(z) =

(∑n−i
k=1 ksn−k −

∑i−1
k=1 ksk

)k
Is(z) when i = j, and 0 otherwise. Proof: intensive

computation. (Remark: I believe the proof in Goldfeld for this has some minor errors (computation
when i < j), and the proposition doesn’t imply the desired claim)

• In particular, Is(z) is such an eigenfunction for all D ∈ Dn.

• Theme: Any function in just ys is an eigenfunction.

3 Automorphic forms and L-functions for SL(2,Z)
• Key idea: Automorphicity is equivalent to existence of functional equation for certain L-functions -

this is the idea of converse theorems.

• Hecke operators: Simultaneous eigenfunction of all Hecke operators corresponds to Euler product for
L-function.

3.1 Eisenstein series

• Hyperbolic Laplacian:

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
,

invariant under the action by GL(2,R)+.

• ys is an eigenfunction of this operator, with eigenvalue s(1− s).

• Automorphic function: Smooth function SL(2,Z)\h→ C.

• To construct automorphic function, we average over the group to get the Eisenstein series:

E(z, s) =
∑

γ∈Γ∞\SL(2,Z)

Is(γz)

2
=

1

2

∑
c,d∈Z

gcd(c,d)=1

ys

|cz + d|2s

• E(z, s) converges absolutely and uniformly on compact subset for z ∈ h2 and Re (s) > 1.

• Real analytic in z and complex analytic in s.

• More properties:

– |E(z, s)− ys| ≤ c(ε)y−ε for σ ≥ 1 + ε > 1.

– E(γz, s) = E(z, s) for γ ∈ SL(2,Z).

– ∆E(z, s) = s(1− s)E(z, s).

• Bessel function:

Ks(y) =
1

2

ˆ ∞
0

e−
1
2y(u+1/u)us

du

u
.

In particular, Ks(y) = K−s(y).
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• Fourier coefficients of Eisenstein series: We have that

E(z, s) = ys + φ(s)y1−s +
2πs
√
y

Γ(s)ζ(2s)

∑
n 6=0

σ1−2s(n)|n|s−1/2Ks−1/2(2π|n|y)e2πinx,

where

φ(s) =
√
π

Γ(s− 1/2)

Γ(s)

ζ(2s− 1)

ζ(2s)
.

• Idea of proof: Integral calculation. A little bit of Ramanujan sums. Some identities from Gamma
integrals involve rewriting the Gamma integral then performing a change of variable.

• Properties of φ:

– φ(s)φ(1− s) = 1,

– E(z, s) = φ(s)E(z, 1− s).

• We have the modified function E∗(z, s) = π−sΓ(s)ζ(2s)E(z, s). It is meromorphic, with simple poles
at s = 0, 1. It has functional equation

E∗(z, s) = E∗(z, 1− s)

(which follows by examining the Fourier coefficients) and has

Ress=1E(z, s) =
3

π

for all z ∈ h2.

• Why do we care? Useful in the Rankin-Selberg method (discussed previously) to get functional equa-
tions for L-functions. Will also arise the in the Selberg spectral decomposition of L2(SL(2,Z)\h2)
functions.

3.2 Hyperbolic Fourier expansion of Eisenstein series

• Idea: We can use a hyperbolic Fourier expansion of the Eisenstein series to recover the functional
equation for the Hecke L-function associated to Q(

√
D), where this is a real quadratic field (also for D

of specific form).

• Let ρ =

(
α β
γ δ

)
∈ SL2(Z). be a hyperbolic element; i.e. γ > 0 and |α + δ| > 2. This has two fixed

points

ω =
α− δ +

√
D

2γ

and

ω′ =
α− δ −

√
D

2γ
,

where D = (α+ δ)2 − 4.

• Let

κ =

(
1 −ω
1 −ω′

)
.

Then κρκ−1 (the diagonalization) is equivalent to(
ε 0
0 ε−1

)
,

where
ε = (α+ δ −

√
D)/2.

so that ε+ ε−1 = α+ δ. Moreover, it is a unit in Q(
√
D). Since Q(

√
D) is a quadratic extension of Q,

the ring of integers is rank 1, and we suppose that ε is a fundamental unit of the group of units.
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• In particular, we have that
E(κ−1z, s) = E(κ−1(ε2z), s).

Consider this series as a function of v, where z = iv. We get a Fourier expansion

ζ(2s)E(κ−1(iv), s) =
∑
n∈Z

bn(s)v
πin
log ε ,

with

bn(s) =
1

2 log ε

ˆ ε2

1

ζ(2s)E(κ−1(iv), s)v
πin
log ε

dv

v

• After some tedious calculation, you get that

bn(s) =
(ω − ω′)s

4 log ε

∑
β 6=0

N(β)−s
∣∣∣∣ ββ′
∣∣∣∣−πinlog ε

ˆ ε2|β′/β|

|β′/β|

(
v

v2 + 1

)s
v−πin/ log ε dv

v

Note that there are typos in the book: extra factor of 1/2, and inside term is v and not v2.

• The β = cω+d lie in an (fractional) ideal b such that N(b) = 1
γ , so using the definition of two principal

ideals being equal (using that ε is a fundamental unit) and an integral calculation similar to Bump
Proposition 1.9.1, we have that

bn(s) =

Γ

(
s− πin

log ε

2

)
Γ

(
s+ πin

log ε

2

)
Γ(s)

(N(b)
√
D)s

8 log ε

∑
b|(β) 6=0

∣∣∣∣ ββ′
∣∣∣∣−πin/ log ε

N(β)−s.

Note: There is another factor of 1/2 here compared to the book from the gamma integral.

• We have the Hecke grossencharakter

ψ((β)) =

∣∣∣∣ ββ′
∣∣∣∣−πin/ log ε

and Hecke L-function
Lb(s, ψn) =

∑
b|(β)6=0

ψn((β))N(β)−s.

• Hence the expansion for the Eisenstein series invovles the Hecke L-function:

E∗(κ−1(iv), s) =
(N(b)

√
D)s

8πs log ε

∑
n∈Z

Γ

(
s− πin

log ε

2

)
Γ

(
s+ πin

log ε

2

)
Lb(s, ψn)vπin/ log ε.

• The functional equation for the Eisenstein series hence gives the functional equation for the Hecke
L-function: Lb(s, ψn) has meromorphic continuation except a simple pole at s = 1, and letting

Λnb(s) =
(N(b)

√
D)s

πs
Γ

(
s− πin

log ε

2

)
Γ

(
s+ πin

log ε

2

)
Lb(s, ψn),

we have Λnb(s) = Λnb(1− s).
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3.3 Maass forms

• We have a Hilbert space of L2(SL(2,Z)\h2) with the inner product given by the Petersson inner
product:

ˆ
SL(2,Z)\h2

f(z)g(z)
dxdy

y2
.

• We define a Maass form of type v to be a function f ∈ L2(SL(2,Z)\h2) such that

– f(γz) = f(z) for γ ∈ SL(2,Z).

– ∆f = v(1− v)f

–
´ 1

0
f(z) dx = 0.

(In other sources, the last condition is for a Maass cuspform.)

• ∆ is a self-adjoint operator. Hence v(1− v) is real and nonnegative. Proof idea: Use that

ˆ
Γ\h2

(
∂2f

∂x2
+
∂2f

∂y2

)
f =

ˆ
Γ\h2

∣∣∣∣∂f∂x
∣∣∣∣2 +

∣∣∣∣∂f∂y
∣∣∣∣2

for f a Maass form. This follows from Green’s theorem.

• Maass form of types 0 or 1 must be constant. Follows from properties of harmonic functions. (Why is
f bounded as the imaginary part of z → ∞? Answer: Follows from Fourier expansion; we show later
that each of the Fourier expansions has rapid decay, so the function is hence bounded. See: https:

//math.stackexchange.com/questions/4980702/a-question-on-properties-of-mass-forms )

3.4 Whittaker expansions and multiplicity one for GL(2,R)
• For a Maass form f , using the transformation property gives a Fourier expansion

f(z) =
∑
m∈Z

Am(y)e2πimx,

and Am(y)e2πimx satsifies the two properties

– ∆Wm(z) = v(1− v)Wm(z)

– Wm

((
1 u
0 1

)
z

)
= Wm(z)e2πimu

This motivates the following definition.

• A Whittaker function of type v with additive character ψ : R → S1 is a smooth nonzero function
W : h2 → C such that

– ∆W (z) = v(1− v)W (z)

– W

((
1 u
0 1

)
z

)
= Wm(z)ψ(u)

• On GL(2,R), we can construct these functions explicitely. We can check that

W (z, v, ψm) =
√

2
(π|m|)v−1/2

Γ(v)

√
2πyKv−1/2(2π|m|y)e2πimx.

where

Kv(y) =
1

2

ˆ ∞
0

e−1/2y(u+1/u)uv
du

u
.
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• Multiplicity 1: For SL(2,Z)-Whittaker functions of type not 0 or 1 with rapid decay at infinity, it must
be a constant multiple of the W computed before. In particular, if ψ = 1, then a = 0. Moreover, if ψ
is non-trivial, we can assume W has polynomial growth.

• Proof follows from differential equation theory. In the nontrivial case, there are two solutions; one has
rapid decay (Kv(y)) and one has rapid growth, and it is precisely the function defined before.

3.5 Fourier-Whittaker expansions on GL(2,R)
• Corollary of Multiplicity One theorem: Every nonconstant Maass form of type v (i.e. type not 0 or 1)

has Whittaker expansion of the form

f(z) =
∑
n 6=0

an
√

2πyKv−1/2(2π|n|y)e2πinz.

• Proof: The integral condition requires that the e2πi0 coefficient is 0. Maass forms being L2 implies
that it has polynomial growth. Hence all of the Whittaker functions corresponding to each Fourier
coefficient (corresponding not to 0) must be at worst polynomial growth. By multiplicity one, this
forces every Fourier coefficient to be of the form above.

3.6 Ramunujan-Petersson Conjecture

• For holomorphic modular cuspforms of weight k, we have the Ramunujan-Petersson conjecture

|an| = O(n(k−1)/2d(n))

where d(n) is the number of divisors of n.

• Idea: Non-constant Maass forms like holomorphic modular forms of weight 0.

• This leads to Ramanujan-Petersson conjecture for Maass forms:

|an| = O(d(n)),

with constant only dependent on the Petersson norm of f .

• What we can show: If f has Petersson norm 1 and is of type v, we have that

|an| = Ov(
√
|n|).

Proof idea: Integrate from x ∈ [0, 1], y ∈ [Y,∞) of |f(z)|2, then isolate the an. Then use a change of
variable y 7→ Y y to get a 1

Y factor times the area of |f |2 over the fundamental domain.

3.7 Selberg eigenvalue conjecture

• We know that for a non-constant Maass form f , ∆f = v(1 − v)f , where λ = v(1 − v) is real and
positive. How small can λ be?

• Maass form for a congruence subgroup Γ: Smooth on h2, automorphic on Γ, lies in L2(Γ\h2), constant
terms of Fourier expansions at cusps vanish, and ∆f = v(1− v)f .

• Selberg conjecture: If f is a Maass form of type v for a congruence subgroup Γ, then v(1− v) ≥ 1/4;
i.e. Re (v) = 1/2.

• For Maass forms on SL(2,Z), can prove (according to M-F Vigneras) that v(1− v) ≥ 3π2

2 .

• Proof idea: Use again that

ˆ
Γ\h2

(
∂2f

∂x2
+
∂2f

∂y2

)
f =

ˆ
Γ\h2

∣∣∣∣∂f∂x
∣∣∣∣2 +

∣∣∣∣∂f∂y
∣∣∣∣2

for f a Maass form. This follows from Green’s theorem.
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3.8 Finite dimensionality of the eigenspaces

• Let Sλ be the space of Maass forms of eigenvalue Λ = v(1−v) under ∆. This space is finite dimensional.

• Idea of proof: If an = 0 for n ≤ n0, for n0 sufficiently large, then f itself must be 0. Get bound using

that an = O(
√
|n|) and use that Kv(y) � e−y√

y .

3.9 Even and odd Maass forms

• T−1: Operator such that
T−1f(x+ iy) = f(−x+ iy).

Notation is written to match Hecke operators later. This sends Maass forms of type v to Maass forms
of type v.

• In particular, the eigenvalues of T−1 must be ±1, since T 2
−1 = I.

• If T−1f = f , then f is even. If T−1f = −f , then f is odd.

• If f is even, then an = a−n. If f is odd, then an = −a−n. Proof: Clear from Fourier inversion after
making substitution x 7→ −x.

• Any Maass form of type v can be expressed as the sum of an even and odd Maass form:

f =
1

2
(f + T−1f) +

1

2
(f − T−1f) ;

the left is an even Maass form and the right is an odd Maass form.

3.10 Hecke operators

We will show this in more generality, then later apply to the case of Γ = SL(2,Z) and X = h2.

• G is a group acting continuously on topological space X, Γ is a discrete subgroup of G, Γ\X as left
Γ-invariant measure dx.

• We have the commensurator of Γ

CG(Γ) =
{
g ∈ G|(g−1Γg) ∩ Γ has finite index in both Γ and g−1Γg

}
.

• For any g ∈ CG(Γ), we have the decomposition

Γ = ∪di=1

(
(g−1Γg) ∩ Γ

)
δi,

giving double coset decomposition
ΓgΓ = ∪di=1Γgδi

for some representatives δi ∈ Γ, where d = [Γ : (g−1Γg) ∩ Γ].

• We define the Hecke operator
Tg : L2(Γ\X)→ L2(Γ\X)

by

Tg(f(x)) =

d∑
i=1

f(gδix).

• This is well-defined; the choice of δi is preserved because f is invariant under left-multiplication under
Γ, and Tg(f(γx)) = Tg(f(x)) for γ ∈ Γ because δiγ = γ′iδσ(i) for γ′i ∈ g−1Γg ∩ Γ, and so

gδiγ = gγ′iδσ(i) ∈ Γgδσi ,

and then we invoke left invariance of Γ.

11
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• We get the Hecke ring by considering formal sums∑
k

mkTgk .

• For multiplication, we consider the multiplication of the double cosets:

(ΓgΓ)(ΓhΓ) = ∪jΓgΓβj = ∪i,jΓαiβj = ∪Γw⊆ΓgΓhΓΓw = ∪ΓwΓ⊆ΓgΓhΓΓwΓ.

• Then
TgTh =

∑
ΓwΓ⊆ΓgΓhΓ

m(g, h, w)Tw,

where m(g, h, w) is the number of i, j such that Γαiβj = Γw. This product ends up being associative.

• Let ∆ be a semigroup such that Γ ⊆ Γ ⊆ CG(Γ). The Hecke ring RΓ,∆ is the set of all formal sums∑
k

ckTgk

with ck ∈ Z and gk ∈ ∆.

• Antiautomorphism: g 7→ g∗ such that (gh)∗ = h∗g∗. For example, transpose of matrix, which is what
we care about.

• Commutativity of Hecke ring: If there exists antiautomorphism g 7→ g∗ of CG(Γ) such that Γ∗ = Γ
and (ΓgΓ)∗ = ΓgΓ for all g ∈ ∆, then RΓ,∆ is a commutative ring.

• Proof: Idea: Use the antiautomorphism to show that left and right coset decompositions are basically
the same. Then use antiautomorphism to show that products should come out to the same thing.

3.11 Hermite and Smith normal forms

• Hermite normal form: Every matrix A ∈ GL(n,Z)+ is left-equivalent under SL(n,Z) to a matrix B,
i.e. B = γA, with γ ∈ SL(n,Z), of the form

d1 α2,1 . . . αn,1
0 d2 . . . αn,2

0 0
. . .

...
0 0 . . . dn


where the di are positive integers and 0 ≤ αk,j < dk.

• Idea of proof: You can get this form by performing row operations that preserve the determinant,
which is equivalent to left-multiplication by γ ∈ SL(n,Z).

• Smith normal form: Every matrix A ∈ GL(n,Z)+ is left-right equivalent under SL(n,Z) to a matrix
D; i.e. D = γ1Aγ2, where D is a diagonal matrix, with dn in the top left and d1 in the bottom right,
such that di | di+1, and the di > 0.

• Idea of proof: Same idea, but now with both row and column operations. Uniqueness: GCD of all
k × k components determines dk.

12
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3.12 Hecke operators for L2(SL(2,Z)\h2)
• In this case, we have G = GL(2,R), Γ = SL(2,Z), and X = h2.

• The matrix (
n0n1 0

0 n0

)
for integers n0, n1 ≥ 1 lies in CG(Γ), we can let ∆ be the semigroup generated by Γ and these matrices.

• For this ∆, we have the antiautomorphism of transposition. We have that

Γt = Γ

and
(ΓgΓ)t = ΓgΓ

for g ∈ ∆, as g is generated by diagonal matrices and elements of Γ, so the Hecke ring RΓ,∆ is
commutative.

• Let

Sn =

{(
a b
0 d

)
|ad = n, 0 ≤ b < d

}
then

∪m2
0m1=nΓ

(
m0m1 0

0 m0

)
Γ = ∪α∈SnΓα

is a disjoint decomposition.

• Proof idea: Basically follows from Hermite/Smith normal forms.

• Thus, we use the double coset disjoint union on the right to define the Hecke operator

Tnf(z) =
1

n

∑
ad=n

0≤b<d

f

(
az + b

d

)
,

where 1/
√
n is a normalization factor to help with formulas later.

• The Hecke operators are self-adjoint wrt the Petersson inner product:

〈Tnf, g〉 = 〈f, Tng〉 .

Proof idea: Use that diagonal matrices are invariatn under transposition, and that

S

((
a b
c d

)−1
)T

S−1 =
1

ad

(
a b
c d

)
,

and acting on z this is the same as

(
a b
c d

)
.

• In particular, one can check that the Hecke operators, T−1, and ∆ all commute.

• Hence, we can simulatenously diagonalize with respect to all of the operators, giving Maass Hecke-
eigenforms. These must be either even or odd.

• In particular, letting

f(z) =
∑
n 6=0

an
√

2πyKv−1/2(2π|n|y)e2πinx

be the Fourier-Whittaker decomposition, we have that for a Maass eigenform of type v a(1) = 0 =⇒
f = 0. If f is nonzero and we normalize such that a(1) = 1, then we have the following properties:

13
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– Tnf = anf

– aman = amn, gcd(m,n) = 1

– aman =
∑
d|(m,n) amn/d2

– apr+1 = apapr − apr−1

for all primes p and r ≥ 1.

• Proof idea: Direct computation using the definition of the Hecke operators.

3.13 L-functions associated to Maass forms

• Let f be a Maass Hecke eigenform of type v that is also an eigenfunction for T−1. We have the
L-function associated to f

Lf (s) =

∞∑
n=1

ann
−s.

Since we know that an = O(
√
n), this series is absolutely convergent for Re (s) > 3/2.

• Since the an are multiplicative, we have the Euler product

Lf (s) =
∏
p

( ∞∑
`=0

ap`

p`s

)
.

• Using the previous formulas for the apr gives that

Lf (s) =
∏
p

(1− app−s + p−2s)−1 =
∏
p

(1− αpp−s)−1(1− βpp−s)−1,

where αpβp = 1 and αp + βp = ap.

• We have the following holomorphic continuation and functional equation for Lf (s): Let ε = 0, 1 be
such that T−1f = (−1)εf . Then the completed L-function is

Λf (s) = π−sΓ

(
s+ ε− 1/2 + v

2

)
Γ

(
s+ ε+ 1/2− v

2

)
Lf (s),

and we have the functional equation

Λf (s) = (−1)εΛf (1− s).

• Proof: Consider x = 0, and consider as function of y for y > 0. Take the Mellin transform of the
function. The two gamma factors arise out of the Mellin transform of Bessel functions. If f is even,
use that an = a−n. If f is odd, instead take the Mellin transform of ∂

∂xf .

3.14 L-functions associated to Eisenstein series

• Recall that for Re (w) > 1, we had the Eisenstein series

E(z, w) =
1

2

∑
c,d∈Z

gcd(c,d)=1

yw

|cz + d|2w

with Fourier-Whittaker expansion

E(z, w) = yw + φ(w)y1−w +
21/2πw−1/2

Γ(w)ζ(2w)

∑
n 6=0

σ1−2w(n)|n|w−1
√

2π|n|yKw−1/2(2π|n|y)e2πinx.

Note that the σ1−2w(n)|n|w−1/2 are analogous to the an for Maass forms.
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• Hence we define the L-function associated to E(z, w) by

LE(∗,w)(s) =

∞∑
n=1

σ1−2w(n)nw−1/2−s.

• It turns out that
LE(∗,w)(s) = ζ(s+ w − 1/2)ζ(s− w + 1/2),

so letting (completing in the natural way for each zeta)

ΛE(∗,w)(s) = π−sΓ

(
s+ w − 1/2

2

)
Γ

(
s− w + 1/2

2

)
LE(∗,w)(s),

we get the functional equation
ΛE(∗,w)(s) = ΛE(∗,w)(1− s),

which exactly matches the functional equation for an even Maass form of type w.

• Moreover, the Eisenstein series is an eigenfunction of all the Hecke operators, giving an explanation
for the Euler product.

• Idea of proof: The Sn defined previously (

(
a b
0 d

)
) act as coset representatives of Γ1\Γn. The Eisen-

stein series are summed over Γ∞\Γ1. Swap the sums and swap the order of coset representatives and
the correct value for TnE(z, s) falls out.

3.15 Converse theorems for SL(2,Z)
• Just like for holomorphic modular forms, satsifying functional equation + sufficient boundedness con-

ditions gives modularity.

• Hecke-Maass converse theorem: Let L(s) =
∑
ann

−s be an L-function that converges absolutely for
Re (s) sufficiently large, and suppose that the completed L-function

Λv(s) = π−sΓ

(
s+ ε− 1/2 + v

2

)
Γ

(
s+ ε+ 1/2− v

2

)
L(s)

satsifies the functional equation
Λv(s) = (−1)εΛv(1− s),

where ε = 0, 1, and Λv(s) is entire and bounded on vertical strips. Then

f =
∑
n 6=0

an
√

2πyKv−1/2(2π|n|y)e2πinx

is an even/odd Maass form, where a−n = (−1)εan.

• Idea of proof: Only need to check modularity. You get T for free, so only need to check S. Can
show that it suffices to check x = 0, y if you can show that f(iy) − f(i/y) satisfies some initial
conditions involving differentials: F (iy) = 0, ∂F

∂x |x=0 = 0 implies F is 0. (This is the replacement for
analytic continuation in the holomorphic case.) This follows out of since Λ is the Mellin transform of
f , expressing f as the Mellin inverse of f , then applying the functional equation + bounded on vertical
strips + f rapidly decaying toward infinity to get the final answer.

• Caveat: No such L-function has been found for Maass forms on SL(2,Z). (Related to that there are
no known constructions of SL(2,Z)-Maass forms) Closest is the Hecke L-function - these turn out to
be the functional equation of a Maass form of a congruence subgroup.
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3.16 The Selberg spectral decomposition

• It turns out that we can decompose any L2(SL(2,Z)\h2) function into

C⊕ L2
cusp(SL(2,Z)\h2)⊕ L2

cont(SL(2,Z)\h2).

Here cusp refers to integrals at cusps is 0, and will be an integral of an Eisenstein series.

• We have ηj(z), for j ≥ 1, be an orthonormal basis of Maass forms that are all Hecke eigencuspforms.
Moreover, let

η0(z) =
√

3/π.

• We get the Selberg spectral decomposition

f(z) =

∞∑
j=0

〈f, ηj〉 ηj(z) +
1

4πi

ˆ 1/2+i∞

1/2−i∞
〈f,E(∗, s)〉E(z, s) ds

where the inner product is the Petersson inner product.

• Why a countable basis of Maass forms? It turns out that the Laplacian on cuspforms is a compact
operator, so from spectral theory we get that the spectrum is countable. See Iwaniec-Kowalski 15.2.

• Can show that if f is of rapid decay such that

〈f,E(∗, s)〉

converges absolutely, and f is orthogonal to 1, then f decomposes into a cusp form plus the correct
integral by showing that 〈f,E(∗, s)〉 is the Mellin transform of the constant term of f , and that the
constant term of the integral is the inverse Mellin transform of 〈f,E(∗, s)〉.

• Spectral theory of automorphic forms important - will lead to Selberg trace formula, etc.
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